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Abstract— This paper establishes identifiability and in-
formativity conditions for a class of deterministic linearly
parametrized polynomial systems. The class considered is
polynomial in the states and in the inputs. The standard defini-
tions of identifiability and informativity for linear systems are
expanded to account for the situation where the identification
is achieved either through the application of informative inputs
or via the response to informative initial conditions. We provide
necessary and sufficient conditions for identifiability from the
initial state, respectively from the input, as well as necessary
and sufficient conditions on the initial state, respectively on the
input, to produce an informative experiment.

I. INTRODUCTION

The question of identifiability of parametrized dynamical
systems has occupied generations of system theorists, and the
very definition of this concept has evolved over the years. For
a long time, this concept embraced both the parametrization
issue and the richness of the data set. Eventually, a clear
separation was made between the identifiability of the model

structure, which is a parametrization issue, and the informa-

tivity of the data, which is the issue of applying signals to
the system that will produce different responses for different
parameters.

The question of identifiability of the model structure can
be succinctly summarized as follows: is the mapping from
parameter vector θ to model M(θ) injective? The seminal
paper [13] provided a broad answer to this question for large
classes of linearly and nonlinearly parametrized systems us-
ing tools from differential algebra. It is important to observe
that the identifiability is a property of the chosen model
structure (i.e. the parametrization); it is totally independent
of the true system and of the data.

The question of informativity of the data turns out to
be harder to solve. For linear time invariant (LTI) systems,
sufficient conditions on the input had been available for a
very long time (see e.g. [12]), but necessary and sufficient
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conditions remained elusive until this question was solved
in [9]. The relationship between identifiability, informativity
and the uniqueness of the minimum in a Prediction Error
Identification framework was established in [2] and required
the introduction of the new concept of local informativity.

Informativity of the data - also known as input richness
or transfer of excitation - is a topic that has attracted and
continues to attract a wide attention. It is important not just
in the context of identification, but also for the convergence
of adaptive estimation and control schemes. Simply stated,
the question can be summarized as follows: what are the con-

ditions on the excitation signal that will make the Gramian

associated with a certain regression vector full rank? The
excitation signal is typically an input signal, but it can also be
a properly chosen initial condition. The full rank condition on
the Gramian is required for the estimation of the parameters.

Besides the results for the identification of LTI systems
mentioned above, a wide range of questions related to
informativity of the data and transfer of excitation have been
addressed, dealing with different classes of systems, different
types of input, and different convergence requirements.

In [1] informativity conditions on the input have been
obtained for parameter convergence in linear discrete-time
adaptive control schemes. Similar conditions for continuous-
time linear adaptive control systems have been derived
in [10]. In [11] nonlinear adaptive control schemes were
studied, and it was shown that nonlinearities actually reduce
the requirements on the richness of the external signal.

In the context of system identification, informativity con-
ditions have been obtained for linear time-varying systems in
[14], and more specific results have been obtained in [4] for
Linear Parameter Varying systems with an ARX structure.
In [6] informativity conditions on the input signal have been
derived for a class of discrete-time linearly parametrized
systems that are linear in the output and polynomial in the
input. Bilinear systems are special members of this class. In
[16] the question of which type of input signals (e.g. pulses,
impulses, etc) are sufficient for the identification of bilinear
systems has been studied.

In this paper we consider continuous time scalar linearly
parametrized deterministic polynomial systems. The identi-
fiability conditions for such systems have been established
in [5]. The contributions of this paper extend the results of

[5] in several directions. Not only do we present necessary

and sufficient conditions on the input to generate informative

experiments, but we expand the traditional view by also pre-

senting conditions for identifiability from the initial state, as

well as necessary and sufficient conditions on the initial state

to generate informative experiments. Indeed, it is common



in some application fields that the parameters are identified
from data obtained as the response to some initial condition
without any external input.

