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Abstract— Iterative Feedback Tuning (IFT) is a data-based
method for the tuning of restricted complexity controllers. At
each iteration, an update for the parameters of the controller is
estimated from data obtained partly from the normal operation
of the closed loop system and partly from a special experiment.
The choice of a prefilter for the input data to the special
experiment is a degree of freedom of the method. In the present
contribution, the prefilter is designed in order to enhance the
robustness of the IFT update.

I. INTRODUCTION

The Iterative Feedback Tuning (IFT) is a data-based
method to tune the parameters of a controller with a given
structure [2][3][5][6]. The objective of IFT is to minimize
a quadratic performance criterion defined on the controller
parameter space. IFT consists in a stochastic gradient de-
scent scheme. The gradient of the performance criterion is
estimated from a set of data obtained partly from normal
operation and partly from a special experiment on the plant.
This gradient estimate is used to perform the next descent
step in the iterations of the vector of controller parameters.
Under suitable assumptions the algorithm converges to a
local minimum of the performance criterion [2][4].

In the IFT procedure, the user is given the possibility
of prefiltering the input data to the special experiment.
Basically, the choice of a particular prefilter is a degree of
freedom of the procedure. In the original formulation of IFT
[6] this degree of freedom was not used. In practice, this cor-
responds to using a trivial constant prefilter. In [2][3], ithas
been shown that the prefilter influences the covariance of the
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gradient estimate. A prefilter was derived which minimizes
the weighted trace of this covariance for a given weighting
matrix. The main motivation for this result was the fact that
near the optimal point the asymptotic convergence rate of
IFT, measured as the rate of approach of the expected cost to
the minimal value, corresponds to an optimal selection of the
weight. By choosing the correct weight, an optimal prefilter
was derived that maximally improves the convergence rate
of the algorithm. The choice of the correct weight was based
on an estimate of the Hessian of the design cost function
near the optimal point.

As far as we know, there are no clear results that allow one
to formalize a design criterion for the convergence rate in the
case where the current controller is far from the optimal one.
As a matter of fact, the convergence depends on the global
shape of the performance criterion. This shape is unknown
and can hardly be estimated. Therefore, in this situation,
the objective is mainly the improvement of the accuracy of
a single IFT step. By reducing the deviation of the actual
descent direction from the optimal direction at each iteration,
one enhances the robustness of the whole iterative procedure.

In this contribution, we show that it is in general possible,
by prefiltering, to obtain a covariance matrix that is strictly
smaller than the one obtained with standard IFT step, i.e.
with a trivial constant prefilter. By strictly smaller we mean
that the difference between the covariance matrix obtained
with standard IFT and the new one is positive definite. We
propose a design criterion for the prefilter that is consistent
with this goal and show how a prefilter can be computed that
optimizes this design criterion. It turns out, as it was the case
in [2][3], that the proposed prefilter can be estimated from
data collected under normal operating conditions. Thus the
computation of the prefilter does not require any special ex-
periment on the process and does not impose any additional
cost.

The paper is structured as follows. In the next section we



Fig. 1. The control system under normal operating conditions.

recall some results on the statistical properties of the gradient
estimate in IFT. This enables us in Section 3 to establish a
design criterion that has to be minimized with respect to
the prefilter in order to strictly reduce the covariance of the
gradient estimate. We also show how to compute a prefilter
that is optimal with respect to this design criterion. In Section
4, we demonstrate, by a simulation example, the gain in
accuracy between the use of the optimal prefilter and the
use of the trivial constant prefilter. Finally, we draw some
conclusions in the last section.

II. T HE IFT PARAMETER UPDATE

We assume that the plant to be controlled is a SISO linear
time-invariant system; its transfer function is denoted by
G(q). The output of the plant is affected by an additive
stochastic disturbancev(t) = H(q)e(t) where H(q) is a
monic, stable and inversely stable transfer function ande(t)
is zero mean white noise with varianceσ2. The transfer
functions G(q) and H(q) are unknown. We consider the
closed loop system depicted in Figure 1, whereC(q,ρ)
belongs to a parameterized set of controllers with parameter
ρ ∈ Rn. The transfer function fromv(t) to y(t,ρ) is denoted
by S(q,ρ). The reference signalr(t) is set at zero under
normal operating conditions. The goal is to find a minimizer
for the cost function

J(ρ) =
1
2

E
[

y(t,ρ)2 +λu(t,ρ)2]
, (1)

whereλ ≥ 0 is a penalty on the control effort chosen by the
user.

