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Abstract

This paper highlights the role of feedback in the iden-
tification and validation of a model, when that model
is to be used for control design. Feedback reduces the
uncertainty of the estimated model in frequency bands
that are critical for control design. Thus, in the pres-
ence of noise, closed loop identification for control leads
to less conservative robust control designs than open
loop identification of validated full order models, fol-
lowed by controller design.

1 Introduction

This paper discusses a number of issues in the problem
of modeling and identification for control design. We
restrict the analysis to linear models and linear con-
trollers. We provide insights and partial answers to
the following central question: ‘How should we identify
a model P that is good for control design ?’

A reasonable qualification of a good model P for control
design is

(i) the controller C' (132 designed from this model sta-
bilizes the model P and the plant P (simultane-
ous stabilization), and

(ii) the achieved performance, on the (P, C'(P)) loop,

is_close to the designed performance, on the
(P,C(P)) loop.

The characterization of all models that satisfy (i), for
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a model reference control design criterion, was studied
in [4]-[3].

Here P is a symbol used to denote a description of
the plant, possibly with its disturbance characteristics;
similarly P may denote an input-output model, possi-
bly with a disturbance model and an uncertainty de-
scription; finally C' (15), or C for short, denotes a con-
troller designed from the model 15, which could possibly
be a two-degree-of-freedom controller. We observe that
the problem of modeling for control involves three play-
ers: the plant P, the model P and the ‘o be designed
controller’ C(P).

Identification for control often involves one or several
steps of closed loop identification, by which we mean
identification of a model P of the plant P with data
collected on the closed loop system formed by the feed-
back connection of P and some controller C;3. We de-
note this closed loop system by (P, Ciq). Closed loop
identification also involves three players: the plant P,
the model P and the controller C;4. These three play-
ers are not the same as before, because the controllers
are different, although they overlap. As a result, closed
loop identification for control involves four players: the
plant P, the model P, the controller Cjq applied dur-
ing identification, and the ‘to be designed controller’
C'. The focus of our discussion is on the interplay be-
tween these four players. The typical context is one in
which a plant P is presently under closed loop control,
with a low order contrgller Cjq4, and where it is desired
to estimate a model P with the view of designing a
new low order controller C' that should achieve better
performance on the plant P while providing stability
robustness guarantees.

In particular we address the following issues.

e We examine the role of the controller in changing the
experimental conditions.

e We compare the effects of open loop and closed loop
identification in terms of bias and variance errors in the
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context of identification for control.

¢ We compare iterative design using closed loop data
with the alternative of first identifying a high order
model (preferably in open loop} that is validated by the
data, and of then using this model for the design of a
low order controller using model or controller reduction
techniques. The claimed advantage of this alternative
is that the low order model comes with an uncertainty
description.

e We motivate the need for cautious controller adjust-
ments in iterative design.

2 The role of feedback

It is now well known that one can find two plants whose
Nyquist diagrams or impulse responses are practically
indistinguishable, and a controller for the two plants
for which the closed-loop behaviours are enormously
different - even unstable in one instance and stable
in the other. Conversely one can attach a stabiliz-
ing controller to two plants and observe what appear
to be ideatical closed-loop behaviours, when the open-
loop behaviours of the plants are enormously different.
These facts were vividly illustrated by Skelton [11], who
pointed out, for example, that the plants P; = ;}r-]m and
Py = % have remarkably different open loop behav-
iours, while an output feedback © = —Ky will make
their closed loop behaviours almost indistinguishable

for large K.

We return now to the modeling game with three play-
ers described in the introduction. Since the model P
is used for the design of C, what is required of P is
that the stability of the (P, C) loop implies that of the
(P, C) loop (stability robustness), and that the closed
loop transfer functions of these two loops are close to
one another (performance robustness).

