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Abstract

The use of an identified model for the design of a feed-
back controller for an actual plant introduces strictures
on the quality of the model which are different from
those pertaining in open loop identification. For exam-
ple, a model P is admissible for the design of a con-
troller for the actual plant P only if the pair (P, P) is
simultaneously stabilizable. This paper addresses the
question of the quality of a model to be used for control
design, by analysing the interplay between the plant P,
the designed closed loop system 7" and the set of ad-
missible models {P}. For given P and T' we character-
ize the set of admissible models { P}, where admissible
means that a controller designed from P and T yields a
stable closed loop. Necessary conditions on (P,T') are
derived for this set to be nonempty.

1 Introduction

It has been the conventional wisdom that a model need
not necessarily be a very accurate description of the
true system for it to deliver a high performance con-
troller. The important feature is that the model should
describe with high precision the dynamical character-
istics that are essential for control design.

This observation naturally leads one to ask the ques-
tion: What is a ‘good’ model for control design? It
is commonly acknowledged that the model should be
accurate around the cross-over frequency of the closed
loop system to be designed. To go beyond such com-
mon sense rules and to obtain a precise characterization
of all models that are ‘good for control design’ turns out
to be a difficult question.

1This paper presents research results of the Belgian Pro-
gramme on Interuniversity Poles of Attraction, initiated by the
Belgian State, Prime Minister’s Office for Science, Technology
and Culture. The scientific responsibility rests with its authors.
The third author acknowledges the funding of the activities of
the Cooperative Research Centre for Robust and Adaptive Sys-
tems by the Australian Commonwealth Government under the
Cooperative Research Centres Program.

One reasonable definition of a ‘good’ model is if:

(i) the controller derived from that model stabilizes
the actual plant;

(ii) this controller achieves a performance on the
actnal plant that is close to the performance
achieved on the model.

The qualification of a ‘good’ model depends on two in-
gredients: the unknown plant and the control design
criterion. Thus, the question of qualifying ‘good’ mod-
els for control design is a question that involves three
players: the unknown plant, the control design crite-
rion, and the set of models available for consideration.
Understanding the connections between these three
players is fundamental in addressing the question
“When is a model good for control design?” In addi-
tion, the solution to the question “What are the good
models { P} for a given P and a given criterion?” forces
one to examine the compatibility of the design criterion
with the known features of the plant P. As we shall
reveal, there are combinations of plants and control cri-
teria for which the set of models that satisfy the ‘good-
ness’ criterion (i) above is empty. Before we proceed
further, we introduce some notations.

Notations

T'(s) is the designed complementary sensitivity func-

tion, or reference model, defined by T' = £C 1

1+PC’
S(s) is the associated designed senmsitivity function
1 1
$=1-T= 1+PC”

R Ho is the set of stable, proper transfer functions.
R(s) is the set of all real transfer functions in s.
Ry oo is the extended positive real axis in the s-plane.

Cioo is the extended right half plane {s
Re(s) > 0} U {o0}.

Stable, stabilizing loops refer to the internal stabil-
ity of the loop, i.e. the stability of all four transfer

I For ease of notation we will from now on drop the argument
s from all transfer functions except when we won’t.




functions in

1 pPC P

H(P,C) = 1+PC( ¢ 1 )

Unstable zero of a transfer function G(s) is a value
a with Re(a) > 0 where G(a) =

Unstable one of transfer function G(s) is a value «
with Re(a) > 0 where G{a) =

§(G) represents the relative degree of transfer func-
tion G(s), i.e. the denominator degree minus the
numerator degree.

Proper transfer function G(s) is one where §(G) > 0.

Biproper transfer function G(s) is one where both G
and G~! are proper, i.e. §(G) =

Bistable transfer function G(s) where both G and
G~ are stable.

The problem of assessing the quality of models for con-
trol design is hard. To make it revealing and tractable
we will adopt the simplest possible framework.

e The  system is  noise-free and is
single-input/single-output;
¢ A model reference control design is used.

In addition, our contribution will for the most part be
limited here to the robust stability problem (property
(i) above). We shall offer some tools for the study of the
performance question (property (ii)). Thus, we con-
sider the situation where there is a ‘true’ system with
transfer function P, a stable reference model T and a
model reference control design criterion which, for the
model P cornputes a corresponding controller C(P T)

= T Thus,

from 1+.PC

T T1

(-7 SP M)

C(P,T) =

There are of course compatibility constraints between
P and the admissible T, because the nominal closed
loop system H(P, C) must be stable. This means that
the product P cannot contain any unstable pole-zero
cancellations. It requires that T must be zero at the
unstable zeros of 13 and that 7" must be one at the
unstable poles of P. 2 If these two interpolation con-
straints are satisfied, then the controller C(P,T) de-
fined by (1) is stabilizing. For such a controller to be
proper, the relative degree of 7' must be larger than or
equal to that of Ps. We then ask the question: “What

is the set of models P = {P} for which the correspond-

ing controllers C(P, T stabilize the true system P ?”
We shall call such models stabilizing models.

