Optimization of the prefilter in Iterative Feedback Tuning
for improved accuracy of the controller parameter update’
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Abstract— Iterative Feedback Tuning (IFT) is a data-based gradient estimate. A prefilter was derived which minimizes
method for the tuning of restricted complexity controllers. At the weighted trace of this covariance for a given weighting
each iteration, an update for the parameters of the controller is  atrix The main motivation for this result was the fact that
estimated from data obtained partly from the normal operation near the optimal point the asymptotic convergence rate of
of the closed loop system and partly from a special experiment.

The choice of a prefilter for the ‘input data to the special IFT, measured as the rate of approach of the expected cost to
experiment is a degree of freedom of the method. In the present the minimal value, corresponds to an optimal selection ef th
contribution, the prefilter is designed in order to enhance the weight. By choosing the correct weight, an optimal prefilter
robustness of the IFT update. was derived that maximally improves the convergence rate
I. INTRODUCTION of the algqrithm. The choice Qf the correct weight was baged
on an estimate of the Hessian of the design cost function

The lterative Feedback Tuning (IFT) is a data-baseflear the optimal point.
method to tune the parameters of a controller with a given as far as we know, there are no clear results that allow one
structure [2][3][5][6]. The objective of IFT is to minimize tg formalize a design criterion for the convergence ratéén t
a quadratic performance criterion defined on the controllefase where the current controller is far from the optimal.one
parameter space. IFT consists in a stochastic gradient d€s a matter of fact, the convergence depends on the global
scent scheme. The gradient of the performance criterion dhape of the performance criterion. This shape is unknown
estimated from a set of data obtained partly from normaing can hardly be estimated. Therefore, in this situation,
operation and partly from a special experiment on the plange objective is mainly the improvement of the accuracy of
This gradient estimate is used to perform the next desce@tsing|e IFT Step_ By reducing the deviation of the actual
step in the iterations of the vector of controller paraneter gescent direction from the optimal direction at each iterat
Under suitable assumptions the algorithm converges to ghe enhances the robustness of the whole iterative progedur
local minimum of the performance criterion [2][4]. In this contribution, we show that it is in general possible,

In the IFT procedure, the user is given the possibilithy prefiltering, to obtain a covariance matrix that is slyict
of prefiltering the input data to the special experimentsmaller than the one obtained with standard IFT step, i.e.
Basically, the choice of a particular prefilter is a degree ofith a trivial constant prefilter. By strictly smaller we nrea
freedom of the procedure. In the original formulation of IFTthat the difference between the covariance matrix obtained
[6] this degree of freedom was not used. In practice, this cofith standard IFT and the new one is positive definite. We
responds to using a trivial constant prefilter. In [2][3]h#s  propose a design criterion for the prefilter that is conaiste
been shown that the prefilter influences the covariance of th@th this goal and show how a prefilter can be computed that

. 4 by the Beldi era optimizes this design criterion. It turns out, as it was theec
i Spors by e Sl erganye n e iy R hat the proposed prefer can be estmated from
Science, Technology and Culture and the European Researniott on ~ data collected under normal operating conditions. Thus the
System Identification (ERNSI) funded by the European Unidre scientific  computation of the prefilter does not require any special ex-

responsibilty rests with s authors. periment on the process and does not impose any additional
This work was carried out while the second author was a post do
researcher at the Centre for Systems Engineering and Applezhanics cost. . .

(CESAME) Universié Catholique de Louvain - Belgium. The paper is structured as follows. In the next section we



e(t) white noise we will denote the current controller parameterdayand the
Varle(r)] = o2 updated parameter ;. The IFT parameter update rule is

G(g) and H(g) are unknown. given by
H(q) - 0J
p1=po— YR ‘esk [%(po)] 2
v(r)

r(t)=0 u(t,p) y(t.p) where y is a positive step size anR is a positive def-
— Glg) = inite matrix. The reader is referred to [6] for the algo-
- rithm to construct the gradient estimate. Here it suffices