Now one of the main aims of feedback (historically) is
to reduce the effects of model uncertainty on the open
loop plant. Feedback often has a sensitivity reduction
objective. Therefore any sensible feedback design will
have the effect that the closed loop systems (P, C} and
(}5, () behave much closer to one another than P and
P

What are the consequences of these observations on
identification for control? The issue here is change of
experimental conditions. Models can only have their
quality evaluated for a particular set of experimental
conditions. Changing from open-loop to closed-loop
operation with a specified controller is of course one
change of experimental conditions. So is any change of
a controller a change of experimental conditions. Un-
less a plant model is exact, high accuracy under one set

of experimental conditions (e.g. open loop) does not
guarantee its efficacy under changed experimental con-
ditions. It is also intuitively clear that small changes
of controller should probably avoid, or ameliorate, the
problem of possible loss of efficacy of a model under
changed experimental conditions.

As a consequence, the best way to evaluate the qual-
ity of the model P is to test it under the experimental
conditions under which the plant P is due to operate,
i.e. in closed loop with the ‘to be designed controller’
C. For the same reason, it should ideally be identified
under those same feedback conditions. This is of course
impossible since knowledge of the model is required to
design the controller C. The philosophy behind itera-
tive design of models and controllers is to approximate
these experimental conditions in successive steps. This
allows one to successively reduce the uncertainty in the
frequency bands of importance for the design of the
next controller, even with reduced order models.

The alternative, advocated in [8]-[9], is to identify a
model of sufficiently high order that it is validated by
the data, and to subsequently perform a step of model
or controller reduction. This will lead to much more
conservative designs because a validated model (typi-
cally of high order) will have an uncertainty distribu-
tion that is not shaped for control design. In addition,
this uncertainty cannot be reduced by order reduction,
whether frequency shaped or not. These points will be
illustrated in Sections 4 and 5.

3 Discussion of bias errors

For the purposes of analysis, we shall from now on con-
sider that there exists a ‘true system’ :

y=Pu+v (1)

where P is a linear time-invariant transfer function,
v is the control input, y is the output and v denotes
additive perturbations at the output. We consider that
this system is possibly connected to a unity feedback
controller C :

u=C(r—y) (2)

If we denote by § the output of the feedback connection
of a model P and the same controller C, then the closed
loop expressions for the outputs y and § are
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The mean square error between the actual output and
the nominal output is therefore given by’
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Here S is the actual sensitivity function: S = T—f—!ﬁﬁ'

Consider now that a parametrized model P(f) is iden-
tified from N input-output data obtained on the true
plant, possibly connected to a feedback controller Cgq,
using a prediction error method. Define, as usual,

er(t,0) = L) — PO)u)]
N
Vn(0) = D eh(t,0)
1
fn = argminVn(6). (5)

Here L(8) is a prefilter that may possibly be parame-
trized by the parameter vector 8. It then follows easily
that

Oy — 0" =argmin V() as N -
where
V() = [ P - POPILO)E,
+ / 1+ PO)CulISPILO) e, (6)

Here @7 is the spectral density of that part of the con-
trol signal that originates from the reference input. In-
deed one can split the input spectrum into
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Observe now that if one takes a parametrized prefilter

L(g) = a—ﬁl—m—c, then the minimizing argument of V' (8)
in (6) is the same as the minimizing argument of
N 2
V() = f LPoPO) Fspicaps, @)
14 P(6)Ciq

Thus the identification will tend to a model that re-
alizes the best compromise between fitting P(6) to P
and making the model sensitivity 1+P(10) G small. Ad-

ditionally, the weighting term in (8) contains the actual
sensitivity S. Thus, the fit between P(f) and P will
be tight where either the actual sensitivity S or the
model sensitivity is large, i.e. around the correspond-
ing crossover frequencies.

LAl integrals in the following expressions are to be seen as
integrals over the frequency argument w. For simplicity - and
reasons of space - we have omitted this frequency argument.

This last observation has been the main heuristic mo-
tivation for performing closed loop identification when
low order models are used for the purpose of designing
new controllers with higher performance. The heuristic
reasoning is that, since the model is necessarily biased
by the very nature of its low orderness, one should
organize the bias distribution such that one has low
error around the cross-over frequency of the present
controller. A small uncertainty around this cross-over
frequency then allows one to design a new controller
that will expand the existing bandwidth.