The IFT method is an iterative procedure that gives a
solution to this problem. It is based on the construction of an
unbiased estimate of the gradient ofJ(ρ) from data collected
on the plant. The cost functionJ(ρ) is minimized with
an iterative stochastic gradient descent scheme of Robbins-
Monro type [1]. Under some suitable assumptions [2][6], the
sequence of controllers converges to a local minimum of
J(ρ).

Since every iteration proceeds in a similar fashion, in the
sequel it suffices to consider the stage wherei = 0. Therefore

we will denote the current controller parameter byρ0 and the
updated parameter byρ1. The IFT parameter update rule is
given by

ρ1 = ρ0− γR−1estN

[

∂J
∂ρ

(ρ0)

]

(2)

where γ is a positive step size andR is a positive def-
inite matrix. The reader is referred to [6] for the algo-
rithm to construct the gradient estimate. Here it suffices
to recall that, in order to constructestN

[

∂J
∂ρ (ρ0)

]

, first a

batch{u1(t,ρ0), y1(t,ρ0)}t=1,...,N of N data is collected with
the controllerC(q,ρ0) in the loop under normal operating
conditions. Then, this batch of data is used to construct the
reference signalr(t) = −K(q)y1(t,ρ0) which is applied to
the reference input of the system, see Figure 1; this is a
“special experiment”, which deviates from normal operating
conditions. The choice of the prefilterK(q) is a degree of
freedom of the algorithm and is basically left to the user. In
the original formulation of IFT the prefilter was not used,
which corresponds to settingK(q) = const.

The prefilterK(q) can influence the statistical properties of
the IFT update as has been shown in [6]. More specifically,
we have the following proposition.

Proposition 2.1:Let P̄ = limN→∞ NCov[ρ1]. Then P̄ can
be decomposed as̄P = Ē + S̄ whereĒ is given by

Ē = γ2R−1
[

σ4

2π

∫ π

−π

|S(ejω ,ρ0)H(ejω)|4

|K(ejω)|2
[1+

+λ |C(ejω
,ρ0)|

2]2 ∂C
∂ρ

(ejω
,ρ0)

∂C∗

∂ρ
(ejω

,ρ0)dω
]

R−T

and S̄ is a constant matrix which does not depend on the
choice ofK(q).
Proof. See [2]. �

This result shows how the covariance of the parameter update
depends on the prefilterK(q). It is the sum of a constant
term and a term that is a frequency weighted integral of the
inverse ofK(q). In the next section we will show how to
chooseK(q) in order to make this covariance smaller than
what is obtained with a constant prefilter.

III. D ESIGN OF AN OPTIMAL PREFILTER

By Proposition 2.1 we can influence the covariance termĒ
by choice of the prefilterK(q). Our goal is to makēE as small
as possible by choosingK(q) appropriately. However, here
we deal with a matrix-valued object, minimization of which
has no well-defined meaning. Nevertheless, there exists a
partial ordering on the space of symmetric matrices. Namely,
if the differenceP̄2− P̄1 of two symmetric matrices̄P1, P̄2 is
positive definite, we can say that̄P1 is strictly smaller than̄P2.
Clearly, if we have a choice between two different prefilters
K(q) yielding two different covariance matrices, which are
comparable in this sense, then it is preferable to use that
prefilter which leads to the smaller covariance matrix.



Specifically, if we can find a prefilter which leads to
a covariance matrixP̄ which is strictly smaller than the
covariance matrix obtained by using no prefilter at all, thenit
is preferable to use this prefilter. In this section we point out
a subset of prefilters which lead to such covariance matrices,
and we propose an algorithm to construct the prefilter in that
set which leads to the smallest covariance matrix.