The remainder of the paper is organized as follows. In
Section II we extend the definitions of local identifiability
and local informativity from the linear stationary stochastic
case to the case nonlinear deterministic systems; in addi-
tion, we distinguish between the classical definitions, where
identifiability and informativity are secured from the input,
to definitions that apply when these must be secured from
the response to an initial condition. The specific model class
of polynomial systems treated in this paper is introduced
in Section III. Section IV recalls the results of [5] for the
identifiability of linearly parametrized polynomial systems
from the input. These serve as inspiration for the new results
of Section V where we present necessary and sufficient
conditions for identifiability, respectively informativity, from
the initial state. The tools developed in Section V are
then extended in Section VI where we present sufficient
conditions for informativity from the input for the considered
class of polynomial systems. Section VII concludes.

II. IDENTIFIABILITY AND INFORMATIVITY FOR
NONLINEAR DETERMINISTIC SYSTEMS

We consider the following class of deterministic
continuous-time nonlinear model structures:

ẋ = f(x, θ) + g(x, u) (1)
y = h(x, θ)

where x, u and y are scalar, and f(·, ·), g(·, ·) and h(·, ·) are
given (i.e. known) analytic functions with g(·, 0) = 0. The
family of all models (1) generated by all θ ∈ �d is called
the model class M. In addition, in the same spirit as [5] and
[13], we shall make the following assumption on the input
signal u(.).

Assumption 1: The signal u(t) is analytic and is such that
the solution x(t) of (1) is an analytic function.
The virtue of this assumption is that knowing all derivatives
of an analytic signal at some time is equivalent to knowing
that signal everywhere.

The choice of parameterization made in (1) should be such
that the model class can describe exactly the real system S;
we shall throughout make the following assumption.

Assumption 2: There exists a parameter value θ0 such that
the real system is described by (1) with θ = θ0.

We now present definitions that are the nonlinear deter-
ministic counterpart of the classical definitions as can be
found in [12], which are for linear time-invariant systems
in a stochastic framework with quasi-stationary processes.
These definitions clearly separate the concepts of identifi-
ability, which is a property of the model structure, and of
informativity, which is a property of the experimental data.
In addition, we shall depart from the Linear Time Invariant
(LTI) literature on identifiability and informativity by con-
sidering that the information content in the data, that allows
estimation of the unknown parameters, can come either from
the external input signal u(.) or from the response to an

initial condition x0. Indeed in many engineering applications
of nonlinear systems (e.g. in batch processes) the data used
for identification are obtained by measuring the response to
some initial condition; in particular, it is often the case that
there are no external inputs to the system.

Consider the system (1) at some value θ1 with initial
condition x0:

ẋ = f(x, θ1) + g(x, u), x(0) = x0 (2)
y = h(x, θ1)

and the same system at θ with initial condition x̂0:

˙̂x = f(x̂, θ) + g(x̂, u), x̂(0) = x̂0 (3)
y = h(x̂, θ)

Definition 1: (Identifiability at θ1) The model (2) is
locally identifiable at θ1 if there exists a δ > 0 and an
experiment z(.)

∆
= {u(.), x0} such that, for all θ ∈ ||θ −

θ1|| ≤ δ, the outputs of the models (2) and (3), driven by
the same u(.) and with the same initial condition x0 = x̂0

are identical (i.e. y(t, θ) = y(t, θ1) ∀t ≥ 0) only if θ = θ1.
The model (2) is globally identifiable at θ1 if the same holds
for all δ > 0.

This definition relies on the possible existence of an
excitation data set z(.) which allows to differentiate between
different values of θ by measuring the output. This data set
may consist of an appropriate input sequence, an initial state,
or a combination of both. Such a data set, when it exists,
will be called informative. In [2], the new concept of local

informativity was introduced for stationary stochastic LTI
systems; the next definition is its deterministic counterpart.

Definition 2: (Informativity at θ1) The excitation data set
z(.)

∆
= {u(.), x0} is locally informative at θ1 for the model

set (1) if there exists a δ > 0 such that, for all θ ∈ ||θ−θ1|| ≤
δ, the outputs of the models (2) and (3), driven by the same
data set z(.), are identical (i.e. y(t, θ) = ŷ(t, θ1) ∀t ≥ 0)
only if θ = θ1.

These definitions exhibit the two ingredients that are nec-
essary for a meaningful identification: informativity, which
is a property of the applied data (input signal, initial state,
or both), and identifiability, which refers to the possible
existence of an informative data set given a particular model
structure, and thus is a property of the model structure.