In [GBB97] we showed that the existence of stabilizing
models imposes necessary conditions on the connection

2Tn this paper poles, zeros and ones are always to be taken
with their multiplicity included.

between the pole-zero pattern of P and the zero-one
pattern of 7' on the extended positive real axis Rioo -
With some simplification, our results of [GBB97] can
be summarized as follows.

¢ The problem of characterizing a controller that
stabilizes the plant P and achieves a designed
closed loop transfer function T is equivalent to
the problem of stabilizing the pIant 7 by a con-
troller that has no unstable poles a.nd zeros except
at finitely many possible specific right half plane
locations. The difficulty of this problem is essen-
tially equivalent to that of stabilizing a plant by
a bistable controller, for which no tractable nec-
essary and sufficient conditions are known: see
(BG93], [Blon94]. However, useful necessary con-
ditions are known under which a plant is stabi-
lizable by a bistable controller. These led us to
show the following.
o The solution set {P} of stabilizing models is non
empty only if:
* T has an unstable Rjq -zero between any
pair of Ry -poles of P between which P
has an uneven number of R ., -zeros, and

% T has an unstable R.., -one between any
pair of Rye -zeros of P between which P
has an uneven number of R -poles.

o These necessary conditions for the existence of
stabilizing models are automatically satisfied,
and are also sufficient, in the following practically
relevant cases:

* P has no unstable poles (i.e. P is stable);
* P has no unstable zeros;

% P has at most one unstable zero and one
unstable pole.

These results show that ‘difficult plants’ P put con-
straints on the set of admissible nominal closed loop
systems T for there to exist a nonempty set of stabiliz-
ing models P. It is well known that plants with right
half plane poles and zeros pose specific constraints on
the achievable closed loop performance. However, we
do not know of any results connecting unstable poles
and zeros of P with the designed closed loop perfor-
mance in the context of modelling for control.

The question addressed here is that of characterizing
the plant models {P} that are stabilizing for a given
plant P, in that the controllers designed on the basis
of a P stabilize the true P. It is related to, but sig-
nificantly harder than, the question of characterizing
the set of plants { P} that are stabilized by a controller
C (f’, T) designed on the basis of a model P and a refer-
ence model T'. This last question is easily solved using
the dual Youla parametrization [HGK89].

Our new contributions in this paper are twofold. We
provide a much more direct derivation of the results




of [GBB97]. In addition, we provide two alternative
parametrizations of all stabilizing models that are much
simpler than those derived in [GBB97] based on Youla
and dual Youla parametrizations. One of these is given
explicitly in terms of the designed and achieved closed
loop transfer functions, thereby providing a grip on the
robust performance question raised above.

Qur exposé will unveil as follows. In Section 2 we state
the problem of characterizing all stabilizing plant mod-
els for a given plant and a given model reference control
design. Section 3 contains our main result: two alter-
native parametrizations of all stabilizing models. In
Section 4 we present necessary conditions on the plant
and on the chosen reference model T for the solution
set of stabilizing models to be non-empty. Section 5 il-
lustrates our results with some examples, and we show
in Section 6 how our parametrization gives some handle
on the performance question.

2 Statement of the problem

We present our results in the continuous-time do-
main, but they can be transposed without difficulty to
discrete-time systems. Throughout the paper we shall
make the following assumption which is generically sat-
isfied.

Genericity Assumption:
The unstable poles of P are not zeros of the designed T,

and the unstable zeros of P are not zeros of S £ 1-T.

The problem addressed in this paper can then be for-
mulated as follows. We shall call it ‘boxed problem
#1°3, and give equivalent, more technical formulations,

later.

Boxed problem #1

Given a proper plant P and a stable, proper refer-
ence model T satisfying the genericity assumption,
characterize the set P = {P} of all plant models for
which there exists a controller C(P, T) such that the
following three conditions hold:

3 : PC_ _ 1
(A) C(P,T) satisfies 115z =T}

(B) C(P,T) stabilizes P;
(C) C(P,T) stabilizes P.

We shall call P the set of all stabilizing models.

