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ACCURACY OF A MODEL-FREE CONTROL
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Abstract: Recently a model-free control design scheme, Iterative Feedback Tuning
(IFT), has been proposed which is based on a Gauss-Newton search of the parameter
space where the search direction is computed from ezperimental data. In this
contribution we derive explicit frequency domain expressions for the accuracy of the
algorithm when a fixed step-size is used when the design objective is minimum variance
control. It is shown that the controller mismatch due to finite data effects depends
only on the noise spectrum. The performance of the scheme is also compared with the
best known model-based approach: system identification, using optimal input design,
followed by controller design based on the identified model. The analysis is asymptotic
in the orders of the plant, noise dynamics and controller.
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1. INTRODUCTION

Recently, iterative identification and control de-
sign schemes have received considerable atten-
tion, see e.g. Zang et al. (1995), Schrama (1992)
and Lee et al. (1993). These schemes iteratively
perform plant model identification and model-
based controller update in the closed loop. It-
erative Feedback Tuning (IFT), Hjalmarsson et
al. (1994), is a continuation of these ideas where
it is shown that, for linear plants and certain
control criteria, e.g. LQG, it is possible to carry
out the optimization of the controller parameters
using measurements from the plant collected dur-
ing (essentially) normal operating conditions. No
modeling of the plant and the disturbance are
required. It is thus an alternative to identification
and control.

! M. Gevers acknowledges the support of the Inter Uni-
versity Poles of Attraction of the Belgian State, Prime
Minister's Office.

IFT is known to have the stationary points of
the control criterion as its only possible points of
convergence. A typical scenario for this scheme
is thus that, eventually, the neighbourhood of
a local minimum of the control criterion will
be reached. It is then of interest to know how
close to the (locally) optimal controller one will
get for a given step-size of the scheme. This is
the theme of this paper. It is possible to derive
expressions for the controller accuracy for an
arbitrary plant but these expressions depend on
quantities which must be computed on a case
by case basis (such as the optimal controller)
and furthermore these expressions do not easily
lend themselves to an interpretation. However,
by assuming the orders of the controller, the
plant and the noise dynamics to be high, it is
possible to derive frequency domain expressions
for the accuracy of the controller and the loss of
performance due to the imprecise estimate. By
furthermore considering a simple control problem
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such as minimum variance and assuming that
the controller has the same order as the plant
and the noise dynamics it is possible to obtain
frequency domain expressions for the accuracy of
the controller and the performance degradation
which are explicit functions of the true system and
noise dynamics.

In Section 2 minimum variance control is briefly

discussed. The IFT method is outlined in Section
3. The accuracy of IFT is then discussed in Section
4. Section 5 contains a comparison with system
identification where optimal input design is used.

2. MINIMUM VARIANCE CONTROL

Let the input u(f)} and output y(t) of the true
time-discrete system be related by

y(t) = Golq)u(t) + Holg)e(?) 1)
where Go(g) is a linear time-invariant transfer
function ? , where Hy(g) is a monic, stable and in-
versely stable transfer function which is a spectral

factor of the process noise v and where {e(t)} is
zero mean white noise with variance o=,

We will use the following one degree of freedom
controller:

u(t) = Clg, p)(y(t) — r(t) (2)
where C(q,p) is a linear time-invariant transfer

function of some fixed degree which is parameter-
ized by a parameter vector p, representing the con-

. troller parameters that are available to the user.

The reference signal r{¢) should be zero under
normal operation but has been included since it
is used in IF'T, see below. To ease the notation
somewhat we will from now on omit the time

in general no explicit solution to the minimization
problem

popt = argmin J (o) (5)

However, when the structure of the controller is
unconstrained the solution to this problem can
be obtained by e.g. spectral factorization, see e.g.
Astrom and Wittenmark (1984). A special case
is when the true system (g contains exactly one
pure time-delay and is minimum phase. Then the
minimum variance controller is given by

Hy -1
Copt = ~F— (6)

However, if the structure of the controller is re-
stricted (and not equal to the structure of the
overall optimal one) one has to resort to numerical
minimization. Such a procedure can be described
in the following way:

Find a solution for p to the equation
0=J'(p) = Efy(o)y'(0)]. (7
where ’ denotes differentiation wrt p.