ﬂ:% S to recall that, in order to construasty [ﬁp (po)] first a

20 fg & E batch{ul(t, po), yX(t, Po) h= 1...n Of N data is collected with

the controIIerC(q Po) in the loop under normal operating
Fig. 1. The control system under normal operating conditions. conditions. Then, this batch of data is used to construct the
reference signat (t) = —K(q)y(t, po) which is applied to
the reference input of the system, see Figure 1; this is a
recall some results on the statistical properties of thdigra  “special experiment”, which deviates from normal opemtin
estimate in IFT. This enables us in Section 3 to establishanditions. The choice of the prefiltét(q) is a degree of
design criterion that has to be minimized with respect tfreedom of the algorithm and is basically left to the user. In
the prefilter in order to strictly reduce the covariance @& ththe original formulation of IFT the prefilter was not used,
gradient estimate. We also show how to compute a prefiltevhich corresponds to settirg(q) = const
that is optimal with respect to this design criterion. In88t  The prefilterk (g) can influence the statistical properties of
4, we demonstrate, by a simulation example, the gain ihe IFT update as has been shown in [6]. More specifically,
accuracy between the use of the optimal prefilter and thge have the following proposition.
use of the trivial constant prefilter. Finally, we draw some Proposition 2.1: Let P = limy_.. NCov[ps]. Then P can
conclusions in the last section. be decomposed &= E + S whereE is given by

IIl. THEIFT PARAMETER UPDATE

| £ ppa[d mIsEpHE)

We assume that the plant to be controlled is a SISO linefr = 2n/_n |K(ejw)|2 [1+
time-invariant system; its transfer function is denoted by _ »9C Flo
G(q). The output of the plant is affected by an additive +A|C(e1, po)[?] R (€, p0) 53— 7 (e po)dw|RT
stochastic disturbance(t) = H(q)e(t) where H(qg) is a p P
monic, stable and inversely stable transfer function eftl and Sis a constant matrix which does not depend on the
is zero mean white noise with varian@®. The transfer choice ofK(q).
functions G(q) and H(q) are unknown. We consider the proof. See [2]. 0

closed loop system depicted in Figure 1, wh&],p)  This result shows how the covariance of the parameter update
belongs to a parameterized set of controllers with parametgepends on the prefiltef(q). It is the sum of a constant

p € R". The transfer function from(t) to y(t,p) is denoted term and a term that is a frequency weighted integral of the
by S(q,p). The reference signai(t) is set at zero under jnyerse ofK(q). In the next section we will show how to
normal operating conditions. The goal is to find a minimizeghoosekK (q) in order to make this covariance smaller than

for the cost function what is obtained with a constant prefilter.
1 2 2
J(p)=3E y(t,p)"+Au(t,p)7] 1) [1l. DESIGN OF AN OPTIMAL PREFILTER
whereA >0 is a penalty on the control effort chosen by the By Proposition 2.1 we can influence the covariance tErm
user. by choice of the prefilteiK (q). Our goal is to mak& as small

The IFT method is an iterative procedure that gives as possible by choosin§(q) appropriately. However, here
solution to this problem. It is based on the constructionrof awe deal with a matrix-valued object, minimization of which
unbiased estimate of the gradientddp) from data collected has no well-defined meaning. Nevertheless, there exists a
on the plant. The cost functiod(p) is minimized with partial ordering on the space of symmetric matrices. Namely
an iterative stochastic gradient descent scheme of Robbinithe differenceP, — P, of two symmetric matrice®;, P is
Monro type [1]. Under some suitable assumptions [2][6], th@ositive definite, we can say thit is strictly smaller thar,.
sequence of controllers converges to a local minimum dElearly, if we have a choice between two different prefilters
J(p). K(q) yielding two different covariance matrices, which are

Since every iteration proceeds in a similar fashion, in theomparable in this sense, then it is preferable to use that
sequel it suffices to consider the stage whietd). Therefore prefilter which leads to the smaller covariance matrix.



