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I. INTRODUCTION

This article is a survey. The objective is to give an up-
to-date account of the use of identifiable representations for
linear multivariable systems as well as to briefly survey meth-
ods for the estimation of the structure of these representations
from measured data. ILinear multivariable systems can be repre-
sented in a number of ways using finitely parametrized models;
in this article we will consider state-space models {SSs), ma-
trix fraction descriptions (MFDs), and autoregressive moving
average models with exogeneous inputs (ARMAXs}, also called
vector difference equation models (VDEs). This last class of
models is of particular importance in the context of system
identification from observed data because most available param—
eter estimation methods are well suited to ARMAX models., Trans-

formations between the various classes of finite-dimensional
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models are easy to establish, and within each class there exists
an infinite number of equivalent models, all producing the same
sequence of Markov parameters (or impulse response matrices

{KO, Kqyv Ky, ...} or, equivalently, the same matrix transfer

. o -1i
function K(z) A Zi=0 Kiz .

A system is uniquely defined by its sequence of Markov pa-

rameters. If the system is finite dimensional (see Section II), '

it can be represented in an infinite number of ways by a finitely _
parametrized model (SS, MFD, or ARMAX). Obviously, in an identi-
fication context, one would like to use a parametrized model

set M* = {M(8)]|6 € D} (either an SS, MFD, or ARMAX model set}

that is able to represent the system for a unique value of the
parameter vector 6, so that the parameter estimation algorithm
would converge. This is the problem of constructing identifi-

able model sets to which this article is devoted. The structure

of these model sets is determined by a set of integer~valued
indices, called structure indices. They determine the locations
of 0 and 1 elements and of free parameters in the matrices of
an SS model set or the degrees of the polynomials in an MFD ox
ARMAX model set.

A fundamental property of linear multivariable systems is
that no unique model set is able to represent all systems of
given order, say n. The set s{n) of all systems of order n can 4
only be reéresented as a finite union of model sets, each
characterized by its structure indices. This is what makes the
determination of identifiable model sets nontrivial in the
multivariable case. Now there are basically two ways to let
each system in S{n) be represented by an identifiable model.

One way is to let S(n} be described by a disjoint union of

S i1 3.1 wetss that is, each system ¢ € S(n} is
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represented by a unigque model specified by a unique set of
integer-valued structure indices and a unique set of real-valued
parameters. These identifiable model sets are then called
canonical. Given a particular choice of canonical form (e.g.,
observer canonical form}, there exists one such form for each
system. The alternative is to let S(n} be described by a union
of identifiable but overlapping model sets, each set being
characterized by its set of integer-valued structure indices

and each model within that set by a unigue set of real-valued
parameters. In this apprcach the structure indices are not de-
fined by the system. As a matter of fact, each of the model
sets is dense in S(n) (see [1]-[4] for a description of the
structure of S(n)); this means that any such identifiable model
set M* will be able to represent almost any given system ¢ € S(n)
for a particular value of 6. If Ml(el) and M2(62) are the repre-
sentations of a same system ¢ in two different identifiable
model sets, then the parameter vectors el and 8, are related by
a transformation that corresponds to a coordinate transformation
in Buclidean space.

Canonical forms for multivariable systems were first intro-
duced as a tool to simplify some observer or controller désign
problems (see, e.g., [5]). Because a canonical form is also a
uniquely defined representative of an equivalence class of (SS,
MFD, or ARMAX) models, its importance in identification was soon
recognized (see [1l] and [6]~[12]). When using canonical forms
for system identification, the most critical part of the prob-
lem is the estimation of the structure indices (or Kronecker
indices) of the system. If they have been wrongly estimated,

then the parameter vector 0 cannot converge to the true 90 [13].
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The estimation of the structure indices becomes very critical
if the system happens to lie close to the boundary between two
of the disjoint subsets of S{n) mentioned earlier,

Around 1974, the structure of S(n} came to be much better
understood thanks to the important work of Glover and Willems
[8], Hazewinkel and Kalman {14}, and Clark [2], who showed that
S(n) has the structure of an analytic manifold that can be
covered by a union of overlapping subsets and that an identifi-
able parametrization can be defined for each subset. These
parametrizations were called overlapping forms or pseudocanonical
forms and their use for identification of multivariable linear
systems, as an alternative to canonical forms, was studied by a
number of authors: overlapping state-space models were examined
in {15] through {[18], ARMAX models in [19] through [20], while
both state-space and ARMAX models, and the relationships between
them, were studied in [21] through ([26]. The advantage of over-
lapping forms over canonical forms is that, instead of having
to estimate p structure indices Nys oevey np (p being the number
of observed outputs of the system), one has to estimate only the
order of the system. Given the order n, one can choose any set
of structure indices Dys o seey np adding up to n, and, almost
surely, one can identify the system in the corresponding pseu-
docanonical (or overlapping) form. Numerical considerations
may lead one to choose a particular set of indices (see [16]-
[17]). The disadvantage is that this form may contain a few
parameters more than the canonical form,

In any case, whether canonical or pseudocanonical forms are
used, one has to estimate one or more integer-valued indices
from the data: the order n or the structure indices Ny, eeey D

P
Thig 19 called structure estimation: it 1is the most critical
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step in the identification of multivariable systems. (In eco-
nometrics, structure estimation is actually called identifica-
tion.) Recent work of Hannan and Kavalieris [26]-[28] has shown
that, under mild conditions, the order n (for pseudocanonical
forms) and the Kronecker indices Ny eeay np (for canonical
forms) can be consistently estimated. See also [25] for an ex-~
cellent presentation of these recent results and for a discussion
of the consequences of misspecifying the structure.

Here we will survey most of the results mentioned. Because
almost all results are available in the literature, we shall
give them without proof, but refer to the appropriate feferences.
In Section II we shall present the different model sets dis-
cussed here and establish their interconnection. The concept
of identifiability will be presented in Section I1I, while the
structure of S(n) will be analyzed in Section IV. Tt will be
shown that a rational system can be represented by a point {i.e.,
a coordinate vector) in an appropriate coordinate system. In
Section V we will present a class of canonical and pseudocanon-
ical model structures, in 85, MFD, and ARMAX form; these struc-
tures are all derived from the coordinates of the system, de-
fined in a more abstract way in Section IV. In Section VI we
will briefly present some other identifiable model structures;
they are not directly derived from the coordinate vector de-
fined in Section IV and tend to have a larger number of param-
eters. Finally, in Section VII we will survey the most recent

results on structure estimation; this means estimation of the

Kronecker indices when canonical forms are used, of the order

of the system when pseudocanonical forms are used.
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IT. MODELS

As a starting point, we consider a p-vector stationary sto-
chastic process y(t) generated as follows:

y{t) = G{z)u(t) + H{(z)el(t), (1)
where y(t) € Rp, u(t) € Rm, e(t) € RP, and G(z) and H(z) are
causal rational transfer function matrices. The following as-

sumptions are made about the system:

(i) Ble(t)} = 0, Efe(t)e (s)} = 55 5 >0, (2a)

ts’
- -1 -2
{(ii) Gz} = G,z + G,y2 + e, (2b}
-1 -2
H(z) =1 + le + sz 4 e, {2¢c)
(iii) G{z) is analytic in |z| > 1, (24}

(iv) H(z) has full rank so that " 1(z) exists and
H{z) and H‘l(z) are analytic in |z| > 1, and (2e)
(v) u(t) is an observed input signal, which can be either
deterministic or stochastic, but we assume that 1u(t)| is bounded

and that the following limits exist:

2

lim
N-»oo

N
S Blut)] = o,
1

(2£)
N

S Bu@ue - 01 = Ry,
1

lim
N>w

Zi—

where the expectation is discarded if u(t) is deterministic.

We then define the spectrum of u(+) as

b ) & P, R (met (3)

The model (1)-(2) is very general and can be justified as fol-

lows. If
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where s(t) is some useful signal and v(t) is noise, and if the
spectrum ¢V(w) of v(t) is rational, Hermitian, and positive
definite for all w in (-w, 7w}, then ¢V(m) can be decomposed

uniquely as
b (@) = H(eM) T (o7, (5)

where H{z) and I satisfy the conditions (2a, ¢, e).

With these conditions, the e(t) are the linear innovations,
that is, the prediction errors of the best linear one-step-
ahead prediction of v(t) from its infinite past. The model (1)

will be called a transfer function (TF) model.