This heuristic motivation can be given more solid sup-
port by considering our observations of Section 2 on
the assessment of the quality of models. Ideally the
model P should be evaluated by how well it mimics
the behaviour of the actual system when both are con-
nected in feedback with the ‘to be designed controller’
C. In other words, a model P is judged good if the
quantity E|y —#|? in (4) is small when the controller C'
operates in the closed loops (3). We now observe that,
if C;y = C, then the minimization of the asymptotic
identification criterion (8) also minimizes the perfor-
mance criterion (4). Thus, when low order models are
used for control design, then the bias should be min-
imized in the closed loop sense of the criterion V(6)
(see (8)). This is achieved by closed loop identifica-
tion with the ‘to be designed controller’ in the loop:
Ciq = C. Of course, this is impossible since the ‘to be
designed controller’ C' is unknown.

The concept of iterative identification and control de-
sign is an attempt to approach these ideal experimental
conditions by slow adjustments from one controller to
the next one. By slowly increasing the required per-
formance (i.e. the designed bandwidth) the ‘to be de-
signed controller’ is never very different from the con-
troller Cy4 that is presently operating, and therefore the
experimental conditions are always close to the optimal
ones. This philosophy has been called the 'windsurfer
approach’ in [7]. The reason for introducing small steps
of controller adjustments is not just to ensure that the
frequency weighting during identification is close to the
desired frequency weighting with the new controller. It
is, more importantly, justified by stability robustness
arguments: see [2] and [1].

In this section we have justified the use of iterative
closed loop identification and control on the basis of
bias considerations. We observe that the matching of
the criteria (4) and (8) is impossible if the data are
collected in open loop, even if the ‘to be designed con-
troller’ C were known because both criteria contain
the actual sensitivity S which depends on the unknown
true system. This bias justification only holds when re-
duced order models are used. Full order models con be




idenlified without bias, and there is then no theoretical
reason to prefer closed loop to open loop identification.

In the context of modeling for control, it has there-
fore been argued that a (wiser?) alternative to closed
loop identification of low order models is to identify the
plant in open loop using higher order unbiased models
that can be validated, and to then apply a model or con-
troller reduction step if a low order controller is desired.
This approach has recently been strongly advocated in
[8]. In a statistical framework a model is called vali-
dated if the estimated uncertainty region around the
estimated model contains the true system with some
prescribed probability level (say 95%). For validated
models, the variance error dominates the bias error [10].
In the next section, we explain why such strategy may
lead to very conservative controller designs because it
produces larger uncertainty regions on the estimated
transfer functions than those obtained with low order
models; in addition these uncertainty regions are essen-
tially equally distributed over the frequency range.

4 Respect the uncertain, but take advantage
of feedback

In this section we focus on the variance errors in the
estimated transfer functions. It was shown in [5] for
minimum variance control design, and in [6] for other
control design criteria that closed loop identification
is optimal for the minimization of the variance error
on a ‘to be designed controller’ when the system is in
the model set. For some criteria (minimum variance,
model reference) the optimal design consists in closed
loop identification with the ‘to be designed controller’
in the loop during data collection, (i.e. Ciq = C), asim-
ilar conclusion to that reached in the previous section
on the basis of bias considerations. Needless to say, this
optimal design is again not applicable because compu-
tation of the optimal ‘to be designed controller’ requires
knowledge of the system being identified. However, the
results give heuristic support to iterative schemes.

There are two important limitations to the relevance
of the optimal design results of |5] and [6]. The first
and most important is that they assume the system
to be in the model set, i.e. only variance errors are
considered. The second is that these results were based
on performance considerations only, without regard for
robust stability considerations. Here we focus on the
robust stability issue, and we explain why, on the basis
of variance considerations (but bias errors are allowed
t00), closed loop identification with a controller that is
as close as possible to the ‘to be designed controller’
is to be preferred over open loop identification of a

validated model.