We shall from now on consider the following two situa-
tions separately:

1) the input signal u(.) must provide informative data
whatever the initial condition x0, i.e. one must assure
that “adversarial” initial conditions do not kill the
excitation coming from u(.). If the model structure
is identifiable through u(.), then the informativity
question amounts to finding a sufficiently rich u(.).

2) the system has no external input, i.e. u(t) ≡ 0,
and identifiability must be secured through the initial
condition x(0). If the model structure is identifiable
through x(0), then the informativity question amounts
to finding a x0 that delivers informative data.



This first situation is the most commonly treated and prob-
ably the most commonly found in practice, but the second
one is also found in a variety of applications, particularly in
(bio-)chemical batch process [15], [3], [7].

A. Identifiability and informativity from the input

Definition 3: (Identifiability at θ1 from u) The model
structure (2) is locally identifiable at θ1 from the input u
if there exists a δ > 0 and an input u(.) such that, for all
initial conditions x0 = x̂0 and for all θ ∈ ||θ− θ1|| ≤ δ, the
outputs of the systems (2) and (3) are identical (i.e. y(t) =
ŷ(t) ∀t ≥ 0) only if θ = θ1. The system (2) is globally
identifiable at θ1 from u if the same condition holds for all
δ > 0.

Definition 4: (Global identifiability from u) The model
structure (2) is called globally identifiable from u if it is
globally identifiable at almost all θ from u.

This last definition is consistent with the definition of
global identifiability used in [12] and adopted in [2] for LTI
systems.

The concept of local informativity was introduced for the
first time in [2] in the context of LTI systems in a stochastic
framework. For the nonlinear deterministic systems of this
paper, we introduce the following definition.

Definition 5: (Informativity of the input at θ1) The input
signal u(.) is locally informative at θ1 for the system (2)
if there exists a δ > 0 such that, for all initial conditions
x0 = x̂0 and for all θ ∈ ||θ − θ1|| ≤ δ, the outputs of the
models (2) and (3) with this input u(.) are identical (i.e.
y(t) = ŷ(t) ∀t ≥ 0) only if θ = θ1.

B. Identifiability and informativity from the state

We now consider the case where no input is applied to the
system, that is, u(t) ≡ 0, which corresponds to the model
structures (2) and (3) with g(x, u) ≡ 0:

ẋ = f(x, θ1), y = h(x, θ1), x(0) = x0 (4)
˙̂x = f(x̂, θ), y = h(x̂, θ), x̂(0) = x̂0 (5)

Definition 6: (Identifiability at θ1 from x(0)) The model
structure (4) is locally identifiable at θ1 from the initial

condition x(0) if there exists an initial condition x0 = x̂0

and a δ > 0 such that, for all θ ∈ ||θ − θ1|| ≤ δ,
the outputs of the models (4) and (5) are identical (i.e.
y(t) = ŷ(t) ∀t ≥ 0) only if θ = θ1. The model structure
(4) is globally identifiable at θ1 from x0 if the same holds
for all δ > 0.

Definition 7: (Informativity of the initial condition at
θ1) The initial condition x0 is locally informative at θ1 for
the model structure (4) if there exists a δ > 0 such that
for all θ ∈ ||θ − θ1|| ≤ δ, the outputs of the systems (4)
and (5) with initial condition x0 = x̂0 are identical (i.e.
y(t) = ŷ(t) ∀t ≥ 0) only if θ = θ1.

III. THE MODEL CLASS OF POLYNOMIAL
SYSTEMS

We now specialize to the class of scalar polynomial
systems studied in [5]. The contribution of [5] for this class

of systems was to establish local identifiability conditions
from the input, which we shall recall in Section IV. Our new
contribution, for this class of systems, will be to establish
identifiability and informativity conditions from the initial
state in Section V, and informativity conditions from the
input in Section VI.