Comment 1. The condition (2d} has been introduced to make
y(t) a stationary process, so that covariances and spectra can
be defined. It is necessary for most of the consistency results
on structure estimation, which will be presented in Section VII.
However, it is not required for the proper definition of canon-
ical and pseudocanonical forms; obviously one should be able to
identify unstable dynamical systems. The important feature for
this is that the predictor ¥(t{t - 1) be stable, rather than
the data-generating model; see Comment 3 later.

With the model (1)-(2) we shall associate a Hankel matrix
Hl,m[G {H] defined as follows. Let {Ky, Ky, ...} be a sequence

of matrices; then

1 2 N
K K eee K
2 3 N+1
Hy,nlK1 A | (6)
Ky Ky *7 Koney

In particular Hy - [G:H] is obtained by replacing K, in (6) by
r
[GiE Hi] and by letting N go to «, The rank of Hy HLIG I H) is
r

then called the order of *he svatem (1)
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Given the spectra ¢y(m}, ¢u(w), and ¢Yu(m) (all of which
can theoretically be estimated from arbitrarily long input and
output records), in principle one can determine G(z) and H(z)

uniquely under weak conditions on ¢u(m) from

i

o (w)

g0 ety g (), %)

[

o @) = 6t o, 6" (@) + n(et) T ). (8)
However, to actually construct an estimate of G(z) and H(z) from
second-order statistics, one needs to represent the process

y(t) in a finitely parametrized form and then construct an algo-—
rithm for the estimation of these parameters. In other words,
one needs to define a coordinate space and to let the system be
represented by a point in that coordinate space. This is the
problem of parametrization, that is, of defining finite-dimen-
sional identifiable model sets for the process y(t). From now
on we shall consider (1)-(2) as the given system, and we shall
study three classes of finitely parametrized model sets that
are input-output equivalent with the system (1)~(2). Notice
that (1}-(2) is an infinite-dimensional representation; that is,

the system is specified by the infinite sequence of matrices

[Gy, Hy, Gy, Hyr wonle

4, STATE-SPACE MODELS

One way of representing the system {(1)~(2) is through a
state-space model:
x{t + 1) = Ax(t) + Bu(t) + Ke(t), (9a}
{ y(t) = Cx(t) + e(t), (9b)
where y(t), u(t), and e(t) are the same as in (1), and where
dim x(t) A n is minimal, with A, B, C, K such that

R

P T -_— 1Ny
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By conditions (2d, e) this implies that all the eigenvalues of
A have modulus less than 1. It is a standard result of linear
system theory that

n

le>

dim x(t) = rank Hy l6 {HY, (11)
r

where n is called the order of the system. Now there exists an
infinity of SS models {A, B, C, K} that are input~output equive
alent with the system (1)-(2), that is, for which the relation
{10) holds. They are all obtained from an arbitrary model by
the following similarity transformations

* -1 * -1 * -1 *
A = T TAT, B =T 7B, K =17 7K, ¢ =T, (12)

where T is any nonsingular n X n matrix. Our task is to define
identifiable model sets, that is, to parametrize A(8), B(0),
C(8), K(8) in such a way that any arbitrary system ¢ € S(n)
(defined by the sequences Gi, Hi; i=1, 2, ...) can be repre-
sented in this parametrized model set by a unique value of the

parameter vector 6.

B. MATRIX FRACTION DESCRIPTIONS

Another representation of the system (1l)}-(2) is
P(z)y(t) = Q(z)ul(t) + R(z)e(t), (13)
where P(z), Q(z), and R(z) are left-coprime polynomial matrices

(see, e.qg., [29]) satisfying the relationship

P (2) 10(2) § R(2)) = [G(2) } H(z)]. (14)
In (13) z is the forward shift operator: zy(t) A y(t + 1), If
n is the order of the system (see above) , then

deg det P(z) = n. (15}
Also, by (2d, e}, det P(z) and det R(z) have all their roots in

fz| < 1.
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Again the MFD (13) is nonunique. If {P(z), Q(z), R(2)}} is
an arbitrary left-coprime MFD for (1)-(2), then all input-output-
equivalent left-coprime MFD models are obtained from this arbi-

trary model by the following unimodular transformations:

[P(2) 3 Q" (2) : R (2)] = U(=) [P(z) } Q(2) } R(2)], (16)

where U(z) ranges over the set of all unimodular matrices of

dimension p x p. (A unimodular matrix is a square polynomial
natrix whose determinant is a nonzero constant.) Again, to ob=-
tain identifiable MFD model sets, our task will be to parametrize
P(z, 8), Qlz, 8), R{z, 68) (i.e., to define their structure) in
such a way that (14) holds for a unique value of 9.

¢. VECTOR DIFFERENCE EQUATION
OR ARMAX MODELS

One of the most widely used model sets in econometrics, but

also in engineering, is the ARMAXI model set
P(D)y(t) = G(D)u(t) + R(D)e(t), (L7)

where P(D), 0(D), and R(D) are left-coprime polynomial matrices

with
B(p) = Py + BiD + e ?éDp, (18a)
O(D) = QD + -+ 6qu, (18b)
R(D) = Ry + RyD ++ov# ErDr, (18c)

where D is the delay operator: Dy{(t) A y({t - 1).
In order for (17)-(18) to be a representation of (1y-(2),

the following conditions must hold:

5 1) [@(D) : R(D)1 = (G(D) § H(D)], (19)

Tuhen there is no emogenous input u(t), Eq. (17) becomes
| B - ud = I S 1
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where
am s e™h = Y gt (20)
1

and similarly for H(D}. 1In particular (19) implies that

(i) fo is nonsingular and FO = Rys (21)

(ii) det P(z) and det R(z) have all their roots in {z| > 1.
. (22)

In addition to {21}, we will often want ARMAX models for which

Py = Ry = Ip. (23)

This allows one to write

P q
y(t) = —2 Byy(t - i) + z o,ult - i)
1 1
r
+ z Rie(t - i) +e(t). (24)
i

We shall see later that condition (23) introduces some addi-

tional complications.

Comment 2. We could have used 2"} for the delay operator
in lieu of D. We have not done so because we want to keep
powers of 2l for power series and to stress that P(D), Q(D),
and R(D) are polynomials.

There is an obvious relationship between MFD models and
ARMAX models. Let (14) be a left-coprime MFD of [G(z) { H(z)]
and let Ny eons np be the row degrees of the matyrix
[P{z) : Q(z) : R(2)].

n n
Define M(z) = diag{z l, ..., z P}, and 1let szk = p5zK =1

so that M(z)M(D) = M(D)M(z) = Ip. Then

M(D) [P(2) ¢ Q(z) { R(z})] = [F(D) i Q(D) i R(D}]. (25a)
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Similarly

I

M(z) [P(D) : Q(D) i R(D)] [P(z) :Q(z)

R(z)]. (25b)

Note that the row degrees of [P(z) : 0(z) : R(z)] are identical

to the row degrees of [P(D): Q(D) ! R(D)]; however, the row de-
grees of P(D) are not equal to those of P(z), and deg det P (D)
is not equal to the oxder of the system {(see [30] and [31] for

details).

Comment 3. An alternative to using the "data-generating
model" (1)-(2) as our starting point is to use a "predictor
model," that is, the model that generates the one-step-ahead
predictions of y(t) given the infinite past. It can be writien

yitlt = 1) = W (2u(t) + W (z)y(€), (26)

where Wu(z) and Wy(z) are stable rational transfer function ma-

trices
W, (z) = z wu(k)z‘k, W, (z) = 2 wy(k)z"‘. (27)
1 1

The model (26) is easily derived from the data-generating model

(1)-(2):
W (z) = gl (z) ez, W(z) =1 - H (2). (28)

The use of the prediction model (26) as a starting point for the
analysis of identifiable model sets is justified by the fact
that most identification methods are based on minimizing pre-
diction errors. This viewpoint is taken in [32]., All our sub-
gsequent analysis for the representation of (1) by finitely pa-
rametrized identifiable model sets applies equally well to the
representation (26), which can also be modeled by SS, MFD, or
ARMAX models. In S8S form, (26) leads to the Kalman filter.