Comments

1. Condition (A) above determines the diagonal el-
ements of H(P,C), while (B) implies that the

30ne denotes the problem as ‘#1' rather than as ‘1’ because
one is careful not to confuse it with a ‘one’ as in ‘unstable one,’
which one might equally write ‘one.’

off-diagonal elements must also be stable.

2. The problem statement involves three players, P,
{P} and T, with {C(P,T)} being just a function
of the latter two.

3. Conditions {B) and (C) indicate that our problem
can be viewed in the framework of simultaneous
stabilization of two plants, a problem for which
tractable necessary and sufficient conditions exist
(see e.g. [YBJT76], [Vid85]). However, condition
(A) complicates things considerably, as we shall
discover.

3 Parametrizations of all ‘stabilizing models’

Our first theorem gives a parametrization of all solu-
tions of boxed problem # 1.

Theorem 1 Let N, D € RHy be factors of a coprime
factorisation of P in RHe, i.e. P = ND™! with N
and D proper, stable and having no common unstable
zeros in Cyoo. The set of stabilizing models {P} of
Boxed Problem # 1 is given by

P={P:P=— (2)

where T' = TYTy and S = 515, are any factorizations
of T and S with T1,T5,51, 52 € RHo for which

NTy,+ DSs = 1. (3)
With these notations we then have

C(P,T) = % (4)

Proof:
Since S = 1~ T, and S and T are stable, they are nec-
essarily coprime in RH. By condition (A) of Boxed
Problem # 1 any solution pair (15, C(P, 7)) must sat-
isfy the following relationship:

PN T T

PC(P,T)-I_T—S. (5)
Therefore P and C(P,T) are necessarily of the form
P = %’; and C(P,T) = %, where %:%3 is a decom-
position of % with 171,73, 51,52 € RHs. In addition,
by condition (B) this factorization must be coprime in
RH; indeed, if 7175 and S152 contained a common
unstable zero, then 71T} + S1.52 would contain an un-
stable zero, and the nominalloop H(P,C(P,T)) would
be unstable. Since § and T" are coprime in RH, con-
ditions (A) and (B) imply that P and C(P,T) are given
by (2) and (4), where T'= TiT> and S = 5152 are any
factorizations of T' and S with 71,73,51,59 € RH.
The stability of the closed loop system H(P,C(P,T))
additionally imposes that the Bezout equation (3) be
satisfied (see e.g. [Vid85]). n
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The following theorem gives a characterization of the
set of stabilizing models that relates more clearly the
designed and achieved closed loop transfer functions.

Theorem 2 The set of stabilizing models {}5} of
Bozed Problem # 1 is given by
A T 1~-@Q
'P—{P.P_I_Tx 0
where Q is any proper stable transfer function satisfy-
ing the following constraints: for any s € Cyeo,

(a) P(s) =0 = Q(s) =0 = {P(s) =0 or T(s) =0}
(b) P(s)

x P} (6)

i

(7)

Proof:
Let Pbea stablllzmg model Then the assomated con-
troller is C(P,T) = 1245 X 5 L. Let P =&, with N and

DinRHbea coprlme factorlzatlon of P. Since C sta—
bilizes P, there exists a coprime factorization C = D ,
with N, and D, in RHy, such that N.N + D.D = Bl

[Vid85]. Now define @ = NN and observe that
%“—N—; PC. Therefore P = Tx-wQQXP

where @ is proper and stable and satxsﬁes (a) and (b).

Conversely, suppose that @ is a proper stable transfer
function that satisfies (a) and (b), and let P = & be a
coprime factorisation of P with N and D in RHe

By (a) we have Q = NTy with T = T1T5 and by

(b) we have 1 — Q@ = DS; with 1 =T = 5,5, for
some Ty, Ty, S1, S2 in RHy. Define C = 'I—‘g and

PEDL 5 and observe that PC = S Therefore condi-
tion (A) of Boxed Problem # 1 is satisfied. Note that
NT, + DS, = 1, which shows that the controller C
thus defined stabilizes P [Vid85], and hence condition
(C) is also satisfied. Condition (B} is trivially satis-
fied because .5'1 5'2 +T1Ty = 1. Finally, it follows from

P=Tr= L%, Q=NTand 1 - Q = DS; that P
can also be expressed as in
s T 1-Q
= P.
P T X 0 X (8)
]
Comments

1. Denoting the unstable zeros of a transfer function
P by uz(P) and the unstable ones by uo(P) for
brevity, we note that an alternative characteriza-
tion of conditions (a) and (b} is as follows:

{uz(P)} C {uz(@)} € {uz(P)} U {uz(T)}
() ToolP)} € {uo(@)} € {uo(P)} U {noT)).