We shall proceed as follows. First we clarify the structure
of the set of all covariance matrices̄P which can be obtained
at all by using all possible prefiltersK(q). This will give
us clues for the construction of a prefilter which leads to a
covariance matrix that is smaller than the one obtained with
some given prefilter. Specifically, we will construct a prefilter
that yields a covariance matrix which is smaller than the one
obtained by using no prefilter at all (i.e. by using the trivial
constant prefilter).

A. The set of achievable covariance matrices

By Proposition 2.1 we can write

Ē =

∫ π

0

1
|K(ejω)|2

M(ω)dω, (3)

i.e. Ē is a weighted integral over a frequency-dependent real
positive semidefinite matrixM(ω), which does not depend
on the prefilterK(q). The prefilter is assigned the role of
a positive weighting function. Thus, by choice of a suitable
prefilter, we can assign to the expressionĒ a value that is
arbitrarily close to any given matrix in the convex conic hull
of the matrix-valued curveM(ω). By Proposition 2.1, the
closure of the set of all asymptotic covariance matricesP̄ that
can be achieved by choosing a prefilter is an affine closed
convex cone with an offset̄S. Let us denote this cone byC .

SinceĒ is inversely proportional to the squared magnitude
of the prefilterK(q), we could make it as small as we wish
by choosing a prefilter with a sufficiently large magnitude.
However, this would be at the cost of a higher input energy
for the reference signalr(t) = −K(q)y1(t,ρ0) of the special
experiment and this would represent a bigger perturbation of
the process, which is not desirable. Thus we have to restrict
the set of allowed prefiltersK(q) by imposing some boundα
on this input energyE

[

r(t)2
]

. This bound represents the level
of acceptable perturbation of the normal operating conditions
during the special experiment. Sincer(t) = −K(q)y1(t,ρ0),
we impose the following restriction on the magnitude

of K(q):
σ2

2π

∫ π

−π
|K(ejω)|2|S(ejω

,ρ0)H(ejω)|2dω ≤ α. This

can be written as
∫ π

0
|K(ejω)|2w(ω)dω ≤ 1, (4)

where w(ω) = σ2

απ |S(ejω ,ρ0)H(ejω)|2 is a positive
frequency-dependent scalar function. The set of covariance
matrices P̄ that can be obtained by prefiltering under
restriction (4) is naturally smaller than the entire coneC .
We shall now investigate this set.

Fig. 2. Representation of the optimization problem.

Let P̄in = S̄+ Ēin ∈ C \ {S̄} be an arbitrary covariance
matrix which can be achieved by prefiltering with some
prefilter. Then the ray{S̄+ κĒin |κ ≥ 0} is contained in
the coneC . It is easily seen that there exists a unique
matrix P̄opt = S̄+ κoptĒin on this ray such that any matrix
S̄+κĒin with κ ≥ κopt can be approximated arbitrarily well
by choosing prefilters satisfying constraint (4), but matrices
S̄+κĒopt with κ < κopt cannot. The union of these matrices
P̄opt for all rays inC forms a sectionS of the coneC (see
Fig. 2).

Proposition 3.1:The sectionS is a convex hypersurface.
Proof. It is sufficient to show that the closure of the set of
all covariance matrices that can be achieved by prefiltering
under restriction (4) is convex. LetK1(q), K2(q) be two
prefilters satisfying (4) and yielding covariance matrices
P̄1, P̄2 ∈ C , respectively. LetKτ(q) be such that 1

|Kτ (q)|2
=

τ 1
|K1(q)|2

+(1−τ) 1
|K2(q)|2

, τ ∈ [0,1]. Then by convexity of the

function f (x) = 1
x every filter Kτ(q) satisfies restriction (4).

Thus the matrices on the line segment between the covariance
matricesP̄1, P̄2 can be approximated arbitrarily well, along
with the endpoints of this segment. �

PrefiltersK(q) satisfying (4) and leading to covariance ma-
trices on the surfaceS are optimal in the following sense.
Suppose we are given some prefilterKin(q) satisfying (4) and
leading to a covariance matrix̄Pin = S̄+Ēin in the convex hull
of S . Then the covariance matrix̄Popt = S̄+κoptĒin ∈ S is
the smallestcovariance matrix on the ray{S̄+κĒin |κ ≥ 0}
which can be approximated by using prefilters satisfying (4).
In particular, we haveκopt ≤ 1 andP̄opt is smaller thanP̄in. In
this sense a prefilterKopt(q) which satisfies (4) and produces
the covariance matrix̄Popt is optimal along the given ray. In
the next subsection we shall construct this optimal prefilter.