Notice finally that the condition "{W _(z), W _(z)} stable" is
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really what is required to apply prediction error methods; it
enables one to identify some models of the form (1) with un-
stable G(z), For example, an MFD model (13) with det P (z)
having roots in |z| > 1 and det R(z) having all its roots in
|z] < 1 leads to an unstable G(z), but yields a stable W, (z)

dw .
an y(z)

III. IDENTIFIABILITY

There are several ways of defining identifiability. Here
we propose a setup and a definition inspired by, but not identi-
cal to, [32]. As a starting point we assume that we have an
input process u(t) and an output process y(t) that can be de-
scribed by (1):

y(t) = G(z)ult) + v(t) = G(z)u(t) + H(z)e(t) (29)
with the properties (2). This is our basic model. By the con-
straints (2) H(z) is a unique factorization of ¢v(m}. There-
fore G(z), H(z), and I are uniguely defined by the spectra ¢y’

by
be seen as an input/output (I/0) model from the input process

N

to the output process y with trangfer function matrix

and ¢u (see Section II), and therefore (29) can actually

[G{z) : H(z)]. Note that we could also have chosen (26} as our
basic model, which would similarly be unigquely defined by the
spectra.

Since we also want to consider other classes of models than
the TF model, such as SS, MFD, or ARMAX models, we introduce

the following definition.,
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Definition 1. A model M is a stable algebraic operator that

transforms a given input process
u{t)

[e(tJ
into a unique output process y({t).

Therefore (1), (9), (13), and (17) are all models by our
definition, provided that specific values (rational functions
or real-valued parameters or polynomials) are put into the oper-
ators G(z), H(z), A, B, ¢, K, ... . Whatever the description
chosen for our model (88, MFD, ARMAX), we can always compute the

corresponding transfer functions G(z) and H{z) from it [see, e.g.,

(10)]. We can therefore introduce the following definition.

Definition 2. Let M(l) and M(z) be two models relating an

input vector

|

to an output vector y, and let {G(l)(z), H(l)(z)} and {G(z)(z)lr

H(z)(z)} be the corresponding transfer functions. Then the two
models are equivalent (we write M(l) = M(z)] if and only if
¢ (2) = 6 (2) ana 8 (z) = #'? (2.

In identification a search will typically be conducted over
a set of models. Most often this model set is noncountable; it
is obtained as the range of a smoothly parametrized algebraic
operator where the parameter vector & is allowed to cover a sub-
get D of Rd (d = dim 8). The search for the "best" model is

then performed over all 6 € D. We formalize this as follows.

* *
Definition 3. A model set M is a set of models: M =

{Mala € I}, where I  is an index set.
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Most often the index set is noncountable. The model set is
then smoothly parametrized by a parameter vector 6 of dimension

4, where 6 € DM C Rd.

Definition 4. A model structure M is a differentiable map-

~ *
ping from a subset D of Rd to a model set: M:06€ D > M(8)EM ,

M
where M(6) is defined by any one of the stable parametrized

algebraic operators described earlier.
Example 1., We illustrate by a scalar example.

(L) M:y(t) = 0.85 y(t - 1) + 1.5 u(t - 1},
(2) M = {y(t) = oy(t - 1) + gu(t - 1)| (o, B) € D, C Rz},
where Dy = {o, B | |a] < 1, |B] < 100}, for example.

2

(3) #:(a, B) € D, CRE > M = {y(t) = oy(t - 1)

M
+ Bu(t - 1) [ (o, B) € Dy},

The range of a model structure defines a model set: Range
# = {m(8) |6 €Dy} = M'. Note that a given model set can typ-
jically be described as the range of different model structures.
An important problem, which will be discussed at length in this
paper, is to find a model structure (i.e., a parametrization)
whose range equals a given model set. It turns out that the set
S(n) of all linear systems of order n with dim y, =p > 1 and
dim Up = m > 1 cannot be described as the range of a single

model structure. The remedy will be to describe S(n) as a union

of ranges of different model structures:

® 1 ~
W= U R( ). (30)
. i
i=1
We can now define identifiability. The concept of identi-
fiability involves several aspects and has therefore given rise
to several definitions. 1In its broad sense, identifiability

is concerned with whether the identification procedure yields



50 MICHAEL GEVERS AND VINCENT WERTZ

a unigue value of 0, and possibly whether the resulting model
M(8) is equivalent to the true system o. This involves aspects
of whether o € M*, whether the data set is informative enough,
and whether the "model structure is identifiable.," This last
problem, which we shall call structural identifiability, con=-

cerns only the invertibility of the map of Definition 4.

Definition 5. A model structure M is called globally iden-

*
tifiable at 0 if
M(B) = M(6), 6eED = 0=0. (31)

It is called strictly globally identifiable if it is globally
*
identifiable ¥8 € DM.
This last condition is almost never met, as we shall see

in a moment. Therefore we introduce a more realistic property.

Definition 6. A model structure M is globally identifiable
if it is globally identifiable at almost all 6* € Dy.

Similar definitions can be introduced for local identifi-
ability, that is, where (31) holds for 6 in a neighborhood of
6*. We stress that these definitions cover only one aspect of
identifiability; in particular they are a property of the model
structure only and are totally independent of a possible "true
system." To stress the relevance of these definitions to our

problem of constructing identifiable model structures, we point

out the following facts:

(1) The set of all single-input/single-output models of
order up to n cannot be described as the range of a strictly
globally identifiable model structure without restrictions on
6. This is because of pole-zero cancellations on certain hy-
persurfaces, It can, however, be described as the range of a

globally identifiable model structure.
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(2) The set of all multivariable systems of order up to n
{or even éxactly n) cannot be described as the range of a unique
globally identifiable model structure. We shall see in the next
section that it can be described as a union of ranges of glo-
bally identifiable model structures. The concept of structural
identifiability is very old in econometrics. I£ was first in-
troducted in the engineering literature in [33]., It is impor-
tant for numerical reasons. It guarantees that if the data are
informative enough, the parameter estimation problem will be
well posed, since different 6 yield different I/0 properties.
The definition we have adopted is by no means unigue. Instead
of using the uniqueness of G(z, 0) and H(z, 6), some definitions
use the uniqueness of the parametrized joint probability function
of the data p(Y, U; 6) as a starting point (see, e.g., {181,
[23], [35]). Other definitions are based on the Kullback-Leibler
information or on the theory of estimable functions (see [35,36]).
Notice finally that the term "structural identifiability" has a

different meaning in econometrics [25].

IV, THE STRUCTURE OF S({(n)

Consider K(z) A (G(z): H(z) - I] = Z: Kizml of dimension
p X s, with s A m + p. Then XK{z) is strictly proper, that is,

lim K{(z) = 0, (32)

2100

Definition 1. We call S{(n) the set of all strictly proper
stable rational transfer function matrices K{(z) of order n (i.e.,
such that rank Hl,m[K] = n).

Notice that the problem of representing [G{z) ! H(z)] by an

identifiable model is a trivial modification of the problem of

representing [G(z) ¢ H(z) - I], and this last problem is that of



52 MICHAEL GEVERS AND VINCENT WERTZ

representing an arbitrary strictly proper transfer function
K{z). This is why we now study the structure of S(n). If we

further denote

. u{t)
m(t) éli ]1
e(t)

then the basic model (1) can be written

y(t) = R(z)m{t) + e(t), (33)

with m(t) € Rs, and the problem becomes one of finding an iden-
tifiable representation of K(z). The cases where u(t} = 0
(ARMA model) or e(t) = 0 (I/0 model) are special cases of our
setup.

The topology on S(n) is the relative pointwise topology
T in which a sequence K(n)(z) converges to K(z} if and only

pt
if the coefficient matrices Kin)

converge to K, (in the relative

Euclidean topology) for all i =1, 2, ... {see [3]}). If S is a

set in this topological space, its closure will be denoted by

§. 1In particular S{(n)} denotes the set of all strictly proper

rational transfer functions of order less than or equal to n.
Now let K(z) be a point in §{n), with K(z) of dimensions

p x s, and consider the Hankel matrix Hl'm[K]. This Hankel ma-

trix is made up of blocks of p rows. Call rij the ith row of

the jth block of H, _[K]. We shall also make the following
r

standing technical assumption.

Technical Assumption. The rows of the first block of
Hl'm{K] are linearly independent.

This really only eliminates degenerate transfer functions
_ K(z) whose rows would be linearly dependent. We now state with-

out proof a few important resulits on S(n).
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Result 1. If X(2) € S(n), then there exists at least one

partition n = n; + n, +oeer + np of n such that the set of rows

{rij ti=1, .., P 3=1, ..., ni} A R(nl, ceer np]

(34)
form a basis of Hl’m{K].