Specifically, if we can find a prefilter which leads to
a covariance matriX? which is strictly smaller than the
covariance matrix obtained by using no prefilter at all, then
is preferable to use this prefilter. In this section we point o Py
a subset of prefilters which lead to such covariance matrices
and we propose an algorithm to construct the prefilter in that
set which leads to the smallest covariance matrix.

We shall proceed as follows. First we clarify the structure \ 4
of the set of all covariance matric®swhich can be obtained Popt
at all by using all possible prefilter&(q). This will give
us clues for the construction of a prefilter which leads to a 4

covariance matrix that is smaller than the one obtained with
some given prefilter. Specifically, we will construct a ptefil
that yields a covariance matrix which is smaller than the one
obtained by using no prefilter at all (i.e. by using the tiivia
constant prefilter).

%))

A. The set of achievable covariance matrices
By Proposition 2.1 we can write

_ 7T 1

E:K/O KigapM(@de @3)
i.e. E is a weighted integral over a frequency-dependent real L8t Pn = S+ Ein € 4"\ {S} be an arbitrary covariance
positive semidefinite matri® (), which does not depend Matrix which can be achieved by prefiltering with some
on the prefilterK (q). The prefilter is assigned the role of Prefilter. Then the ray{S+ kEin |k > O} is contained in
a positive weighting function. Thus, by choice of a suitabldh® cone<’. It is easily seen that there exists a unique
prefilter, we can assign to the expressibra value that is Matrix Popt = S+ KoptEin 0N this ray such that any matrix
arbitrarily close to any given matrix in the convex coniclhul S+ KEin With K > Kopt can be approximated arbitrarily well
of the matrix-valued curvéM(w). By Proposition 2.1, the By choosing prefilters satisfying constraint (4), but nesi
closure of the set of all asymptotic covariance matriegisat S+ KEopt With k < Kopr cannot. The union of these matrices
can be achieved by choosing a prefilter is an affine closddpt for all rays in¢’ forms a section”” of the cone?’ (see
convex cone with an offse&d. Let us denote this cone k.  FI9- 2)-

SinceE is inversely proportional to the squared magnitude Proposition 3.1: The section# is a convex hypersurface.
of the prefilterK(q), we could make it as small as we wishProof. It is sufficient to show that the closure of the set of
by choosing a prefilter with a sufficiently large magnitudeall covariance matrices that can be achieved by prefiltering
However, this would be at the cost of a higher input energynder restriction (4) is convex. Lefi(q), Kz(q) be two
for the reference signal(t) = —K(q)y(t, po) of the special prefilters satisfying (4) and yielding covariance matrices
experiment and this would represent a bigger perturbation 81,P. € ¢, respectively. LetK;(q) be such thatm =
the process, which is not desirable. Thus we have to restriet_L_ 1 (1—1)_—L_ 1€ [0,1]. Then by convexity of the

the set of allowed prefilter€ (q) by imposing some bound Ka(g)® 1|K2(q>|2’

function f(x) = 5 every filterK;(q) satisfies restriction (4).

. . 2 .
0][‘ this '”p‘gtl energEgr(F) J- Ihr']S bound Ireprese_nts the leveltp s the matrices on the line segment between the covariance
of acceptable perturbation of the normal operating comki matricesPy,P, can be approximated arbitrarily well, along

during the special experiment. Sincé) = —K(q)y(t, po), with the endpoints of this segment. 0

we imposg the following restriction on the magnltuOIePrefiItersK(q) satisfying (4) and leading to covariance ma-

02 n . . . .
of K(q): Er/ H\K(elw)|2|5(ejw,po)H(e’w)\zdwS a. This  trices on the surface” are optimal in the following sense.