2. The parametrization of (8) shows that for given
P and T any choice of a stable proper @ that

o= Q(s) =1 = {P(s)=ocoor T(s) =1}.

satisfies the interpolation constraints (a) and (b)
yields a solution P. The set of solutions is empty
when no stable proper () exists that satisfies these
interpolation constraints: see examples in Sec-
tion 5.

3. An important advantage of this new parametriza-
tion is that the free parameter @) is precisely the
achieved complementary sensitivity function:

PC(B,T
——-L—--:--)--— =NT, =Q. (9)
1+ PC(P,T)
Therefore the distance between the designed and
achieved closed loop transfer function can be
written as Q — T

The following corollary is an immediate consequence,

Corollary 1 Assume that T has no unstable zero and
no unstable one. Then there exists a stabilizing model
P for the pair (P,T) if and only if there exists a de-
composition P = % with N, D € RHo, such that

N(s) =1 for s € Cpoo < D(s) =0.

4 Necessary conditions on the reference model

The conditions of Theorems 1 and 2 are necessary and
sufficient. However, in both cases the interpolation con-
ditions (3) and (7) make the solution to our problem
very hard. Consider, for example, condition (3). By
the genericity assumption, we can regard (D, NT3) as
a coprime factorization of the plant 7;17-;;. The inter-
polation condition then translates into a stabilization
problem of 7% by a stable controller, Sz, whose un-
stable zeros (1f any) may only be unstable ones of T'.
ThlS is essentially a ‘bistable stabilization problem’ for
PT for which there exist necessary conditions for the
existence of a solution So, which we now develop for
some special cases.

The reference model T' has no unstable zeros

In this case Theorem 1 states that the system % = 71,;
must be stabilizable by a stable controller % whose ze-
ros can only be at specific and isolated locations (i.e.
the unstable ones of 7). A necessary condition is that
% obeys the parity interlacing property®, i.e. P must
have an even number of Rjq,-zeros between any two
poles on Ry (see e.g. [Blon94]). Since there are con-
straints on the unstable zeros of %, the parity inter-
lacing property of ;{:,— is necessary but not sufficient for
the existence of a solution to (3).

1Well known in control engineering circles as the PIP,
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The reference model T' has no unstable zeros and no
unstable ones

In this case }13 must be stabilizable by a stable and in-
verse stable controller ,f—,: This 1s known as the bistable
stabilization problem. A necessary condition for a plant
P to be stabilized by a bistable controller is that P has
the even interlacing property [BG93], i.e. P must have
an even number of R, -poles between any pair of
Ryo -zeros of P, and an even number of Rt -zeros
between any pair of Rye -poles.

Analysts of the general case

In the situation where the designed closed loop transfer
function T' can have both unstable zeros and unstable
ones, the following necessary conditions can be derived.

Theorem 3 [GBBY7] The following are necessary
conditions for Bozed Problem #1 to have a solution.

1. If P has 2 or more poles on Ry , then T must
have a Ryo -zero between any pair of Ry -
poles of P between which P has an odd number
of zeros.

2. If P has £ or more zeros on Ry , then T' must
have a Ry -one between any pair of Ryco -z€708
of P between which P has an odd number of poles.

Proof: see [GBBY7].

Special cases of interest

The following are special cases of practical interest for
which the necessary conditions are automatically sat-
isfied: (i) P has no unstable poles; (ii) P has no un-
stable zeros; (iii) P has at most one unstable zero and
one unstable pole. It is shown in [Blon94] that these
conditions are then also suﬂicient for the existence of
a bistable stabilizing controller 2 7 of 5, and therefore
the solution set P is nonempty.

5 Examples

We present a series of examples that illustrate the main
results of our paper. We start with a ‘difficult’ plant,
namely one that has more than one unstable pole and
more than one unstable zero.

Example 1
Consider the ‘plant’ P = m, and a model ref-
erence control design based on a nominal model, with

reference model T' = 747)%4-—37 Observe that the plant
has two R.eo -zeros (at s = 1 and s = 400} with only
one Ry -pole in between them. Therefore, by Theo-
rem 3 the solution set 7 = {P} is empty.

Example 2

We consider the same plant P as in Example 1, but now
we modify 7'(s) so that it contains an unstable ‘one’
n (1, 4o0): T = m%ﬁ' Observe that T'(5) =
We now use the result of Theorem 2 to construct a
stabilizing model P for P that will yield a nominal
closed loop transfer function T'. We need to construct
a Q(s) such that Q(1) = Q(co) = 0, with the added
constraint that Q(2) = 1. If Q(s) = 1 elsewhere on
Clyoo, then P(s) = co or T(s) = 1 there. Observe that
Q(s) = %%_:171} obeys all these constraints; in addition
Q(5) = 1 = T'(5). This choice of Q(s) yields the fol-
lowing solutions for P and C'(I3 T): P = é%%i—f} and
C = l"_il Note that 1+Pc = T and %}(;‘C— = Q,
and that there are no unstable pole-zero cancellations
in forming the products PC and PC.