B. The optimal prefilter

The problem of finding the optimal prefilterKopt(q) corre-
sponding to a given initial covariance matrix̄Pin can be cast
as the following optimization problem (compare (3), (4)).
Given an initial prefilterKin(q) which realizes a covariance
matrix P̄in = S̄+ Ēin, minimizeκ , by choice ofK(ejω), under
the constraints
∫ π

0
|K(ejω)|2w(ω)dω ≤1,

∫ π

0

1
|K(ejω)|2

M(ω)dω = κĒin.

A natural choice of the initial prefilterKin(q) is the trivial
constant prefilter with maximum gain satisfying the energy
constraint.

We shall now solve this problem. By associating a scalar
Lagrange multiplierλ0 ≥ 0 and a matrix-valued Lagrange
multiplier Λ with the two constraints, we obtain the Lagrange
function

L = κ +λ0

(

∫ π

0
|K(ejω)|2w(ω)dω −1

)

+

〈

Λ,

∫ π

0

1
|K(ejω)|2

M(ω)dω −κĒin

〉

.

By setting the gradient ofL with respect to the design
variablesκ and K(ω) to zero and inserting the resulting
equations into the constraints, we get

|Kopt(ω)|2 =

√

〈Λ,M(ω)〉

w(ω)
∫ π

0

√

〈Λ,M(ω)〉w(ω)
, (5)

∂
∂Λ

(

− ln
∫ π

0

√

〈Λ,M(ω)〉w(ω)dω +
1
2
〈Λ, Ēin〉

)

=

=
∂ f (Λ)

∂Λ
= 0.

The function f (Λ) is convex with respect toΛ. In order
to determineΛ we thus have to solve the following convex
optimization problem.

minimize f (Λ) s.t. 〈Λ,M(ω)〉 ≥ 0 ∀ω. (6)

The matrix-valued functionM(ω) is rational in cos(ω).
Therefore the constraint〈Λ,M(ω)〉 > 0 ∀ω is semidefinite
representable and can be formulated as an LMI (Linear
Matrix Inequality). Problem (6) is thus a standard convex
optimization problem for which efficient numerical solution
algorithms are available. Note that the gradient off tends
to infinity asΛ approaches the boundary of the feasible set.
Hence at the optimum, if it exists, the inequality in (6) is
strict.

Before discussing how to minimizef (Λ) in practice, let
us turn to the question of the existence of a solution. The
matrix P̄in is not contained in the convex coneC if and
only if there exists a separating linear functional, i.e. a
feasibleΛ such that〈Λ, Ēin〉 < 0. If this is the case, then
we will necessarily encounter such aΛ in the course of the
minimization procedure, because the logarithm grows slower

than a linear function. IfP̄in lies in the interior ofC , then
there exists a minimizerΛ∗ of f (Λ).

Remark:A feasibility check can be more easily performed
by solving the auxiliary problem of minimizing the linear
functional 〈Λ, Ēin〉 over all Λ such that〈Λ,M(ω)〉 ≥ 0 for
all ω ∈ [0,π]. If M(ω) is rational in cos(ω), then this is a
standard semidefinite program. Thus we obtain a simple tool
to check whether a given covariance matrix can be achieved
with some prefilter or not.

In order to solve (6) and compute this prefilter in practice,
one needs an estimate of the unknown spectral density
|S(ejω ,ρ0)H(ejω)|2 of the signaly(t,ρ0) which is the output
of the plant under normal operating conditions, i.e. with zero
reference signal. This quantity is in fact the only unknown
part in M(ω) and w(ω). Such estimate can be obtained
with standard techniques in the time or in the frequency
domain [7], [8]. Note that since the data needed to estimate
|S(ejω ,ρ0)H(ejω)|2 do not stem from a special experiment
they are available in large amounts. In fact, periods of normal
operating conditions can be interlaced with the IFT special
experiments. By assuming these periods to be much longer
than the length of the special experiment from which the
gradient is estimated, the contribution of the variabilityin
the estimate of|S(ejω ,ρ0)H(ejω)|2 to the variability of the
gradient estimate can be considered as being negligible.
Having an estimate of|S(ejω ,ρ0)H(ejω)|2 one can solve (6).
Having determinedΛ, one can compute the magnitude of
the prefilter according to (5). Then, there exist standard tools
to approximate a given magnitude function by a minimum
phase filter. Before closing this section, let us remind the
reader that the optimal prefilter is guaranteed to yield a
smaller covariance matrix of the updated parameter vector
than the one which would be obtained with the standard IFT
procedure; it is thus optimal in the sense described in the
previous subsection.