Fig. 2. Representation of the optimization problem.

can be written as Suppose we are given some prefilgr(q) satisfying (4) and
T leading to a covariance matri, = S+ Ejy_in the convex hull
/0 K(e1®)Pw(w) dw < 1, (4)  of .. Then the covariance matrBopt = S+ KoptEin € . is
' the smallestcovariance matrix on the ra§S+ KEj, |k > 0}
where w(w) = %\S(ejw,po)H(ej“’)F is a positive which can be approximated by using prefilters satisfying (4)

frequency-dependent scalar function. The set of covagiantn particular, we have,p < 1 andPy is smaller tharB,. In

matrices P that can be obtained by prefiltering underthis sense a prefilté€,p(q) which satisfies (4) and produces
restriction (4) is naturally smaller than the entire cdfie the covariance matril,p; is optimal along the given ray. In
We shall now investigate this set. the next subsection we shall construct this optimal prefilte



B. The optimal prefilter than a linear function. IF_1n lies in the interior of%’, then

The problem of finding the optimal prefiltétop(q) corre- ~ there exists a minimizeA® of f(A).
sponding to a given initial covariance matf can be cast ~ Remark:A feasibility check can be more easily performed
as the following optimization problem (compare (3), (4)). by solving the auxiliary problem of minimizing the linear
Given an initial prefilterkin(q) which realizes a covariance functional (A, Ein) over all A such that(A,M(w)) > 0 for
matrix P, = S+ Ein, minimize k, by choice ofK (el®), under all w € [0, 7. If M(w) is rational in cosw), then this is a
the constraints standard semidefinite program. Thus we obtain a simple tool

oo moo1q _  to check whether a given covariance matrix can be achieved
/o K(e')Pw(w)dw< 1, /o WM(M)dw:KEn- with some prefilter or not.

. o i ) . In order to solve (6) and compute this prefilter in practice,

A natural choice of the initial prefilteKin(q) is the trivial one needs an estimate of the unknown spectral density
constant prefilter with maximum gain satisfying the energ¥s(ejw’po)H(ejw)|2 of the signaly(t, po) which is the output

constraint. of the plant under normal operating conditions, i.e. wittoze

We shall now solve this problem. By associating a scalggference signal. This quantity is in fact the only unknown
Lagrange multiplierdp > 0 and a matrix-valued Lagrange part in M(w) and w(w). Such estimate can be obtained

multiplier A with the two constraints, we obtain the Lagrang&ith standard techniques in the time or in the frequency

function domain [7], [8]. Note that since the data needed to estimate
T lai 19 po)H(el®)|? do not stem from a special experiment
L = k+A / K(e®))w(w)dw — 1 [S(e!®, po)H : :
Ao ( 0 IK(e™)Fw(w) they are available in large amounts. In fact, periods of rarm
Tl 1 _ operating conditions can be interlaced with the IFT special
+ 7./0 ‘K(ejw”zM(‘*’)dw_KEin : experiments. By assuming these periods to be much longer

than the length of the special experiment from which the
gradient is estimated, the contribution of the variability
the estimate ofS(el®, pg)H (el®)|? to the variability of the
gradient estimate can be considered as being negligible.

By setting the gradient of. with respect to the design
variablesk and K(w) to zero and inserting the resulting
equations into the constraints, we get

5 (AN M(w)) Having an estimate di5(el®, pp)H (€/*)|? one can solve (6).
|Kopt(@)|” = w(w) [T/ A M(w)}w(w)’ () Having determined\, one can compute the magnitude of
0 ’ the prefilter according to (5). Then, there exist standaotsto
F) T 1 to approximate a given magnitude function by a minimum
A (—In/o V(N M(w))w(w)dw+ §<A7Ein>) =  phase filter. Before closing this section, let us remind the
IF(N) ’ reader that the optimal prefilter is guaranteed to yield a
= N T 0. smaller covariance matrix of the updated parameter vector

: _ _ than the one which would be obtained with the standard IFT
The function f(A) is convex with respect ta\. In order procedure; it is thus optimal in the sense described in the
to determine/\ we thus have to solve the following convexprevious subsection.

optimization problem.
minimize f(A) st (AM(w)) >0Vw.  (6) IV. SIMULATION EXAMPLE

The matrix-valued functionM(w) is rational in coéw). Consider the system described @g{q):lOffljl—'i)-Sq’zi2
. . e —0.3q7-0.28q