Example 3

Finally, we present an example of a ‘well-behaved
plant’. Take P = 3+2, T = 31? Here P has an
unstable zero at +oo and an unstable pole at s = 2,
while T" has an unstable zero at +oco and an unstable
one at s = 0. By Theorem 2 @ must be stable with
a gzero at +oo (with possible multiplicity two), and a
one at s = 2 and possibly at s = 0, but nowhere else

in Cheo. Q@ = —1 satlsﬁes these requirements and

leads to a solution P = § and C = 3. For a > 2,
Q= ﬁ('ng) also satisfies the requirements. This leads

to a set {-L : @ > 2} of stabilizing models. Note that

the controller C(P,T) associated to P = i is given

by C = a. The set P = {L : a > 2} is the set of
stabilizing models leading to a proportional controller.

6 Performance considerations

Our analysis of ‘good models’ for control has so far con-
centrated solely on the robust stability question. A rea-
sonable request for a ‘good model’ for control is that it
should also possess some robust performance qualities.
We could formally state this as the following modifica-
tion of the earlier stability problem.

Boxed problem #2

Given a proper plant P and a stable, proper refer-
ence model 7" satisfying the genericity assumption,
and given some positive number ¢, characterize the
set P = {P} of all plant models for which there ex-
ists a controller C(P, T) such that the following four
conditions hold:

(A) C(P,T) satisfies =T,

1+PC
(B) C(P,T) stabilizes P;
(C) C(P T) stabilizes P.
( -T||<e¢

D) Ilype




Any norm can be used in (D). We shall call a model
P that satisfies properties (A) to (D) an e-stabilizing
model. The questions we want to address are:

o For given ¢, under what conditions does a pair
(P, T) have e-stabiling models?

o Can we parametrize all such models?
e What is the smallest ¢, if any, for which this set
is non-empty? )
The following result is an immediate consequence of the
formulation of Boxed Problem # 2, and of Theorem 2.

Theorem 4 The set of e-stabilizing models {P} of
Bozed Problem # 2 is given by (6), where @ is any
proper stable transfer function satisfying the following
constraints:

(1) for any s € Cie0
(a) P(s) =0 = Q(s)
(b} P(s) = oo= Q(s)

) le-Tl<e

0 =
1=

il

We conclude this section by illustrating through an ex-
ample that a model that is ‘good for control design’
may be a very poor ‘open loop’ model of P.

Example 4
Consider P = Zﬁf(}-_—aj and T = %% Note that P

has no unstable zeros between its two unstable poles,
and it has two unstable zeros, one at s = 1 and one
at s = oco. It follows from our discussion in Section 4
that there are no constraints on 7' for P to be non-
empty. One stabilizing model is P = 2%, yielding
the proportional controller C(P,T) = 5.918. This con-
troller produces an achieved complementary sensitivity

function

PC 599(s—1)
14+ PC ™ (s+0.1)(s+0.82)
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The figure shows the Nyquist plots of P (full line) and
P (dashed line) on the left, and of the achieved (full
line) and designed (dashed line) complementary sen-
sitivity functions on the right. Clearly the two closed
loop systems are close, but P is by anybody’s definition
a bad model of P.

7 Conclusions

We have addressed the problem of model quality for
control by stating that a model used for control design
is ‘good’ if it stabilizes the actual plant and if it achieves
on that plant a performance that is not too different
from the designed performance.

For the robust stability property and for model refer-
ence design, the outcome has been a sequence of alge-
braic constraints on the reference model without which
no model could yield a stabilizing controller for the real
plant. The technicalities are more complex than, but
an outgrowth of, the questions of simultaneous, strong
and bistable stabilization. These are unfamiliar but
fundamental requirements in the analysis of the valid-
ity of a model set for control design. The necessary
conditions relating the unstable pole-zero pattern of
the plant to demands on the reference model are clear
and simple.

One of our parametrizations of the class of all stabi-
lizing models gives some handle on the robust perfor-
mance question. However, the characterization of all
models that are e-stabilizing, or the computation of
the model (and hence the controller) that would yield
an achieved performance that is as close as possible to
the designed performance is still beyond reach. Stay
tuned.
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