IV. SIMULATION EXAMPLE

Consider the system described byG(q) = q−1−0.5q−2

1−0.3q−1−0.28q−2

andH(q) = 1
1+0.9q−1 with σ2 = 1. Let the class of controllers

beC(q,ρ) = ρ1

1+ρ2q−1 and setλ = 0.6 in (1). Let the current
stabilizing controller be given by:ρ0 = [−1.25 0.83]. We
assume that the constraint on the reference signalr(t) of the
special experiment is that this signal must have the same en-
ergy as the output of the plant in normal operating conditions.
In the following, we quantify the accuracy improvement
on the first parameter vector updateρ1, when the optimal
prefilter Kopt(q), given by (5), is used instead of the trivial
constant prefilterKin(q) , both of which having the maximum
gain satisfying the energy constraint onE

[

r(t)2
]

.
We consider the IFT update (2) with step sizeγ = 1 and

R= I . By using Proposition 2.1 and results from [2] we can
find the numerical value of̄P = limN→∞ NCov[ρ1].



For the constant prefilterKin(q) we obtain

P̄in = 104×

[

0.0524 −0.3019
−0.3019 2.2765

]

= S̄+ Ēin

in which theK(q)-dependent component is given by

Ēin = 104×

[

0.0472 −0.3053
−0.3053 2.2735

]

.

For the optimal prefilterKopt(q) we have

P̄opt = 103×

[

0.1245 −0.4309
−0.4309 3.4975

]

= S̄+ Ēopt

whereĒopt = κoptĒin with κopt = 0.15. The difference in the
total covariance for the two cases is then

∆̄ = P̄in − P̄opt = 104×

[

0.0399 −0.2588
−0.2588 1.9267

]

.

The improvement in the use of the optimal prefilter is
shown by the fact that̄∆ is positive definite. Thus, whatever
scalar measure of the covariance matrix one might use to
evaluate the spread ofρ1, the use ofKopt(q) leads to a strict
improvement.

The above theoretical values can be verified by a Monte-
Carlo simulation. The parameter vectorρ1 has been extracted
2048 times, by performing 2048 times the update step (2)
with a different noise realization each one of lengthN =
1024. The 2048 parameter vectors obtained in this way are
shown in Figure 3 for the case of the constant prefilter. The
corresponding sampled estimate ofNCov[ρ1] is given by

P̂in = 104×

[

0.0523 −0.3003
−0.3003 2.2338

]

.

The parameter vectors obtained for the case of the optimal
prefilter are shown in Figure 4 . In this case, the correspond-
ing sampled estimate ofNCov[ρ1] is given by

P̂opt = 103×

[

0.1270 −0.4344
−0.4344 3.5599

]

.

Observe that the results of the Monte-Carlo simulation are
really close to the theoretical results.

V. CONCLUSIONS

In this contribution we have exploited the possibility to
prefilter the reference input in the special experiment of the
IFT procedure in order to enhance the robustness of the
algorithm. This was performed by altering the covariance
of the gradient estimate, which can be directly influenced
by the choice of a prefilter in this experiment. Based on the
relationship between the prefilter and the covariance of the
parameter update, we have formulated a design criterion for
the prefilter. The problem of optimizing the prefilter with
respect to this criterion amounts to a convex optimization
problem with LMI constraints.
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Fig. 3. The 2048 parametersρ1 obtained using the constant
prefilter Kin(q).
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Fig. 4. The 2048 parametersρ1 obtained using the optimal
prefilter Kopt(q).
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