Thus, we consider the model structure (1) with the fol-
lowing form for f(x, θ) and g(x, u):

f(x, θ) = θTφ(x) +m(x) (6)

g(x, u) =
l�

i=1

gi(x)u
i = G(x)U (7)

where φ(x) ∈ �d is a known polynomial vector in the scalar
x, m(x) is a known polynomial in x, θ ∈ �d is an unknown
vector, gi(x) ∈ � are known polynomials in x, and where
G(x) and U are defined as follows:

G(x) = [g1(x) g2(x) . . . gl(x)], U = [u u2 . . . ul ]T

(8)
We denote by q the polynomial degree of φ(x), i.e. the
degree of the highest degree polynomial in φ(x). The model
structure (1) can then be rewritten as

ẋ = θTφ(x) +m(x) +G(x)U, x(0) = x0 (9)

IV. IDENTIFIABILITY OF POLYNOMIAL
SYSTEMS FROM THE INPUT

In this section we recall the main result of [5] on identi-
fiability from the input. The key observation is as follows.
If the model structure (9) is not identifiable at some θ1 it
means, from Definition 3, that for every input signal u(.)
there exists an initial condition x0 and a θ �= θ1 such that
the model (9) with x(0) = x0 and the model

˙̂x = θT1 φ(x̂) +m(x̂) +G(x̂)U, x̂(0) = x0 (10)

have identical solutions: x̂(t) ≡ x(t) ∀t ≥ 0. This means
that for every analytic input u(.) there is a nonzero vector
β = θ − θ1 such that

βTφ(x) ≡ 0 ∀t ≥ 0 (11)

or, equivalently:

βTR∞(θ, x) = 0 (12)

at any particular value, for example at the initial condition
x(0), where

R∞(θ, x) =
�
φ(x) φ̇(x) φ̈(x) φ(3)(x) . . .

�
. (13)

Define the d× (q + 1) matrix:

Jq(x)
∆
=

�
φ(x) ∂φ(x)

∂x
∂2φ(x)
∂x2 . . . ∂qφ(x)

∂xq

�
(14)

It then follows from φ̇ = ∂φ
∂x ẋ, φ̈ = ∂2φ

∂x2 ẋ2 + ∂φ
∂x ẍ, etc, and

the fact that ∂(q+1)φ
∂x(q+1) = 0 that R∞(θ, x) can be written as

R∞(θ, x) = Jq(x)Q∞(θ, x, ẋ, ẍ, . . . , u, u̇, ü, . . .) (15)

where the left (q + 1)× (q + 1) submatrix of Q∞ is upper-
triangular with (1, ẋ, ẋ2, . . . , ẋq) on the diagonal, while all



non-zero elements of Q∞ are functions of ẋ, u, and higher
order derivatives of x and u.

It is shown in [5] that a necessary condition for local
identifiability at any θ is that the matrix Jq(x) has full row
rank ∀x ∈ �. Note that this requires q ≥ d − 1, where q is
the degree of φ(x) and d is the number of parameters in θ.
This condition is necessary both for identifiability from the
input and for identifiability from the initial state, as defined
in Section II.

The main identifiability result of [5] is stated in the
following theorem; it relates to identifiability from the input.

Theorem 4.1: Consider the model structure (9) with
deg(φ(x)) = q and let d > 1. This system is identifiable at θ1
from the input u if and only if the following two conditions
hold simultaneously:
(i) Jq(x) has full row rank for all x ∈ �;
(ii) the polynomials θT1 φ(x)+m(x) and {gi(x), i = 1, . . . , l}
have no common real root w.r.t. x.

The condition d > 1 is there for the sake of making the
statement necessary and sufficient. When d = 1, conditions
(i) and (ii) are still sufficient, but condition (ii) is not
necessary [5].

V. IDENTIFIABILITY AND INFORMATIVITY
FROM THE INITIAL STATE

Inspired by the analysis of [5], and for pedagogical rea-
sons, we now address the problem of identifiability and in-
formativity from the initial state. The latter problem appears
considerably simpler than the informativity from the input,
which we return to in Section VI. To give some intuition,
we start with an example.

A. An example for motivation

Example 1
Consider the model structure

ẋ = θ1x
2+θ2x = θTφ(x), θT = [θ1 θ2], φ(x) = [x2 x]T .