A numerical approach to this problem is to take
repeated steps in a descent direction

pir1 = pi = ViR (03). 8

Here R; is some appropriate positive definite ma-
trix, typically an estimate of the Hessian of J, such
as a Gauss-Newton approximation of this Hessian.

3. MODEL-FREE OPTIMAL TUNING

The crucial quantity that is needed in the numer-
ical optimization scheme outlined in Section 2 is
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argument of the signals unless needed. In addition,
whenever signals are obtained from the closed
loop system with the controller C(p) operating,
we will indicate this by using p as argument; thus,
y(p) will denote the output of the system (1} in
feedback with the controller (2).

The output from the closed loop with r = 0 is
given by
S N
V) = 13500

Consider now the problem of designing a con-
troller that minimizes the output variance (mini-
mum variance control). For this purpose we intro-
duce the control criterion

J(p) = Efy*(0)) (4)
where E denotes expectation over e.

It is evident from (3) that J(p) depends in a
fairly complicated way on p. Therefore, there is

(3)

2 g denotes the shift operator.

J'(p:) = E(y(p:)y' (ps)]

To compute this quantity requires that the true
system Gy, the noise dynamics Hy and the noise
variance o?, are known. The problem we are
interested in here is when we are given access to
a plant (which is unknown) for experimentation
and our task is to design a minimum variance
controller for a controller of a certain structure,
such as a PID controller. Hence, the scheme (8) is

not feasible,

In Iterative Feedback Tuning y(p;) is computed
exactly and y’(p;) is computed approximately us-
ing experimental data from (essentially) normal
operating conditions only, with the following pro-
cedure:

In the ith iteration, where the controller C{p;) is
available, perform first an experiment of length

N with controller C(p;) in the loop and reference

signal 7 = 0. This gives
H

=0 = >
!/l(t:Pl) - 1+G{]C(p.)el(t)} t = 1,2,... ,.V
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y It can easily be shown that

as output where {e(¢)}/L, is a realization of the
white noise process e in (1). '

Next, perform a second experiment with controller
C{p;) in the loop and reference signal () =
F(g)u(t,p), t = 1,2,...,N where F(qg) is an.
arbitrary stable minimum phase prefilter. This
gives the output B
GUO (pi)F Hy
AT (8, i) s
T+ GaClon P T3 GaCo0
where {ey(t)}L; is a realization of the white
noise pracess e in (1) which is independent of
{e1(t)}L,. Now compute
C'(pi)
2 p-
Clpi)

ya(t, pi) = ea(t)

7 (t,pi) = — Lya(t, i)

C'{p:)  HoF~!
C(p:) 1+ GoClpi)

it pe) = i) - ea(t)

Notice that the disturbance e; in the second

experiment perturbs the gradient estimate. In the
next section the consequences of this are analyzed.

Next compute

N
. 1 )
Inlod) = >4 (¢ o)yt pi)
t=1
This is an unbiased estimate of J'(pi), ie
E[Jy(p)] = J'(pi).
Finally compute
pig1 = pi = HRT TN (:). (9}
and continue (if desired) with the next iteration.
Thus, iteration i consists of two closed-loop ex-

periments with the controller C(p;) in the loop.
The first experiment uses no reference signal while

the other experiment uses the output of the first

experiment as reference signal.

Due to the unbiasedness of the gradient estimate,
this scheme is of stochastic approximation type,
see Robbins and Monro (1951) and Benveniste et
al. {1987), and will typically end up close to a
stationary point of the criterion J (p) if the step-
size v; is choosen appropriately. Furthermore, by
letting the step-size tend to zero sufficiently fast,
the estimate will converge to a stationary point.
For more details on the method we refer the reader
to Hjalmarsson et al. (1994).

