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Abstract

Recently a model-free Iterative Feedback Tuning (IFT)
scheme has been proposed for nonlinear plants and/or
controllers; we refer the reader to {3, 8] for more details.
This iterative control strategy only uses closed loop data.
In this paper, we examine the applicability of IFT for the
tuning of a nonlinear controller for an inverted pendulum
with a flexible transmission.

1 Introduction

Recently, the authors of [6] have proposed an iterative
control design method which optimizes a restricted com-
plexity linear controller structure. The key ingredient is
that an unbiased gradient of the control design criterion
is computed using closed loop data. An important re-
sult is that this scheme converges to a local minimum of
the design criterion under assumnption of boundedness of
the signals in the loop. This method, acronymed Itera-
tive Feedback Tuning (IFT) by its inventors, has shown
to give excellent results from both an experimental and
industrial point of view; see e.g. [1, 2, 4,5, 7].

Very recently, it has been shown that most of the
concepts originally proposed in [6] carry over when both
the process and the controller are allowed to be nonlin-
ear. Indeed, it is shown in [3, 8] that it is still possible to
estimate the gradient signals by performing experiments
with aimost identical reference signals. The objective of
this paper is to first review the IFT method in its non-
linear setting, and to then report on its performances
when applied to the tuning of a nonlinear controller for
an inverted pendulum with a flexible transmission built
at CESAME by the third author.

The paper is organized as follows. In Section 2 we
present an overview of Iterative Feedback Tuning for
nonlinear processes and/or nonlinear controllers. In Sec-
tion 3, the experimental results with the inverted pen-
dulum are presented. We conclude in Section 4.
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2 Iterative controller optimization for
nonlinear systems

In this section, we briefly recall the data-driven Iterative
Feedback Tuning scheme that was proposed in [3] in its
nonlinear setting.

Problem setting

Let us assume that the true system is the Single-Input
Single-Output (SISO) nonlinear time-invariant system
described by

Sy = Plug,v) (2.1)

where P is an unknown nonlinear operator. Here u; is
the control input signal, ¥ is the achieved output signal
and v, is a process disturbance signal. The input signal
is determined according to

C:uy=Clp,7e,4e) (2.2)

where 7, is an external reference uncorrelated with v
and the controller C is a nonlinear operator of both r;
and y: and is parametrized by a controller parameter
vector p, with p € R™. In the sequel we often make an
implicit use of linearizations of some nonlinear operators
around their operating trajectories. We therefore require
that the plant, the controller and all closed loop oper-
ators are smooth functions of the reference signal, the
input signal, the output signal and the disturbance sig-
nal. We also require a high Signal-to-Noise-Ratio (SNR)
and we assume that the closed loop system is stable in
the Bounded-Input-Bounded-Output {BIBO) sense. For
ease of notation, we from now on omit the time argument
of the signals. In order to stress the dependence of the
output signal of the closed loop system on the particu-
lar controller parameter vector, we denote by y(p) the
output of (2.1} in feedback with (2.2).

Let yq be the desired closed loop response to the ref-
erence signal r. Then, the error between the achieved
and the desired response is §(p) = y(p) — y4. The con-
trol design objective is formulated as the minimization
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of an LQG control criterion for the reduced complexity
controller (2.2}, i.e. p* = argmin, J(p) with

T9) = 5 Bl

The expected value is taken with respect to the probabil-
ity distribution of the noise. An extension to a criterion
J{p) that includes a frequency weighting or a control
penalty is straightforward.

(2.3)

Criterion minimization

It is standard that one can find a solution for g to

J'(p) = E [§(p) ¢ (p)] = 0 (2.4)
by taking repeated steps in the negative gradient direc-
tion

pli+ 1) = pli] = ¥ Ry T (pld) (2.5)
where K; is some appropriate positive definite madtrix,
typically an estimate of the Hessian of J and {7;} is a se-
quence of positive numbers that determines the step size.
Here p[i] denotes the controller parameter vector p at it-
eration 7. As shown in [3], this problem can be tackled
by replacing J/(p{i]) with an approximation based on sig-
nals measured on the closed loop system. In order to do
so, estimates of the signal {p[7]) and its gradient y'(p[s])
are computed using n+2 experiments of sufficiently long
duration N, each with the controller C(p[s]).