(16)
We first observe that q = 2, that

Jq(x) =

�
x2 2x 2
x 1 0

�

and hence the necessary condition for identifiability is sat-
isfied. Now we write down the first q + 1 equations (12),
expressed at the initial time t = 0, and we introduce the
notations: x1 = x(0), x2 = ẋ(0), x3 = ẍ(0). This yields:

β1x
2
1 + β2x1 = 0 (17)

2β1x1x2 + β2x2 = 0 (18)
2β1x

2
2 + 2β1x1x3 + β2x3 = 0 (19)

Expressing the system equation (16) and its derivative at the
same t = 0, we get, with the same notation:

x2 = θ1x
2
1 + θ2x1 (20)

x3 = 2θ1x1x2 + θ2x2 (21)

Substituting x2 and x3 from (20)-(21) into (17)-(19) yields
the following equivalent system of equations which now
involves only (θ1, θ2) and x1:

(β1 β2)R2(θ1, θ2, x1) = 0 (22)

where

R2(θ, x1) = (23)�
x2
1 2x2

1(θ1x1 + θ2) 2x2
1(3θ

2
1x

2
1 + 5θ1θ2x1 + 2θ22)

x1 (θ1x1 + θ2)x1 x1(2θ21x
2
1 + 3θ1θ2x1 + θ22)

�

Following the analysis of the previous section, the model will
be unidentifiable at θ from the initial condition if for all x1

there exists a solution (β1,β2) with [β1 β2] �= 0 that solves
(22). The two rows of R2 are linearly independent except
when either x1 = 0 or θ1x1 + θ2 = 0. This shows that the
model structure (16) is locally identifiable at every θ from
the initial condition, for all initial conditions except x0 = 0
or x0 = − θ2

θ1
. This a set of measure zero. Hence the model

structure is not only locally, but also globally identifiable.
As for the informativity, any initial condition other than
x0 = 0 or x0 = − θ2

θ1
is informative for the estimation of

the parameters θ1 and θ2 of the model structure (16).

B. The general case

We now provide necessary and sufficient conditions for
the identifiability and the informativity at a given θ from the
initial state, for general polynomial model structures of the
form

ẋ = θTφ(x) +m(x), x(0) = x0. (24)

where φ(x) ∈ �d is a known polynomial vector in the scalar
x, m(x) is a known polynomial in x, θ ∈ �d is an unknown
vector to be estimated from the response of this system to
some initial condition x0. We assume again that deg(φ(x)) =
q. We first derive local identifiability conditions at some θ.

It follows from Definition 6 that the model structure (24) is
not identifiable from x(0) at θ if there exists θ1 �= θ such that
the model (24) and the model ˙̂x = θT1 φ(x̂)+m(x̂), x̂(0) =
x0 have identical responses: x̂(t) = x(t) ∀t ≥ 0. This
implies that there exists a nonzero vector β ∈ �d such that
(11) holds, or equivalently that (12) holds at any particular
value, for example at the initial condition x(0).

It can be shown, after lengthy calculations that exceed the
limit of this conference paper, that

βTR∞(θ, x) = βTJq(x)Q∞(θ, x, ẋ, ẍ, . . .) = 0 (25)

if and only if

βTRq(θ, x) = βTJq(x)Qq(θ, x, ẋ, ẍ, . . . , x
(q)) = 0 (26)

where Rq and Qq are the left (q+ 1)× (q+ 1) submatrices
of R∞ and Q∞, respectively [8]. In particular

Rq(θ, x) =
�
φ(x) φ̇(x) φ̈(x) . . . φ(q)(x)

�
. (27)

By computing the higher order derivatives of x from
(24) and by successive substitutions for ẋ, . . . , x(q), etc
in Q∞(θ, x, ẋ, . . . , x(q)), we can express this matrix as a



function of x1
∆
= x(0) and θ. We denote the resulting matrix

W (θ, x1) and we can thus write the equations (12) at the
initial condition x1 = x(0) in the following equivalent form:

βTJq(x1)W (θ, x1) = 0 (28)

Recalling Definition 7, we have thus proved the following
main result.

Theorem 5.1: The model structure (24) is locally identifi-
able at θ from the initial condition if and only if there exists
an initial condition x1 such that the rows of Rq(θ, x1) are
linearly independent.