This follows immediately from the Hankel structure. Note
that the rows in (34) are chosen in such a way that if rij €
R(nl, eer np) for j > 1, then ri,j—l € R(nl, ey np). The
set of the row indices corresponding to the rows of R(nl, sear
np) is completely determined by the partition u A (nl, sy np).

The indices ny, ..., n, are called structure indices. We also

denote |y = P n, = n., Itis easy to see that there are
1 i

n+p -1
[ p-l]
such partitions.
Definition 2. We call Uu the set of all points in S(n) for
which the corresponding set of rows (34) specified by u forms
a basis for the rows of Hl'm[K].
We now show that Up can be completely coordinatized by

n{p + s) coordinates., Row r. is a unigue linear combina-

1,ni+1
tion of the basis rows
. n.
P J
“i,ng+l = 2 z Gi5gF4zr LT Leoeees P (35)
=1 I=1

It follows again from the Hankel structure that knowing
the first block of elements (i.e.,, the first s elements) of the
basis rows (34) and the coefficients {aijl; i,g =1, «o., P:

L =31, vous nj} allows one to compute any other row of Hy o K]
7
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and therefore to specify K(z) completely. Therefore any element
K{z) € UU can be mapped into a vector T, in R@ by the following

d@ A n(p + s) coordinates:

{uijl; i, 3 =1, «eerpi L =1, oeuy ny }
T 3
H Ky (i, 35 i=1, weer i 3= 1 eees s L =1, «ov, 0y

where kz(i, i) is the (i, j)th element of the matrix KZ' We

shall call ¢u the mapping from K(z) into Tu:

5 .
: U €] H S = € .
2, LTy C Rt K(z) UlJ T, ¢u(K(z)) O“ (37)

We now have the following important result, originally proved
by Clark [2], and further extended by several authors (see,

e.g., {141 and [19]).
Result 2.

(1) S(n) is a real analytic manifold of dimension n(p + s).
(2) 8(n) is the unién of the Up such that |u| = n. Each
Uu is open and dense in S(n); Ou is open and dense in Rd.
(3) o described in (37) is a homeomorphism between Uu and
an open and dense subset @u of Rd, with @ = n(p + s); O!J = @u{Uu).
(4) S(n) A k)iﬁn (i) = ﬁu if jul = n.
Comment 1. Since Uu, |lu] = n, is open and dense in S(n),
it follows that almost all points of S(n) are in Up for any such )
u. The choice of a partition u specifies a local coordinate
system. Therefore, once n is chosen, a system in S{n) can be
described in almost any coordinate system such that [u] = n.
We shall see later that the partition p and the corresponding
coordinate vector Ty specify a pseudocanonical (8s, M¥D, or
ARMAX) form. The message therefore is that a given system of

order n can be almost surely represented by any of the
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n+p- l-
p -1
pseudocanonical forms corresponding to the

n+p- 1]

p -1

partitions u of n,

Comment 2. Let u and v be two partitions such that [u| =
|v] = n. The intersection U, N U, is also dense in S(n). A
point in that intersection can be represented by either Tu S Ou
or T, € Ov’ Since S{n) is an analytic manifold, it follows that

these two sets of coordinates are analytically related; that is

the mapping

q>u N <1>\,(UIJ N U\)) > @u(Uu N U\)) (38)

is analytic.

Comment 3, S(n) can be covered by the
n+p-1
p -1

open sets Uu, [u] = n. Whether it can be covered by fewer sets
is still an open question. It is known that if p > 1, no unique
set Uu can cover all of S{n). This has an important consequence:
it means that the set of all systems in S{n) cannot be described
by a unique identifiable representation.

Having described the structure of S{n), one can now think
of the identification problem in the following terms, Esti-
mate the order n, and then take any partition p of n such that
[u]l = n and compute the maximum likelihood estimate ?u of the
corresponding vector Tu that completely specifies the system.
However, this requires an algorithm that necessitates an 1i/0

description of the point T.. It turns out that the pseudo-
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canonical $8, MFD, or ARMAX representations obtained from the
Tu are not the simplest ones, as we shall see in the next sec-
tions. This is due to the overlap between the subsets Uu for
different u. An alternative is to cover S(n) by disjoint sub-
sets Vu, which can again be coordinatized by nonoverlapping

coordinate systems. These will give rise to the somewhat sim~

pler canonical SS, MFD, and ARMAX forms.

Definition 3. We call Vu the subset of Uu for which the
rows (34) specified by p are the first n linearly independent
rows of Hy oK1,

r

Since the row r, is now a linear combination of the

1,ni+l
basis rows above it, (35) is replaced by

p 13
ri,ni+1 - zz 22 %5152 i=1, ..., ps (39)
=1 7=1
where
N5 A win(ng, nj) if i < j,
A min(ni + 1, nj) if i o> i, (40)

It follows, by the same argument as before, that any element
R(z) € Vu can be mapped into a vector oy in Rd(u) defined by

the following coordinates:

={0¢.ij1; i, 3 =1, «o., p: L =1, «iuy nij'
u

L, oo, pi 3 =1, ooy 85 =1, ..., ni'

(41)
where

aw =n(s + 1) + p fmin(ag, ny) + min(ng, ng + D

i<j
(42)
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We call Wp the mapping from K{z} into pu:
v sv »x ¢RI, k@) ev » o =v [K(z)] € X.. (43)
TR ! u u U u u

The following result now holds about the VU (see, e.g., (4,14,

191).
Result 3.
{1) The Vu are disjoint, V[‘J - Uu and LJIU!=n Vu = S(n).

{2) Wu described in (43) is a homeomorphism between Vu and
an open and dense subset Xu of Rd(“), with d{u)} given by (42):

Xu = Wu(Vu).

(3} XH is an open and dense subset of Rd(U).

Comment 4. For p > 1, S(n) 1s partitioned into the
n+p-~-1
p -1

disjoint sets Vi || = n, which are of different dimensions
d(u). Hence every system ¢ € S{n} belongs to one of the Vu and
therefore has a set of structure indices u = (nl, vees np) at-
tached to it. Those structure indices are usually called ob-
gservability indices or left Kronecker indices; they determine
the local coordinate system in which that system is described
by the vector p“. These structure indices and these coordinates
will in turn define canonical 88, MFD, or ARMAX forms, as we
shall see in the next section., They form a complete system of
independent invariants for K(z) (see {9,11,37}). Note that in
all cases d(pu) £ @ = n(p + s). The canonical forms therefore
will generally have fewer parameters than the correspondihg

pseudocanonical ones. This is one advantage of canonical forms.

Comment 5. If the first n rows of H, _[K] are linearly in-

1,
dependent, then y has ng =mn, =+« =n_=n + L = s = np-%l
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for some q. Then vy = Uu. Hence this subset is open and dense

in S(n), and Vu = BM = §(n). This particular Vu is called the
generic neighborhood, because generically a system will have
Kronecker indices ng o= ere = nq = nq+l + 1 = see = np + 1 for
some g. Hence, in practice, the generic neighborhood {(and its
corresponding canonical parametrization) is sufficient to repre-
sent almost any system., However, other nongeneric u's (and their
corresponding parametrizations) might be preferred for numerical
reasons. For the generic yu, d(u) = n{p + s); the other Vu are
mapped into spaces of lower dimension.

Recall now that a model structure was defined (see Section
II1I, Definition 4) as a mapping from a parameter vector 8 to a
particular model M(8) and that a structure was called glecbally
identifiable if that mapping was injective for almost all 6 in
a subset DM. Now we have just shown that (1) given a system
K{z) € S(n), there exists a uniguely defined set of structure
indices | = (nl, P np) and a uniquely defined mapping ¥ from
K(z) to a parameter vector pu, and that (z) given a system
K{z) € 8(n), for almost any arbitrary set of structure indices
Ho= (nl, ceny np) such that Zg n, =n, there exists a uniquely
defined mapping @u from K(z) to a parameter vector T“. Therefore
if we can now define model structures {in SS, MFD, or ARMAX form)
that are entirely specified by the integer valued structure in-
dices and the real-valued parameter vectors (pu or T“), then
these model structures will be identifiable since the sought-

after inverse mappins are precisely Wu and @p. This is what we

will set out to do in the next sections.
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V. CANONICAL AND PSEUDOCANONICAL FORMS

We now describe SS, MFD, and ARMA canonical forms for a
p X s transfer function K(2z) of order n, assuming that K(z) €
Vu, where y = (nl, veey np). Recall that these Kronecker
indices are determined by the linear dependence relations be-—
tween the rows of Hl,w[K]. For simplicity of notation we as-
sume that

y{t) = K{z)m(t) (44)
rather than the original model (33) or (1l). It is trivial, of
course, to split XK(z) into [G(z): H{z) - I], to replace m(t) by

u{t)

[e(t)]’
and to add e(t) to the right-hand side {see (33)]. An ARMA
model would then be converted back into an ARMAX model. How-
ever, at this stage the only issue is one of parametrizing a
SS, MFD, or ARMA model of a strictly causal rational trangfer

function.