Algorithm
We now present the algorithm for the controller opti-
mization procedure. We refer the reader to [3] for details.

e Step 0: Start with a stabilizing controller C'(p[0]).

e Step 1: With the current controller C'(p[7]) in the
loop, perform one experiment on the actual system
with the reference signal r} = ». Collect the output
of this experiment and denote it by y}.

e Step 2: Compute a realization of

9el) = v —wa (2.6)
and generate the signals
#i(pldl) = 6C[pli), m, 91" Oy [li), mo ] (2.7)

for j = 1,---,n. Here §C.[p,r, y(p)] denotes the
linearization of ' in response Lo a perturbation in
r around the trajectory produced by r and y(p),
while C7, [p,7,y(p)] denotes the partial derivative
of C{p) with respect to p;.

e Step 3: With the current controller C(p[¢]) in the
loop, perform n + 1 additional experiments using
the reference signals

2

7} = 7

r? r+ P {p[d]),

(2.8)

7'?+2 7+ fin Fn(p[z])

with the scalars p; chosen such that the signals
;5 7i(pld]) are small for all j = 1,...,n. Collect
the outputs of these experiments and denote them
by yf for k= 2,- nt2,

e Step 4: Compute
Gy, (L) = 15 (A

The signal g, (p[¢]) is the j-th component of the
vector §'(p[i]) which is an estimate of y'(p[s]).

—yf)forj=1,---,n. (2.9)

e Step 5: Compute

J(pli]) = Jpli) ¥ (pfd]) and  (2.10)

2 I

R = § W (e".  (2.11)

2 |

¢ Step 6: Update the parameter vector using

piv1 = pi —vf BT J'(pld) (2.12)
where 77 is obtained by optimizing v; at iteration

step 7 using a line search procedure. Go to Step 1.

Remarks

* The gradient of the controller, Cy(p,r,y(p}) and
the linearization §C, {p,r y(p)] a,re used to gener-
ate the signals 7;(p) using r and y(p). The first op-
erator could be unstable and the second operator
could be non minimum phase making the calcula-
tion of the gradient infeasible. Both problems can
be overcome by introducing an appropriate all-pass
operator in (2.3); see [3] for further details.

e An alternative approximative procedure for the es-
timation of §’(p[i]) based on an identification of the
linearized closed loop system is given in [3]. Simu-
lations have shown that this alternative procedure
is especially useful in a low SNR situation.

3 Application to an inverted pendulum

In this section, we apply the results of Section 2 to tune
a nonlinear controller for an inverted pendulum with a
flexible transmission.

The inverted pendulum

The test case is a non-classical inverted pendulum de-
picted in Figure 3.1. The lower tip of the arm is fixed on
a wheel that allows it to rotate around its vertical posi-
tion. The (driven) wheel is linked to the driving wheel
with two elastic belts. In turn, this driving wheel is actu-
ated by a motor that is controlled with a local feedback
so that its angular position is directly proportional to
the applied voltage Ui,. The job of the controller is to
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rotate the pendulum to a given reference by feedback
of the measured angular position. Due to the physical
contraints, i.e. the length of pendulum, the set up has
open loop stable left and right equilibria. A PC using
the VisSim package is used to control the system. The
signal to be tracked by the controlled system is the refer-
ence position for the angular position of the pendulum,
1.e. Brer. The controlled system output is the measured
angular position of the pendulum. The closed loop sys-
tem is sampled with a sampling frequency of f, = 100
Hz. The vertical open loop unstable equilibrium point
corresponds to O = 0. All variables are scaled in such
a way that the open loop stable left and right equilibria,
respectively, correspond to frer = 1 and fper = —1.