Assume that the model structure (24) is locally identifiable
at θ from the initial condition x1, so that in particular q+1 ≥
d. Since the elements of Rq(θ, x1) are polynomial functions
of x1 and θ, the drop of row rank of Rq(θ, x1) occurs at
solutions of polynomial equations in x1. If q + 1 = d, the
rank drops at the solutions x1 of one polynomial equation. If
q+1 > d the rank drops at solutions x1 that are the common
roots of several polynomial equations; the set of such x1 is
generically empty. This leads to the following result.

Theorem 5.2: Let the model structure (24) be locally
identifiable at a given θ. The set of initial conditions which
do not result in an informative experiment at θ is either empty
or it forms a thin set in �.

In fact we can characterize this thin set completely. To
this end we first present a Lemma.

Lemma 5.1: Consider any nontrivial interval I ⊂ �, and
assume that Jq(x) has full rank for all x ∈ �. Then there
does not exist a nonzero η ∈ �d such that

ηTφ(x) = 0 ∀x ∈ I. (29)
Proof: Consider any x̄ ∈ I and define

e(x) =

�
1, (x− x̄),

(x− x̄)2

2!
, · · · , (x− x̄)q

q!

�T
.

Then the polynomial nature of φ(x) ensures that for all x ∈
I:

φ(x) = φ(x̄) + Jq(x̄)e(x).

Under (29), there holds for all x ∈ I:

ηTJq(x̄)e(x) = 0.

Thus as I is a nontrivial interval one has

ηTJq(x̄) = 0.

As Jq(x̄) has full rank this must imply that η = 0.
It is worth noting that in fact this Lemma holds as long

as Jq has full rank at any as opposed to all points in I. We
now prove that the thin set in question comprises the roots
of φT (x)θ + m(x), a fact that accords with the example
presented above.

Theorem 5.3: Let the model structure (24) be locally
identifiable at a given θ and d > 1. Then an initial condition
x0 ∈ � yields an informative experiment at θ if and only if
x0 is not a root of the polynomial equation

φT (x0)θ +m(x0) = 0. (30)

Proof: Local identifiability ensures that Jq(x) has full
rank for all x ∈ �. To establish a contradiction suppose (30)
is violated but x0 is not informative. Then there exists a
nonzero β ∈ �d, such that along the trajectory x(t) starting
from x(0) = x0,

βTφ(x(t)) = 0, ∀t ≥ 0. (31)

However, as x0 is not a stationary point of (24), there is a
nontrivial interval containing x0, such that for every point
in that interval there exists a t ≥ 0 at which x(t) equals
this point. Then from Lemma 5.1 β = 0, establishing a
contradiction. Thus (30) is a necessary condition for x0 to
be uninformative.

Now consider any x0 satisfying (30). Such an x0 is a
stationary point of (24). Thus for all t ≥ 0, φ(x(t)) = φ(x0).
As d > 1, there exists a nonzero β ∈ �d such that for all
t ≥ 0 (31) holds. Thus x0 cannot be informative.

VI. INFORMATIVITY FROM THE INPUT
Consider the polynomial model structure of the form (9)

with deg(φ(x)) = q, and assume that it obeys the conditions
of Theorem 4.1. The models (9) and (10) have identical
solutions if and only if there exists a nonzero vector β ∈ �d

such that (12) holds at any particular value, for example at the
initial condition x(0) = x1. Remember now that R∞(θ, x)
can be written as in (15).

By the same procedure used in Section V, we compute
the higher order derivatives of x from the model equation
(9), we introduce the notations x1 = x(0) and u1 =
u(0), u2 = u̇(0), u3 = u(3)(0), . . ., and we make successive
substitutions in the matrix Q∞; we denote the resulting
matrix W∞(θ, x1, u1, u2, . . .). The equation βTR∞(θ, x) =
0 can then be rewritten as

βTR∞(θ, x1, u1, u2, . . .)

= βTJq(x1)W∞(θ, x1, u1, u2, . . .) = 0 (32)

β = 0 is the only solution of (32) for a given θ if and
only if u1, u2, . . . are such that R∞(θ, x1, u1, u2, . . .) has full
column rank for all x1. Thus we have proven the following
result.