A, CANONICAL STATE-SPACE FORM

A canonical state-space model A, B, C such that K(z) =
C{zI -~ A)_lB is obtained from the complete set of invariants

defining the vector pu [see {(41)} as follows:

1 Q e @ 1] e = }0 e 0
i 1

1 0 »see : ;. .

0 A :

c o i I ese i , (45a)

. s e () i
(pxn) : T 2l !

E i 0 0

.0 LR 01 0 see 01 il 0 se¢ 0 |
n n
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A =
(nxn)
0 1o cen o} HE e 0
. ; . ¢= = .
. Inl—l 1. : Eo :
0 ; 0 oi o 0
o cee o () «e g g« 0t o e 0 ¢ 0
111 llnl ! 121 3.2nl2 ' 1pl lpnlEz
———————————————————— e i e 2 o S e
. t . I .
. 3 . [ o .
. i . 1 .
i |
———————————————————— oo = e e o e e e e
0 e 0: 0 s e 0: : 0
» o |t » o« | I .
: Do Y Lo I
1] e 0: 0 “ae 0: 0 P
i I
o s 0 0++01to [ 0-+01 e
21 2 1 n
| Pl Tplng tp P20, ; pp ppR,
(45b)
kl(l, 1) e kl(l’ s)
L (L, 1) =+« k_ (1, s)
1 1
B = . . (45¢)

(nxs)

Note that A and C have a very specific structure while B is
fully parametrized. In an identification context, once the
structure indices ny have been estimated, the structure of A
and C is completely specified by the 0 and 1 elements, while the
aijk and kl(i, j) are free parameters. Any arbitrary state-
space representation of an nth order system with Kronecker in=-
dices (nl, vt np) can be transformed to this canonical form

by a similarity transformation (see, e.g., [11l1 or ([38] for de-

tails). Finally, note that this form has d(u) parameters,
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B. CANONICAL MFD FORM
A canonical MFD form P(z), Q(z) such that K(z) = p L (z)0(2)
is obtained as follows from pu.
Let
P(z) A [p;.{(2)] and  Q(z) A [qg..(z)].
pXp +J pxs +
Then
ni n,~1
pyjle) =& % oy, P ¥ (46a)
157t
pij(z) = “uijnijz - e - aijl for i # 3, (46b)
niml
qij(z) = Bljniz + e+ Bljll (460)
where the coefficients BijZ are bilinear functions of the co-
efficients 9547 and kl(i’ j) obtained as follows. Let
6 Bi1a Bis1
¢ Al 6, Al : N
(nxs) cew
Gp (nixs) Bilni Bisni
(47)
M é[~']r i, =1, «ev; P,
(nxn) +J
with
9332 %543 777 T%ign, 1
%533 e 10
Mg L) K
(nyxng) | g, 1 .
1in.,
i
L 1 4] >as 0"




62 MICHAEL GEVERS AND VINCENT WERTZ

-0, . Oy, Y =0 0 «+« 0
ij2 iji3 1jnij
_aij3 .o 4] eee 0
M.. A ' . (48)
ij il T .
(nixnj) J 17 ..° :
0
0 ‘e 0
Then
G = MB. (49)

See [1l] for a proof. This canonical form also has d(u) param-
eters, It has the following properties, which actually define

its structure:

(i) The polynomials on the main diagonal of P(z) are

monic with

deg(pii) = n;, (50a)
(ii) deg(pij) < deg(pii) for j < i, (50b)
deg(pij) < deg(pii) for 3 > i, (50¢)
deg(pji) < deg(py;) for 4§ # i, (504)

(iidi) deg(qij) < deg(pii] and P(z), 0(2) are left coprime.
(50e)

The form P(z), Q{(2) with the properties (50) was first pro-
posed by Guidorzi [10] and is called the canonical echelon form
in econometrics (see [25]). In the control engineering litera-
ture a closely related canonical MFD is called the canonical
echelon form (see {29]). It is obtained from the Guidorzi form
by permuting the rows of P(z) [and correspondingly of Q(z}] such
that in the transformed P(z) (1) the row degrees are arranged

in increasing order and (2) if in P(z) n; = nj with i < j, then
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If we denote by P e the highest column degree coefficient

h
matrix of P{(z) [i.e., the matrix whose columns are the coeffi-

cients of the highest power of z in each column of P(z)] and by
Phr the highest row degree coefficient matrix, then it follows

easily from the properties (50) that

(1) Phc = Ip,

(ii) Prr is lower triangular with unit diagonal elements.

(51a}

(51b)
It follows that P(z) is both column reduced and row reduced
(see [29]) with row degrees and column degrees equal to Nyv oeeey
np. It also follows that
P

deg det P(z) = :Z n, =n = order of K(z). (52)
1
In an identification context, once the Kronecker indices n; have
been estimated, the structure of P(z) and Q(z) is completely
specified by (46) or, eguivalently, by the degree relations (50},
where the aijk and Bijk are free parameters to be estimated
from the data; note that the number of free parameters Bijk is
identical to the number of parameters kl(i’ j) in oy that is,

ns.

C. CANONICAL ARMA FORM

Using (25) it is easy to obtain a canonical ARMA model from

the echelon MFD model:

{(P(D) : Q@)1 = M(D) [P(z} } Q(z)], _ (53)

n n
where M(D) A diag{D 1, ..., DP}. 1t is easy to see, using (50),

that P(D), 0(b) have the following properties:

(i) P(D) and Q(D) are left coprime. (54a)
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(ii) P(0) = Phr is lower triangular and nonsingular.

(54b)

(iii) The row degrees of [P(D): Q(D)] are Dys eevr N

(54¢)
The parameters in this canonical form are identical to those ap-
pearing in the echelon MFD form, and their positions are again
determined by the Kronecker indices. It is therefore identifi-
able. Notice that the row degrees of P(D) are not necessarily
iy oeeey np (this depends on the particular system, i.e., on
the values of the coefficients aijk)' while the column degrees
of P(D) are generically equal to r A maxi{ni}. Recall also Sec-
tion II, Comment 2, One major disadvantage of this ARMA canonical
form is that P(0) # I; that is, we cannot write y(t) in the form
(24) . One way to obtain an ARMA (or ARMAX) form such as {24) is
to multiply [F(D) {G(D)] to the left by P_L. However, this in-
creases some of the row degrees of BP(D) and Q(D) (and hence the
lag structure of the model) and therefore increases the number
of parameters in the model. In fact, it can be shown [31}] that

a system in S(n) with Kronecker indices Nys eeny np can in gen-~

eral not be represented by an ARMA model
P(D)y(t) = @(D)m(t), P(0) = I, (55)

such that the row degrees of [P(D): G(D)] are Ny oeeey np and
that an ARMA model of the form (55) will have more than d{u)
parameters. Moreover, ARMA models of the form (55) will generic-—
ally represent systems whose order is a multiple of p, the di-
mengion of y{t) (see [31l] for details).

We return now to the mapping (43). If we denote by Xu(SS)
[resp. Xu(MFD), Xu(ARMA)I the set of all free parameters in the

canonical 8S (resp. MFD, ARMA) form, then it follows from
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Section IV, Result 3 and the fact that the parameters of these
three canonical forms are bijectively related to the components
of pu S Xu, that the sets Xu, XH(SS), Xu(MFD), and XU(ARMA) are
homeomorphic. Finally, note that the canonical forms we have de-
scribed here are just one possible set of canonical forms, Using
different (but uniquely defined) selection rules for the basis

vectors of H, _[K], one can obtain a number of other 88, MFD,

i,
and ARMA forms (see, e.g., [7,29,38,39]).