Therefore the constraintA\,M(w)) > 0 Vw is sem|def|n|t_e H(q) = —L  with 0? = 1. Let the class of controllers
representable and can be formulated as an LMI (Linear 1+0.9
Matrix Inequality). Problem (6) is thus a standard conveR€C(a,p) = # and setA =0.6 in (1). Let the current
optimization problem for which efficient numerical solutio Stabilizing controller be given bypo = [-1.25 083. We
algorithms are available. Note that the gradientfofends assume that the constraint on the reference sigiabf the
to infinity as/\ approaches the boundary of the feasible sespecial experiment is that this signal must have the same en-
Hence at the optimum, if it exists, the inequality in (6) isergy as the output of the plant in normal operating condgtion
strict. In the following, we quantify the accuracy improvement

Before discussing how to minimiz&(A) in practice, let on the first parameter vector update, when the optimal
us turn to the question of the existence of a solution. Therefilter Kopi(q), given by (5), is used instead of the trivial
matrix P,, is not contained in the convex cong if and constant prefilteKi,(q) , both of which having the maximum
only if there exists a separating linear functional, i.e. gain satisfying the energy constraint &rr(t)?].
feasible A such that(A,Ein) < 0. If this is the case, then  We consider the IFT update (2) with step sige- 1 and
we will necessarily encounter such/\ain the course of the R=1. By using Proposition 2.1 and results from [2] we can
minimization procedure, because the logarithm grows slowdéind the numerical value dP = limy_.. NCov[p1].



For the constant prefiltei, (g) we obtain

B = 10¢ x [ 0.0524 -0.3019

-0.3019 22765} = S+Ein

in which theK(q)-dependent component is given by

- 0.0472 —0.3053
Ein = 10" x [ ~0.3053 22735} '

=S+ E_opt

For the optimal prefilteKop(q) we have

whereEqp; = KoptEin With Kopt = 0.15. The difference in the
total covariance for the two cases is then

0.0399 -0.2588
—0.2588 19267

The improvement in_the use of the optimal prefilter i’

shown by the fact thah is positive definite. Thus, whatever

scalar measure of the covariance matrix one might use

evaluate the spread ph, the use oKopt(q) leads to a strict

improvement.

The above theoretical values can be verified by a Monte
Carlo simulation. The parameter vecmmrhas been extracted
2048 times, by performing 2048 times the update step (i« o
with a different noise realization each one of lengih=
1024. The 2048 parameter vectors obtained in this way a

0.1245
—0.4309

—0.4309
34975

20
E:FTm—FTOpt:]-O‘lX{

15

10

shown in Figure 3 for the case of the constant prefilter. Th |

corresponding sampled estimateM€ov[p;] is given by

; 0.0523 —0.3003
Pn = 10" [ ~0.3003 22338] '

The parameter vectors obtained for the case of the optim...
prefilter are shown in Figure 4 .
ing sampled estimate diCov|p1] is given by

ﬁopt: 108 x [ 0.1270 0.4344} .

—0.4344 35599
Observe that the results of the Monte-Carlo simulation are
really close to the theoretical results.
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V. CONCLUSIONS

In this contribution we have exploited the possibility to[2]
prefilter the reference input in the special experiment ef th
IFT procedure in order to enhance the robustness of the
algorithm. This was performed by altering the covarianc{3]
of the gradient estimate, which can be directly influenced
by the choice of a prefilter in this experiment. Based on the
relationship between the prefilter and the covariance of the
parameter update, we have formulated a design criterion ff]
the prefilter. The problem of optimizing the prefilter with
respect to this criterion amounts to a convex optimization
problem with LMI constraints.

(5]

sk

5

-20
-3

o

Fig. 3. The 2048 parameteys obtained using the constant
efilter Kin(q).

4
o

In this case, the Correspongi-g. 4. The 2048 parameteys obtained using the optimal
prefilter Kopt(d).
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