Note that the system has nonlinear dynamics due
to the nonlinear (sinusoidal) dependence of the gravita-
tional force and the elastic force on the angular position
of the pendulum. Also, this setup suffers from nonlinear
stiction forces which are induced by the potentiometer
angular position measurement system.
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Figure 3.1: Inverted pendulum with flexible transmission

The nonlinear PID controller

The following one degree of freedom continuous time
nonlinear PID controller structure was employed
Uin = C[p:gferef]

(A4 Tys)(1+ Ty s)
T sT (14 4Tys)

[Kpe+ksin(ce)]  (3.1)
where ¢ = 8 — f,or. The intuition for the nonlinear term
in {3.1) is that the controller should compensate the si-
nusoidal dependence of the gravitational forces on the an-
gular position of the pendulum. Note that for a refercnce
Orer = 0, the forces applied to the flexible transmission
should be maximum when the pendulum is horizontal.

Therefore, we have chosen the constant c in such a way
that sin{ce) = 1 for a horizontal pendulum and @,er = 0.

As an illustrative example, we have computed the
signals #; defined earlier for the parameter 7. We have
the following results
(1 -8)(1+T;s)

T (1+ 6Ty s)?

(I+Tys) (L +7Tis)

Ch 1,0, Oeet] = [Ky e + ksin(ce)),

Jcﬂref == Sl,ri (1 + 6Td S) {I\.P + kC COS(C 8)],
Fr, = ! y
Ta = Ky + k¢ cos(ce)
(6—1)s

(1 + 8Ty s) (1 +Tys) [Ap e+ kSln(ce)},

Here, [Kp + k¢ cos(ce))] ™! is a time varying gain.
The initial parameter vector was taken to be

plO}=1[6 Kp, Ty T; kK]T =[0.15 —0.05 5 1 —0.45]T.
P

This stabilizing controller was obtained after a few
trials on the setup. No model of the inverted pendulum
was used either during the derivation of the initial con-
troller or during the later optimization of this controller.

The design quantities

Reference signal

The reference signal consists of a filtered step from the
open loop stable right equilibrium (fref = —1) to the
open loop unstable equilibrium (Gt = 0) after 5 seconds
followed by another filtered step of amplitude —0.22 after
35 seconds. We have used a third order Butterworth
filter with cut-off frequency w.. We have collected 55
seconds of data per experiment, i.e. N = 5500.
Artificial noise

We have injected an artificial white noise signal of zero
mean and variance ¢? at the control input of the sys-
tem at the first experiment of each iteration as a way of
partially preventing the nonlinear stiction. Indeed, by
adding a dither on the input signal, we partially man-
age to alleviate the steady state error due to friction
effects. Several attempts without injection of artificial
white noise at the control input have shown that the it-
erative scheme produces controllers that have more and
more integral action. This is due to the inevitable static
error that is present. Only marginal improvements could
therefore be obtained in such cases.

Desired response

The desired response is just the reference signal delayed
by a delay d. As is advised in [6], we have chosen to
make conservative choices for the desired time response
at the initial stages, i.e. a high enough delay d. The per-
formance specifications were made more stringent when-
ever possible. Several attempts with a too small delay d,
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L.e. too stringent performance specifications, at the early
stages of the procedure gave only marginal improvements
over the initial controller.

Engineering aspects
At each iteration 4, the scalars p; (j = 1,---,n) in
(2.8) have been computed as follows

o m
1= (max {7 (o))

where m 1s a constant that can be adapted at each it-
eration and is used as a design parameter. Notice that
the disturbing nature of the n last experiments can be
diminished by decreasing m. Of course, this might be
at the expense of the quality of the estimated gradient
signals if the SNR. is not high enough. Indeed, the choice
of the parameter 7n is a compromise between the quality
of the linearization or the disturbing nature of the ex-
periments on the one hand and the sensitivity to noise
on the other hand.