The main disadvantage of canonical forms for identification
is that one has to estimate the Kronecker indices. In Section
VII we shall briefly describe different methods for doing this,
but in any case it is a time-consuming and numerically sensitive
procedure. An alternative is to use pseudocanonical forms; this
requires the estimation of only one integer-~valued parameter,
the order n. For almost every system ¢ € S{n}, any set of
structure indices u = (nl, I np) such that ZE hi = n can then
be used to define the structure of a pseudocanonical form. We

now describe SS, MFD, and ARMA pseudocanonical forms, which are

very similar to the canonical forms just described.

D, PSEUDOCANONICAL STATE-SPACE FORM

Let K{z) € Uu. Then a pseudocanonical SS form for K(z) is
obtained from the parameter vector T11 by taking C as in (45a),
B as in (45c¢), and

(nén) A [Aij], with dim Aij =n; X nj, (56)

where the [Aii] are as in (45b) and where

. (57)

O see O
O sre O
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(See, e.g., [23] for a derivation of this form.) Note that the
free parameters are exactly the coordinates of Ty which uniquely
describe the system in the coordinate space defined by u. Hence

this form is identifiable.

E. PSEUDOCANONICAL MFD FORM

A pseudocanonical MFD form for P(z), Q(z) is obtained from

the coordinates of Tu. [Compare with (46)-(50).]

n, ni-l
Pyj(#) =2 7 = oy Sttt T %4y (58a)
nj—l
pij(z) = "aijnjz - e ~ aijl for 1 # 3J, (58b)
pi—l
qij(z) = Bijpiz + e 4 Bijl’ (58¢c)

where s A ith row degree of P(z) = max(ni, maxj{nj} - 1). The
bilinear relations (49} between the Bijl and kl(i’ j) still hold,

with B as before but with

6111 Blsl
G, A : S (59)
(p,xs) B. e B
i 1lpi ispy
o, . v
1..12 11ni
M., A |"%iin, ' ,
ii = .
(03 xny) 1 :
0
Py = 0y .
_ 0 tesven 0
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. P - “1
aij2 aijn. 0
. J
Ci9n, ¢ .
My, oA . sl (60)
(pixnj) 0
pl - l’l.j + 1 .
L 0 e 0.

The relationship (49) for this pseudocanonical form, with G and
M as just described, was derived independently in [21,40,41].

The pseudocanonical form has the following properties:

(i) The p;; are monic with deg(pii) =n,. (6la)

(ii) deg(pji) < deg(pii} = n; for § # i. (61b)

(iii) P(2z) and Q(z) are left coprime, and deg det P(z) = n,
(61c)

It follows from (61lb) that P(z) is column reduced with column
degrees (nl, ceny np). However, it is not row reduced and this
could make some of the I/0 relations apparently nonstrictly
causal if p, = 1 > n,. This will be the case if maxi{ni} -
mini{ni} > 2. The problem arises because the parameters Sijl
are not all free; the relationship (49) is not a bijection be-
tween the kz(i, j} and the BijZ here (as it was in the canonical
echelon form}, since the number of elements in G is larger than
that in B, It was shown in [19] that the following set of

n{p + s) parameters may be chosen as free:

uijl; i, J=1, .., p; L =1, ..., nj,

8 i =1, ooy p; =1, oo, 85 1 =1, .., n,,

i
(62)

iz’

Compare with (36). The other Bijl are then nonlinear combina-

tions of the parameters in (62), When these nonlinear con-



68 MICHAEL GEVERS AND VINCENT WERTZ

causalities disappear. In an identification context, if the
aijl and Bijl are estimated independently, the constraints will
not be exactly satisfied, and noncausal relations may appear.
However, Correa and Glover have explicitly computed these con-
straints and they have shown that by reordering the output vari-
ables such that n; > +++ 2 np (this is always possible), one

can treat the I/0 relations one by one and successively elimi-

nate the dependent Bijl [24%.

F. PSEUDOCANONICAL ARMA FORM

Because P(z) is not row proper, P, can be singular. There-
fore, if we multiply [P(z) : Q{(z)] to the left by M(D) as in (53),
there is no guarantee that P(0) is nonsingular, making the ARMA
pseudocanonical form difficult to use. In Section VI we shall
present an alternative ARMA form with P(0) = I, While this form
has more than n(p + s) parameters [recall that n(p + s) is the
dimension of the space of the overlapping subsets Uu] and re-
guires a larger number of integer-valued structure indices for
its Qefinition, it is identifiable. Other identifiable ARMA
forme that have more than the minimum number of parameters have
been proposed in {23]}.

The choice between using either the canonical forms or the
pseudocanonical forms described in this section is a fairly sub-
jective one. Canonical forms may have slightly fewer parameters
leading to more efficient estimates; on the other hand, the
structure estimation step of the identification requires the
estimation of p structure indices while, with pseudocanonical
forms, only the order must be estimated. If pseudocanonical
forms are used and if the ({(arbitrarily chosen} set of structure

s A ame leaade +0 a numerically ill-conditioned parametrization,
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a coordinate transformation can be used [see (38)}] to move to
a better-conditioned parametrization [16]. If pseudocanonical
forms are used, it is always a good idea to start with the

generic y; see Comment 5.

Vvi. OTHER IDENTIFIABLE

PARAMETRILZATIONS

The canonical and pseudocanonical parametrizations of Sec-
tion V were directly derived from the coordinates Tp (resp. pu)
of K(z) in the coordinate spaces spanning Uu {resp. Vu}. The
number of free parameters in these parametrizations is entirely
determined by the order of the system (resp. the Kronecker in-
dices) and that number is minimal; it equals the dimension of
the space Uu (resp. Vp). However, these parametrizations are
by no means the only identifiable ones. In this section we de-
scribe some other identifiable parametrizations; they will most
often have more free parameters than the ones described earlier,

but they have some other useful properties,

A. FULLY PARAMETRIZED ARMA MODELS

We consider the class of stable rational strictly proper

K(z) of dimension p X s that can be modeled as

®m 4 x@H = 5 HDTD), (63)
where

(1) P(D) = I, + FyD o+ eee b 50", (64a)

G(D) = QD + +=¢ 4 g, (64Db)

(ii) P(D) and G(D) are left coprime, (64c)

(iii) rank(P_:Q_] = p. (64d)

u v
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We call S{(u, v) the set of all K(z) that can be modeled by (63)=-
(64) with prescribed degrees u, v, and we denote by ©(u, v) the
set of all parameters in P(D) and §(D) that are not identically
0 or 1 and for which (64) holds. The set S(u, v) has the fol-

lowing properties (see {20,25,26,42,43]).
Result 1.

(1) s(uw, v) is mapped homeomorphically into an open set
O(u, v) C Rd, where d = p(p X u + s x v) by the mapping

¢ S(u, v) » 0(u, v): K(z) € S{u, v) - Ty, v K(2)]

u,v’
€ 0(u, v), (65)

where Tu,v is the vector of the coefficients appearing in {64a)
and (64b), and hence 0(u, v) is identifiable.

(2} {s{u, v), u, v & Z+} is not a cover of S{n): that is,
there exist K{(z) € S(n} for which no u, v exist such that
K(z) € S(u, v).

(3) The S(u, v) are not disjoint: that is, a given K(z)

can be in S(ul, vl) and S(uz, v2) for (ul, vl) # (u2, vz).

Note that d here will always be larger than the dimension
n(p + s) of the overlapping submanifolds of Section IV and V.
In addition, the order of such models will generically be a
multiple of p [31]. The problem raised in the preceding para-
graph (2} can be eliminated if, instead of prescribing the
highest column degrees (u, v) of P(D) and §(D), we prescribe

the column degrees (ul, ceer Wi Vs ey vs) of each column of

&

[P(D): O(D)]. We denote by a, (resp. b.) the vector of coeffi-
u, v,

cients of D * (resp. D *) in the ith column of P (D) {resp. Q(D)].

Now we denote by S(ul, caey up; Vir sees vs) the set of all:

K(z) that can be modeled by {(63), where P(D) and Q(D) obey
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{(6d4a)~-(64c) with uv = max; u,, v = max; v, and where

rank[al, veos ap; bl’ ceer bs] = p (66)

for prescribed column degrees {ul, ceer VPV eeay VS), and

p
we denote by G(ul, ey up; Vir eees vs) the set of all param~

eters in these P(D), O(D) that are not identically 0 and 1. We

then have the following result.
Result 2 [20,26,44]

(1) S(ul, ceey up; Vir sees VS) is mapped homeomorphically

onto an open and dense subset O(ul, ceer ULE Vs oeeey Vs) of Rd,

p

where d = p(zg uy + Zi Vi)’ and hence O(ul, ey up;

is identifiable.