We first present the validation procedure suggested by
Ljung [8] for models identified with prediction error
methods. We consider again that there exists a true
linear time-invariant system described by (1). We eval-
uate a model P, by constructing the residuals formed
by the difference between the measured and simulated
output:

1(t) = y(t) ~ Pu(t) = Pu(t) + v(t) (9)

The residuals contain two contributions: one comes
from the input and contains information on the model
error, and one comes from the noise and contains no
such information. Equation (9) is referred to as the
model error model. The problem of model validation is
to decide which part of the residual can be explained
by model errors, and which can be attributed to the
noise. The interesting observation made in [8] is that
the data contain information about this split between
the two contributions to 7. Indeed, the elements of
the crosscorrelation function between 7(t) and a finite
vector of past u(.)’s can be taken as a Finite Impulse
Response estimate of P. The model validation strat-
egy proposed in [8] is to accept an estimated model P
if the corresponding estimate of P and its uncertainty
region (at a specified probability level) contains 0 at
all frequencies. This means that, ai that probability
level, the true P is contained in the uncertainty region
around the estimated P, i.e. it is not falsified.

This strategy is very appealing as a model validation
strategy. However, it leads to (full order) models with
high variance and, more importantly, with a variance
error that is - roughly speaking - equally distributed
over the frequency range if the input signal to noise
ratio is more or less equally distributed. It is easy to
understand that, if a low order controller is computed
on the basis of such uncertainty regions, then stability
robustness guarantees will require conservative designs
because of the large - and unfocused - uncertainty re-
gions. Instead, an identification using similarly noisy
data collected in closed loop with a controller that is
close to the ‘to be designed controller’, will produce
low variance errors in the frequency range of interest
for the control design, leading to less conservative de-
signs. Two issues are involved here that both contribute
to the larger uncertainty in the regions of importance
for control design: (1) the uncertainty distribution is
not tuned towards the control design objective, and
(2) a model that is validated in all frequency regions
is of higher order (thus has higher variance) than one
that only needs validation in a smaller frequency re-
gion. Observe also that subsequent order reduction of
a validated model will not reduce the uncertainty.




5 Simulation

Although these new insights on variance errors are still
preliminary and need to be confirmed by theoretical
work, we have developed a simulation in order to test
their validity. Assume that the true system P is de-
scribed by the following ARX model:

(1-1.4227140.452" 2)y(t) = 2~ 1 (14+0.252" Hu(t) +e(t)

where e is unit variance white noise. The experiment
consists of identifying the model and, using the vari-
ance of the parameter estimates, of computing the max-
imal gain of a proportional output feedback controller
that leaves the closed loop poles of all possible mod-
els within the stability region, with a probability level
of 95%. We performed the three identification experi-
ments described below, and for each of these we com-
puted the maximum gain Ky, that would guarantee
closed loop stability for all models in the corresponding
uncertainty regions delivered by 2¢ intervals around
the estimated model parameters. The three experi-
ments, all with 1000 data, were as follows.

Experiment 1 : open loop identification with unit
variance white noise;

Experiment 2 : closed loop identification, with a
proportional controller © = r — y; the reference signal
r is white noise with variance 20, leading to the same
output variance as in the open loop experiment; the
parameters of the open loop model P are estimated;
Experiment 3 : closed loop identification, with a
proportional controller © = r — y; the reference signal
7 is as in experiment 2; the parameters of the closed
loop model from 7 to y are estimated.

The idea of running the third experiment is that, in-
stead of identifying the open loop system and comput-
ing the controller from P and its uncertainty region,
one can alternatively identify the model of the present
closed loop system and compute the new controller gain
as a correction to the previous one. We expected that
the closed loop models might give tighter uncertainty
regions.

Results

Each of these 3 experiments was run 100 times, in order
to get conclusions that would not depend on a partic-
ular noise realization. For the true system, the small-
est destabilizing gain for the proportional controller is
Kiym = 2.2. The estimated limit gains Kim obtained
by averaging the 100 Monte Carlo 100 runs with the
three successive experiments described above were 1.53,
2.05 and 2.08, respectively. The variance around these
estimates were 0.024, 0.022 and 0.002, respectively. A
new set of 100 simulations were performed of the closed
loop identification experiments with the gain K = 2.07

replacing the initial gain of K = 1. Here experiment 3
produced a new estimated Ky, = 2.18 with very low
variance, while experiment 2 failed.

6 Conclusions

In identification for control, one should respect the un-
certain, but use feedback to one’s advantage. One of
the roles of feedback is to reduce uncertainty where this
is needed.
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