(3.2)

Also, we have automated the 7 experiments needed
for the gradient computation as follows. During the first
experiment the signals 7;(p[i]}) and the scalars p; are
calculated on line as described in (2.7) and (3.2). When
performing the second experiment, the reference signals
(2.8) necessary for the next n experiments are computed
on line. During each of these n experiments, the gradient
signals (2.9) are computed on line, i.e. they are readily
available at the end of the 7-th experiment.

The iterations

The design parameters shown in Table 3.1 have been

used at the first and the second iteration.
Iter. 1 | Iter. 2
a2 10.03 0.03
d 1 0.5
we | 0.5 0.5
m | 0.5 0.25

Table 3.1: Design parameters.

Notice again that the performance specifications have
been made more stringent at the second iteration by de-
creasing the value of the delay d. The value of m has been
decreased at the second iteration in order not to excite
too much the high frequency harmonics of the closed loop
system. This has been done without noticeable improve-
ment or deterioration of the estimated gradient signals.

Using the experimentally generated gradients, we have
performed a line search along the descent direction. In-
deed, for each 4 in (2.5), we have performed one ex-
periment on the setup to compute the experimental cost
{2.3). This line search procedure has allowed us to select
the best controller along the descent direction, thereby
significantly reducing the number of iterations. Table 3.2

¥ | Iter. 1 Iter. 2
0 0.3424 0.0444
0.5 | 0.2200 0.0266
1 0.0796 0.0252
1.5 | 0.0604 0.0242 =
2 0.0416 0.0247
2.5 | 0.0320 * 1 0.0249
3 0.0369

Table 3.2: Experimental costs and performance improve-
ments using a line search procedure along the descent
direction.

shows that the performance has improved considerably.
Indeed, the control cost has been decreased by a factor
10 at the end of the first iteration.

Figure 3.2 shows the reference signal, the desired out-
put response at the first iteration and the achieved re-
sponses with the initial controller and with the controller
obtained at the end of the first iteration.
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Figure 3.2: Reference signal (—), desired closed loop
response at the first iteration (-} and achieved closed
loop response with the initial controller (—) and with
the controller obtained at the end of the first iteration

(=)

Figure 3.3 shows the reference signal, the desired out-
put response at the second iteration and the achieved
response with the controllers obtained at the end of the
first and the second iterations. As can be seen from Ta-
ble 3.2 and Figure 3.3, the performance improvements
have become much less spectacular.

Further iterations with more stringent performance
specifications were not able to improve the achieved per-
formance significantly and were not included in the text.
The performance limitations can largely be explained by
the presence of the nonlinear stiction forces.
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Figure 3.3: Reference signal (—), desired closed loop
response at the second iteration (- - -} and achieved closed
loop response with the controller obtained at the end of
the first (—-) and the second iteration (~-)-

We have converged to the following parameter vector

pl2) = [6 K, Ty T} k]
= [0.1532 —0.1035 10.2441 1.0338 —0.5277]7.

As an illustrative example, the fifth experiment of
the first iteration is shown in Figure 3.4, i.e. this is the
experiment with the reference signal r”;‘ =ry 7, As can
be seen from Figure 3.4, this reference signal is not too
different from the usual reference signal and is therefore
not disturbing the operating conditions too much.
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Figure 3.4: Usual reference signal (- --), reference signal
at the fifth experiment of the first iteration {(—), i.e.
r1,7, with m = 0.5, achieved responses with the usual
reference signal (—-) and with the reference signal ry 7,

(=)

4 Conclusions

In this paper, we have applied the nonlinear extension
of the IFT method proposed in {3] to tune a nonlin-
ear controller for an inverted pendulum with a flexible
transmission. We have shown using this experimental
mechanical example that the IFT method in its nonlin-
ear setting gives very satisfactory results and that most
of the advantages of the IFT method in its linear setting
carry over when the plant and/or the controller are al-
lowed to be nonlinear. Indeed, the algorithm is easy to
implement and the small number of design parameters
contribute to make it a straightforward method to apply.
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