Modification of search direction

There are many possible choices for the update
direction R; in (9). The identity matrix gives the
negative gradient direction. An interesting choice
is

N
Ro= Y dea el (0
=1
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for which the signals are available from the ex-
periments described above. This will give a biased
(due to the disturbance in the second experiment)
approximation of the Gauss-Newton direction.
The algorithm with this choice of update direction
will be analyzed in the next section.

4. ASYMPTOTIC ACCURACY

In practice one will only perform a finite number
of iterations and it is then of interest to analyze
the accuracy with which the method is able to
find the optimal parameter vector. We shall be
particularly interested in the following quantities:

i) The accuracy of the controller parameters

E{(p - popt)(P - Popt)T]
where p denotes the final controller parame-
ter.
ii) The accuracy of the controller in the fre-
quency domain

E[|C(e™, p) = C(e™, popt)I’]
iii) The performance degradation
Jv(p) = E[(y(t, ) = y(t: popt))’]

In order to make the analysis tractable we shall
make the following assumptions:

S1) The linear time-invariant system Go is of
finite order, n say, and contains exactly one
time delay and is minimum-phase.

$2) The noise dynamics Hp is monic, exponen-
tially stable, inversely exponentially stable
and of same order as Gp.

$3) The sequences {e;(t)} ¢ = 1,2 consist of in-
dependent random variables with zero mean,

C1) The controller C is given by
4+ pag™t 4. 4 pan-1g7"
Clg,p) = —LLted T o ramoid
1+ pagq 4+ psg™  + ...+ p2ng

Assumptions S1), $2) and C1) imply that the
optimal controller is given by (6).

We shall perform the analysis in a neighbourhood
of the optimal controller. We therefore assume
that the initial controller is the optimal controller

Po = Popt
We then take one step in the Gauss-Newton
direction, i.e.

p1 = po = 1Ry Ty (po) (11)

. 1 X
Ry =53 it po)lg(beo)lT (12)
t==1

with the step-size g = 1. The size of this step is
a measure of the accuracy of the method around
the optimum and in this section we shall analyze
the properties of this step in the sequel.
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4.1 Accuracy in the parameler space

The change?

AN = Pp1— Po = p1 — Papt

in the parameter vector is non-zero even though
the gradient J'(po) = J'(pope) is zero. The rea-
son is that Ji(p) = Ji(pope) is a finite data
approximation of the gradient that in addition is
corrupted by the noise in the second experiment.
A measure of this imprecision is the asymptotic
covariance matrix

P= lim NE[gviy] (13)
Under the given assumption
y1(t, popt) = €1(2) (14)
GoF—t
3 popt) = =C (o) ( et + 2 ez(t))
& ~C'(popt)ar(t) = C' (Popt)zz(t)
Lo1(t) + alt) (15)

where ; is due to the noise in the second exper-
iment.

Introduce Ri; = Efp;(t)¢7 ()). Under S1)-S3) and
C1)

R2 lim RN = R + Ray w.p. 1
N=oo
and
P=R1QR"! (16)

where the variability @ of the gradient estimate
JN(popg) is given by

that the contribution of @, to the variability of
the gradient estimate can not be neglected, i.e. Q
depends on Rj,. Under this assumption we have

P =R} + o? R} Ryo Ry} (7)

Equation (17) does not provide much insight into
how the algorithm depends on the system parame-
ters. In the next sub-section we provide frequency
domain expressions which are much easier to in-
terpret.