Theorem 6.1: An analytic input signal u(.) is informative
at θ for the model structure (9) if and only if at any given
time the signal and its derivatives, u1, u2, . . ., are such that
the matrix R∞(θ, x1, u1, u2, . . .) in (32) has rank d for all
x1.
We have the following immediate but useful consequence.

Corollary 6.1: Let the model structure (9) be locally in-
formative at θ. A sufficient condition for an input u to be lo-
cally informative at θ is that the matrix Rq(θ, x1, u1, . . . , uq)
formed from the first q+1 columns of R∞(θ, x1, u1, u2, . . .)
has full row rank for all x1.

We illustrate the use of Corollary 6.1 with the following
example, which is Example 1 with an added input.
Example 2
Consider the system

ẋ = θ1x
2 + θ2x+ u = θTφ(x) + u, (33)



with θ and φ(x) as in (16). Following the same derivation
as in Example 1, we get the same UE equations (17)-(19).
The two SE equations now become

x2 = θ1x
2
1 + θ2x1 + u1 (34)

x3 = 2θ1x1x2 + θ2x2 + u2 (35)

Following the procedure described above we arrive at the
following expression for the matrix R2(θ, x1, u1, u2):

R2(θ, x1, u1, u2) =

�
x2
1 2x1(θ1x2

1 + θ2x1 + u1) 6θ21x
4
1 + 10θ1θ2x3

1 + (4θ22 + 8θ1u1)x2
1 + (6θ2u1 + 2u2)x1 + 2u2

1

x1 θ1x2
1 + θ2x1 + u1 2θ21x

3
1 + 3θ1θ2x2

1 + (2θ1u1 + θ22)x1 + θ2u1 + u2

�
(36)

Clearly this matrix R2(θ, x1, u1, . . . , uq, θ) has rank two if
the left 2× 2 submatrix has full rank; call it R̄. A sufficient
condition for informativity of u(.) at θ is therefore a pair
u1, u2 such that det(R̄) �= 0 for all x1. Since det(R̄) =
−x2

1(θ1x
2
1 + θ2x1 + u1), we see that R̄ is singular only if

x1 = 0 or if θ1x2
1 + θ2x1 + u1 = 0. We consider these two

cases separately.
Case 1: x1 = 0
The condition βTR2(θ, x1, u1, u2) = 0 becomes, after

substitution in (36):

[β1 β2]

�
0 0 2u2

1

0 u1 θ2u1 + u2

�
=

�
0
0

�
(37)

We conclude from Theorem 6.1 that any input u(.) that is
such that u(0) �= 0 will ensure that β = 0 and hence such
input is informative at all θ even when the initial condition
is x(0) = 0.

Case 2: θ1x2
1 + θ2x1 + u1 = 0.

This implies by (34)-(35) that x2 = 0 and hence x3 = u2.
The condition now becomes

[β1 β2]

�
x2
1 0 2x1u2

x1 0 u2

�
=

�
0
0

�
(38)

We observe that R2 has full rank if and only if x1u2 �= 0.
This is achieved for any input signal u(.) such that u1 �=
0 and u2 �= 0. Indeed, u1 �= 0 means that x1 �= 0 since
θ1x2

1 + θ2x1 + u1 = 0. We conclude that a choice of input
such that, at any given time t0, u(t0) �= 0 and u̇(t0) �= 0
makes that input globally informative.

VII. CONCLUSIONS
In [5] the question of identifiability for the class of

linearly parametrized polynomial systems was solved, in the
sense that necessary and sufficient conditions on the model
structure for identifiability from the input were provided. The
related question of informativity, i.e. which input signals will
allow the estimation of the parameters, was left open. In the
meantime, progress has been accomplished on the concept of
informative experiments with the introduction of the concept
of local informativity in [2].

In this paper we have provided sufficient conditions for
the generation of informative experiments from the input
for the same class of polynomial systems. But in addition,
we have provided necessary and sufficient conditions for

identifiability from the initial state, as well as necessary and
sufficient conditions for informativity from the initial state.
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