Vs eees VSJ

(2) For every K(z) € S(n), there exists (ul, v up;
Vyr eves vs) such that K(z) € S(ul, cens up; Vir eees VS).

{3) The s(ul, ceer Ui Vi eeny vs) are not disjoint: that

P
is, a K{z) can be modeled uniquely by ARMA models having dif-
ferent uy, Vi each obeying the constraints (64a), (64c), and
(66) .

The most detailed discussion of this identifiable model

structure is given in [20]. A major disadvantage of this form

is that p + s integer-valued parameters must be prescribed.

B, A "SCALAR" ARMA MODEL

A commonly used representation for K(z) is
B(D)y(t) = Q(D)m(t), (67)
where

1L+ pyD+ soe + ﬁﬁDu is a scalar polynomial

i

(1) p(D)

with B # 0. (68a)
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| (ii) QJ(D) = §1D + ese 4 §§DV has dimension p x s with

'Q"v £ 0. {68b)

(iii) P(D)T and Q(D) are left coprime. (68¢c)

We call Ssc(u' v) the set of all stable rational strictly
proper K(z) that can be modeled by (67) under the constraints

(68). We then have the following result.
Result 3 [42].

(1) Ssc(u, v} is mapped homeomorphically onto an open and
dense subset Osc(u, v) of R with d = u + p X 8 x v, and hence
Osc(u, v) is identifiable.

(2) Ssc(u, v} covers S(n).

This last result follows immediately from the fact that the
form (67) is obtained by taking P(z) = zrﬁ(D), with r A max(u, v),
as the least common denominator of the elements of K(z). Notice
finally that the form (67) contains in general more parameters
than the canonical or pseudocanonical forms.

C. ELEMENTARY SUBSYSTEM
REPRESENTATIONS

The elementary subsystem (ESS) representation for multi-
variable linear systems, introduced in [45]}-[46}, is based on
a decomposition of the monic least common denominator p(z) of

the elements of K{(z} into irreducible first- and second-degree

polynomials:
nr nC
o) = T o2 TT gy, (69)
i=1 =1
where

2
pri(z) =z +a,, pcj(z) = z° + bljz + sz. (70)
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It is assumed that the poles of K(z} have multiplicity one.
Collecting all terms associated with Pri(z) into a matrix Kri(z)
and all terms associated with pcj(z) into a matrix ch(z), one
can then write K{(z) as the sum of these partial fraction ma-

trices (PFM):

nr nC
K(z) = » Ki(2) + ) K(a). (71)
i=1 j=1

The PFM Kri(z) [resp. ch(z)] can then be realized as a direct
sum of first—-order (resp. second-order} elementary subsystems
using dyadic decompositions of the numerator matrices. Now

K(z) is finally realized as a direct sum of these direct sums.
The procedure is explained in great detail in [46], where a
structure estimation scheme is also proposed. The authors claim
that this elementary subsystem structure is identifiable; how-
ever, it is not clear that this will be the case if several
elements of K(z) have the same pole, unless some additional rules
are imposed to make the dyadic decompositions unique. On the
other hand, the advantage of this structure is that it is often
close to the physical model of the system or its subsystems.
Since the poles of K(z) are directly estimated, stability can

easily be checked, or stability constraints can be introduced.

vII. THE ESTIMATION
OF THE STRUCTURE
In this section we shall briefly survey some important theo-
retical results on structure estimation and point to a number
of practical methods that have been proposed for the estimation

of the order n or the Kronecker indices (nl, seay np) or the



74 MICHAEL GEVERS AND VINCENT WERTZ

lag lengths (u, v). 1In the case where pseudocanonical forms
are used, any set of structure indices y = (nl, ceey np) adding
up to n can in principle be used; however, also in this case
methods have been suggested for selecting a partition p that
leads to a numerically better-conditioned estimation algorithm.
There is a very abundant literature on structure estimation,
mainly originating from statisticians. For reasons of space,
we shall be able to present only the main thrust of the results
without going into technical details. Our starting point will
be the model (1) again. We shall sometimes specialize to methods
that do not allow deterministic inputs or others that consider
only deterministic inputs. For brevity of notation, we shall
also sometimes use K(z) A [G(z) : H(z) - I] as before.

A. RESULTS USING THE MAXIMUM
LIKELIHOOD

We first discuss some important consistency results for
maximum likelihood estimation of parameters. We will assume
that the model (1} is subjected to the conditions (2) and that
the u(t) are observable. We shall denote by Fe the o-algebra
of events determined by {y(s), s < t}; equivalently, since u(t)
is observable and (2e) is assumed, Ft is determined by {e(s),
s < t}., It is now assumed that there exists a true system
Ko(z) 4 [Go(z)f Ho(z) - I] with innovations e(t) obeying the
following assumptions:

(1) EBfe(t) |Ft_1} = 0 a.s., E{e(t)eT(t) |F_m}= Zye
(72a)

(ii) e(t) is ergodic. (72b)

(iidi) E{[ej(t)]4} <o for j =1, ..., p. (72c)
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Conditions (72a}) ensure that e(t)eT(t) is purely nondeter-
ministic and that the best predictor of y(t) given Ftwl is the
best linear predictor. We now denote by U any of the sets of
transfer functions K(z) described in Sections IV through VI by
U its closure w.r.t. Tpt' by O the parameter set of a corre-
sponding identifiable model structure, by ¢ the mapping from U
to © such that ¢(K(z)) = t € 0, and by II the inverse mapping
such that lI{t) = K{z) € U for T € 8. For example, if U is taken
as Uu, then K(z) is the set of transfer functions such that
K(z) € U, T = §(n), where n = |p] by Result 2 in Section IV
(4), © could be taken as Ou(SS) (see Section V), any element
K(z) € U11 is then mapped into T, = QN(K(Z)) [see (37)] and

H(TU) = K(z). Setting the initial values of u{+) and y(+) to

zero, and denoting vy = [VT(l), ey VT(N)]Tlr where v{t) A y(t)
t \
- Zl Giu(t ~ i) and
N T
relt, £} 2 E{VNVN}, (73}

then the likelihood function is given hy
L,(t, ) = L log det T (1, I)
N r N N r

vir

-1
N'N

+

2|

(t, 2)Vy. (74)

Now the important point is that LN(T, L) depends on the param—
eter vector t only through II{t) = K(z). Therefore the likeli~-
hood function LN(T, L} can be considered as "coordinate free;"
the particular parametrization is unimportant. We then have

the following important consistency result [3].

Result 1. Assume that y(t) is generated by an ARMAX process
(10) with the assumptions (2) and (72) and assume that Ko(z)efi

f 7., %

N’ Ly are the MLEs obtained by optimizing L (1, I) over
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U x {z]|2 > 0}, and if R (z) = M(Ty), then

KN(z) > Ko(z) in Tpt as8us and ZN > ZO a.s. (75)

This result has the following consequences.

(L) 1If, say, U is taken as Uu, |u|] = n, and if K, (z) € s(3),

j < n, then U = §(n) = LJj<n S(j), so that the MLE is consistent

even when the true order is exceeded.

(2) Result 1 is about consistency of transfer function

estimates, not about consistency of the parameter vector %N'

o2 Ty aeSe; but other

If U is taken as U and K,(z) € U , then T
Kt 0 H N

situations can arise when KO(z) & Uu (see [25]).

Result 1 makes the crucial assumption that Ko(z) e T.
This almost amounts to saying that the structure of Ko(z) is
known. We now turn to results on structure estimation. A maxi-

e N—

mum likelihood criterion cannot be used for, say, order estima-

tion for the following reason. If n, is the true order and if
n, > ng, then S(no) C S(nl) and S(nl) is dense in S(nl); there-
fore the MLE over §(n1) will almost surely be attained in S(nl);
MLE will almost always overestimate the order.