4.2 Accuracy in the frequency domain

Introduce
AN(ew) = O(Giwypl) - C(eiw)popt)

When the error gy is small, which happens when
N is large, it is possible to make the following
approximation

AN(eiw) ~ C’(eiwppopt)TﬁN (18)

where C'(e™, pop) = %‘;—’C'(e"“’, )l o=p; - This gives

EllAn(e™)’] ~

C'(e™, popt) TEIGNANIC! (67", Popt)
Under certain assumptions, the asymptotic vari-
ance expression in Theorem 3.1 in Ljung (1985)
can be extended to cover this expression. With
®;; as the spectrum of signal 2; in (15) we have
the following result.-

Proposttion 1.

lim  lim —E{IAN(e“")IZ]—

oo N

2 1 2 @')‘) {etw)

i
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Q= A}'.m—~NE [JN(Popt)JN(Popt T}
=0%(Ry; + Raa)

From this we see that the noise term ¢ has both
a benign and a malign effect: Its contribution to R
decreases the step and hence reduces the asymp-
totic parameter variance. This is a regularizing
effect. However, its contribution to the variability
of the gradient estimate increases the variance.
Since (16) is quadratic in B! the net effect will
be that the variance is reduced. In fact

P= O'2 [Ru + Rzz]ul

However, the regularization term Rj; has an un-
desired side-effect, namely that the convergence
rate will be slower since shorter steps are taken,

In order to get a meaningful analyzis we will from
now on assume that the regularizing effect can
be neglected, i.e. Ry; can be neglected in R, but

3 Subscript ¥ indicates that experiments of length N have
been performed.

O 3% (e)

For finite but large values of the system order
n and the number of data N, the implication of
Proposition 1 is that

E{jAn(e™)?] »

1
14—
( (1 - H7Y)F| )

4.3 Performance degradation

Ho
Go

n
il
N

Since the update step (11) takes us away from the
optimal point, the performance of the closed loop
will degrade, i.e.

Jv(p1) & J(p1) = J(popt) > 0
For full order minimum variance control, this
difference can be written
Jv(pr} = E[(y(t,p1) = y(t, popt))?) (19)
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In Hjalmarsson et al. (1996) (see also Gevers and
Ljung (1986)) it is shown that for small jy one

may write
Go(e™) |*

Jv(pr) = o} — o f Ho(e)
Using this together with Proposition 1 gives that

E[|An(e)|*]dw

Jy = JFT & o2 & (14 Wi((1 - BgHF))
(20)
where
s 1 /
le (Z) exw)JZ
Remarks:

o Notice that the expression (20) depends only
on the noise dynamics Hp and not at all on

the system dynamics Go.
e The second term is due to the noise in the

second experiment.

5. A COMPARISION WITH OPTIMAL
INPUT DESIGN

5.1 System identification using optimal input design

The minimum variance control problem on an
unknown plant can also be solved by first per-
forming an identification experiment on the plant,
identifying the system and noise dynamics and
then implementing the controller

4 Hy —1
c
N=

where Gy and Hy are the estimates of the system
Go and noise dynamics Hy, respectively. In Gevers
and Ljung (1986) (see also Hjalmarsson et al.
(1996)), the problem of designing the system iden-
tification experiment such that the performance
degradation (19) is minimized is considered. The
result is that the optimal choice of experimen-
tal conditions is to perform the identification in
closed loop using the minimum variance controller
in the loop. This gives the following result:

2 L,
BlanE P~ 5 |22 @D
JymJidg gz (22)

N

Remark: Notice that this scheme is infeasible since
the system must be known in order to compute the
minimum variance controller.

5.2 Comparison

Comparing the expression (20) for the perfor-
mance degradation for the Gauss-Newton proce-
cure with the corresponding expression (22) for

@ SYSID '97 SICE

the optimal system identification procedure we see
that JIFT > Jid In fact equality will only hold if
8y = 0.

Comparing the performance degradation is not
completely fair since IFT uses two experiments
of length N whereas the identification procedure
only uses one experiment of length N. In order to
malke the comparison more fair we shall compare
the two procedures when they use the same energy
of the system (measured at the output).

In the system identification case, the output power
E{y*(popt)] = o®. Hence the energy used in the
system identification case is Nigo® where Nyq is
the number of measurements that are collected
from the system.
With 1
A
1T

the power in the first IF'T experiment is 0% and
Efy3 (popt)] = o (1 + W2 ((1 - Hg ') F))
in the second experiment, Thus the total power is
E[y1 (popt) 43 (popt)) = 0* (2 + Wa((1 ~ Hy ) F))
Equating the energies gives
Nig = Nipr (2 + Wa((1 - Hy 1) F))

where Nypr is the experiment length in the IFT
approach. Now, the ratio JI/FT/Ji¢ when the
energies are equal is given by

Wa(Z) =

Hy')F))
(23)

V=JFT)JE = (1+Wi((1 -
x (2+ Wo((1 - Hy ') F))

From (23) it is obvious that the accuracy using
system identification is better. One should how-
ever recall that an external reference signal is
required in the system identification in order to
make the system identifiable. Hence, in practice
the difference will be less than the expression (23)
suggests.

When no prefilter is used, i.e. F = 1, we see
from (23) that a particularly difficult case for IFT
is when Hy! ~ 1 on the unit circle since then
Wy becomes large. But this corresponds to the
case where the open loop disturbance is almost
white and feedback can do very little to improve
performance.

5.3 Choosing prefilter in IFT

The prefilter F' is used to prefilter the output
of the first experiment before it is applied as
reference signal to the second experiment: r(t) =
F(q)y:(t, pi). The accuracy will be influenced by
this prefilter. Minimizing the performance degra-
dation w.r.t. F under the constraint that the total
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power should be equal corresponds to minimizing
V in (23) w.r.t. F. The following result holds.

Proposition 2. The ratio (23) is minimized by the
choice

F=vi—t (24)

1 e Ho—l
and ming V = (1+ =)(1+ J2) =~ 5.8

PROOF. See Appendix A. O

Remarks:

¢ With the choice (24), the ratio (23) is inde-
pendent of both the system dynamics and the
noise spectrum.

¢ The gain in accuracy using prefilter is dra-
matic when Hj is close to unity.

¢ The optimal prefilter depends on the noise
spectrum which is unknown. Notice, how-
ever, that the output in the second experi-
ment is white when the optimal prefilter is
used. This can be used as guideline when
selecting a prefilter.

6. CONCLUSIONS

Frequency domain expressions for the accuracy of
Iterative Feedback Tuning have been derived in
the case of high order minimum variance control.
The expressions show that the accuracy does not
depend on the system dynamics but only on the
noise spectrum. Furthermore, an optimal prefilter
(24) was derived. A comparison with system iden-
tification, where optimal input design was been
used, has also been presented. It was shown that
optimal input design yields more than five times
higher accuracy than IFT. Notice, however, that
the comparison was made at the optimum con-
ditions —~ the optimal controller was already in
the loop. A more realistic comparison would be
to assume suboptimal operating conditions. This
is a topic for future research.
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Appendix A. PROOF OF PROPOSITION 2

Consider first the problem

‘}Ei%’v (1 + Wl)(2 + I’Vg)

Subject to W)W > 1, Wy >0 (A.1)

For fixed W, this function is minimized by W) =
1/Ws. Hence the solution to (A.1) is obtained by
finding the minimum to

(1+1/W,)(2 + Wa)

which is W, = +/2. The optimum choice of W is
W1 = V2 and the corresponding minimum of the
function is (1 + -&3)(2 +v2).

Consider now the problem ming V. Taking

1

F=V2 AT
gives V = (1+25)(2+V/2). Since minp V' involves
the same criterion as (A.1} but the constraint on
Wi and Ws in (A1) is a subset of the constraints
in ming V' this must be the optimum solution.
That the constraint W,W; > 1 is included in
the problem ming V follows from Cauchy-Schwarz
inequality

1 < Wi((1 - Hg YF)Wa((L - Hy ) F)

(A.2)
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