Order estimation criteria therefore add a penalty term on
the dimension d of the parameter space. They are generally ob-
tained by minimizing a criterion of the form

A (n) = log det S (n) + d(n) [C(N)/N],

(76)

n = Ly wovy fL
OI ' § 14 maxl

over S(n) x {Z|z > 0}, n is the

A
where ZN(n) is the MLE of I —

0
maximum order to be considered, d(n) is the dimension of the
parameter space, N is the number of observations, and C(N) can

take different values. Such criteria were first proposed by
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Akaike. If C(N) = 2, AN(n) is called AIC [47]; if C(N) =

C leog N, AN(n) is called BIC [48]. Other criteria, based on
minimum description length of data, are due to Rissanen [49,50];
a third term is added to the expression (76).

The criterion (76) has been expressed as a function of the
order n., It can just as well be expressed as a function of the
gset of Kronecker indices u = (nl, ceey np) when the search is
performed over the disjoint canonical forms instead of the over-

lapping pseudocanonical forms:
Ay = log det Iy(w) +dlcm/nl,  |ul <np . 77

Under a reasonable set of assumptions, the following results

have been obtained in [26] through {28],
Result 2.

(1) TFor U = Vu(i.e., disjoint neighborhoods}, BIC gives
strongly consistent estimates ﬁN of the Kronecker indices.

(2} For U = Uu (i.e., overlapping neighborhoods), BIC gives
a strongly consistent estimate ﬁN of the true order nge.

(3) AIC is not consistent in cases (1) and (2) (it over-

estimates the order}.

However, in practice there will be no true order or Kronecker
indices: that is, the true system will not have a rational
transfer function. AIC seems to be directed at this situation.
Using a particular criterion of optimality for this situation,
Shibata has shown that AIC has some optimal properties for
spectral estimation using autoregressive models [51,52].

For the practical applicability of these structure estimation
results, it is important to observe that the criteria (76)=(77)

use the MLE fN(n) or ﬁN(u). Since the search for the Kronecker
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indices is to be performed over a large number of candidate
models, this represents a formidable computational task. One
way of reducing the effort is to search first for the largest
Kronecker index by performing the search over u; = (nl, sssy M )y

P
where n, = e =n = i for increasing i. If ﬁz= mi

P B, By sus
AN(ui), then 7 is an estimate of the largest Kronecker index.
Subsequently a much smaller number of V“ need be examined to
estimate the remaining Kronecker indices. However, this method
still requires the minimization of a number of likelihood func-
tions. Therefore other simpler methods have been sought, which
we will briefly describe next.

B. OTHER METHODS FOR THE ESTIMATION
OF THE KRONECKER INDICES

Hannan and Kavalieris [26] (see also [53]) have proposed a

method that minimizes the criterion (77), but where the MLE

fN(u) is computed cheaply using only linear equations. The
method assumes that K(z) belongs to a generic neighborhood, that
is, that ng = n, = e nq = nq+l + 1 = see0 = np + 1 for some q.
This is not a severe limitation, since generic neighborhoods

are dense in S(n) (see Comment 5). On the other hand, it
greatly reduces the number of candidate models. It is also as-
sumed that y(t) is generated by an ARMAX model. The method

uses a three-stage procedure inspired by Durbin [54]. 1In stage
I an autoregressive model, whose order increases with the number
of data, is fitted to the data; it is used to compute estimates
of the innovations. Using these estimates, canonical and ge-
neric ARMAX models are fitted in stage II; the residual vari-

ances from these models are used in (77) to estimate p. Once

the model structure is chosen, stage III computes MLEs of the
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parameters. It is shown that this procedure gives consistent
estimates of the Kronecker indices under assumptions that are
only slightly stronger than those required for Result 2.

A number of other simple methods have been proposed for the
estimation of the Kronecker indices; however, no consistency
results are available for these methods. They are all based on
the fact that the Kronecker indices can be inferred from the
linear dependence relations on the rows of Hl’m[K}. The prob-
lem is that K{(z) is not known. One procedure is to first esti-
mate the K, by a long autoregression., If there are no determi-
nistic inputs, then the covariance matrix between the vectors
of "future" outputs and "past" outputs can be used to establish
the linear dependence relationships; the rows of that block-
Hankel covariance matrix have the same linear dependences as the

rows of H [K}]. This observation has led to the canonical

1,®
correlation analysis proposed by Akaike [55]. A similar method
based on rank tests of covariance matrices has been proposed in
[12]. For deterministic I/0 models, on the other hand, struc-
ture estimation methods have been proposed based on rank tests
of the product-moment matrix of the input and output data [10,
11]. These methods will also work when the inputs and outputs
are measured with noise, provided that the noise is white or its
statistics are known. In [56] another method is proposed that
applies to least squares models, that is, H(z) = I in (1) (see
also {57]).

C. STRUCTURE ESTIMATION METHODS
USING PSEUDOCANONICAL FORMS

When pseudocanonical forms are used, it is in principle only

necessary to estimate the order n of the system. Result 2

- n [ T I R T T
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Once the order has been estimated, say 7, any partition u such
that |pu| = i can normally be used to obtain an identifiable
model structure. It might well be, however, that the true sys-
tem is close to the boundary of the selected neighborhood: that
is, the coordinates could well be ill conditioned, TFor numeri-
cal reasons, therefore, it may be worth selecting, if not the
best, at least a well-conditioned parametrization among the fi-
nite set of admissible ones (considering A as fixed). A number
of methods have been proposed. Ljung and Rissanen have proposed
a method based on the complexity of various submatrices of R§,

where R§ is the covariance matrix of a vector QN made up of a

t
finite set of predictors $(t + 1{t), ..., ¥(t + N|t) (15].
Wertz, Gevers, and Hannan have proposed a Q - R factorization
of Akaike's covariance matrix between future and past outputs,
where at each step of the factorization the most independent
remaining vector is added to the basis [17). Van Overbeek and
Ljung have proposed a method that is based on the conditioning
of the information matrix; their procedure is not to search a
priori for the "best" coordinate system, but to perform a co-
ordinate transformation if the parameters in the present co-
ordinate system become ill conditioned [16]. All these methods
apply only to state-space models; in addition, they are covari-
ance methods, which will only work when no deterministic inputs
are present.

A lot more should be said about structure estimation. In
particular, we have hardly touched on the consistency results
for ﬁN(z) {or for ?N) when the model order is either larger or
smaller than that of the true system. We refer to the work of
Hannan, Deistler, and Kavalieris for a discussion of these is-

sunes. A verv readable disciuaesion can be found in (58171,
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VIII. CONCLUSIONS

We have given a broad overview of the issues involved in
selecting identifiable parametrizations and have presented most
of the commonly used parametrizations and the techniques for
selecting them. In the past decade researchers in this field
have gained a much better understanding of the structure of
multivariable systems, and yet there is still no consensus on a
universal technique for the representation of such systems.
This is due to several reasons. First there is still no agree-
ment on a universal order or structure selection criterion, and
there might never be one, because it is recognized more and more
that an order or structure selection criterion will always have
to incorporate a degree of subjectivity. The research of the
past few years has focused on finding structure selection cri-
teria that converge to the true structure when a true system is
assumed to exist. Those "optimal” criteria require an enormous
amount of computations, as they require the maximization of a
large number of likelihood functions., This has led people to
search for computationally cheaper suboptimal methods, most of
which rely on very heuristic arguments. Thig is a major reason
for the wide range of existing methods.

A second reason is that most researchers now recognize the
fact that in most practical applications the true system being
identified is infinite dimensional. It is not certain that an
"optimal" criterion that converges to the true structure when
such exists will also be the best one in the more realistic
situation when no true system exists. In this situation the
structure selection criterion should most certainly incorporate

the intended use of the model. Very little if no effort has
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Because of this lack of universal agreement, the methods
people use will be influenced very much by their familiarity
with a particular method, by the intended use of the model, and
by the availability of a particular software package. All of
this probably accounts for the relatively small number of suc-
cessful applications reported in the literature and the diffi-
culty of comparing results obtained with different methods.

Finally, we wish to conclude on two practical notes, First,
there is no denying that tremendous new insights have been
gained from the theoretical research of the past decade on the
estimation of structure of multivariable systems, However,
since the generic parametrization is able to represent almost
all systems (see Comment 5), in practice it is most often
sufficient to estimate the order of the system, rather than its
entire structure. Second, companion {or bloc-companion) forms
are notoriously sensitive to numerical errors in the parameters.
From a practical point of view, more research should be spent

on finding numerically insensitive multivariable parametrizations
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