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Discarding data may improve the parameter estimation accuracy in
system identification.”
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Abstract

We present results concerning the parameter estimates ob-
tained by prediction error methods in the case of input sig-
nals that are insufficiently rich. Such input signals are typical
of industrial measurements where occasional stepwise refer-
ence changes occur. As is intuitively obvious, the data lo-
cated around the input signal discontinuities carry most of
the useful information. Using singular value decomposition
techniques, we show that in noise undermodeling situations,
the remaining data may introduce large bias on the model
parameters with a possible increase of the total mean square
error. A data selection criterion is then proposed to discard
such poorly informative data so as to increase the accuracy
of the transfer function estimate.

Keywords : identification, persistence of excitation, singu-
lar value decomposition.

1 Introduction

The aim of this paper is to analyse the accuracy of the predic-
tion error method [5] for estimating system model parameters
in situations where the system input signals exhibit only a few
step discontinuities corresponding to changes in the reference
signal (i.e. typical of industrial processes). More precisely,
the system under study is assumed to be a single input single
output (SISO) ARMAX system while the model structure is
chosen as a SISO ARX model whose input to output dynam-
ics is able to represent that of the true system exactly. To
motivate the present study, consider the following ARMAX
system

(1—08z""Yy(t) = 0.5z u(t) +
(1408271 40327 )e(t) (1)

and let us compute the parameter vector 8§ = [91,02]T of the
following ARX structure

(146127 )y(t) = b2z u(t) +e(t) (2)

on the basis of a finite number, N, of input-output (I/O) data
so as to obtain the best approximation of the actual system
in the least squares (LS) prediction error sense [5]. In (1)
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Figure 1: Input (---) and output (—) signals of the
ARMAX system.
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Figure 2: Bias and variance of the parameters 0,
(—) and 62 (——) as a function of N.

and (2), u(t) and y(¢t) stand, respectively, for the input and
output signals while e(t) denotes a white noise disturbance
and ¢(¢) is a modeling error.

Note that the model structure is able to represent the 1/O sys-
tem dynamics exactly, but not the noise dynamics. The coef-
ficients of the polynomials acting on u(t) and y(t) in (1) con-
stitute the so-called true parameter vector : 8o = [—0.8,0.5]7.
We shall assume that our objective is to estimate the param-
eter vector o as accurately as possible using the model struc-
ture (2), i.e. in the presence of unmodeled noise dynamics.

The applied step input and the resulting system output sig-
nal are displayed in Figure 1 in the case of a Gaussian white
noise disturbance e(t) with N(0,0.01) characteristics. The
parameters 6, and 0, are estimated using a standard LS pre-
diction error criterion with no data filtering and using data
sequences of increasing length, V. For each N, the bias (with
respect to 8o ) and the variance have been estimated using 200
Monte-Carlo simulations and are shown in Figure 2. This fig-
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ure shows that the variance decreases monotonically with the
data length, while the bias is seen to be strongly influenced by
the input signal : it reaches a minimum just after the step sig-
nal instant {which occurs at N = 20) and it increases signifi-
cantly with N from there on. The reason for the bias increase
is that, in the absence of input excitation, the parameter fit
focuses on the modeling of the noise dynamics. Since these
cannot be modeled exactly within the given model structure,
the parameters (in particular 6) tend to biased values that
attempt to yield the best output predictor within the given
model structure. Thus, if the objective is the accuracy of the
parameters of the 1/O model or of its transfer function esti-
mate, these simulations suggest that using more than, say, 50
data deteriorates the performance. Instead, one should stop
the parameter estimation relatively early after the input step
instant so as to prevent the increase in parameter bias from
exceeding the decrease in their variance.

_ This example serves as a motivation. More generally, the

present paper provides evidence that, when the input data
are not persistently exciting, it is better to focus on par-
ticular time intervals of data sets to identify the I/O part
of unknown systems in situations where there is a common
polynomial to the I/O and noise model description, and where
there is noise under-modeling. The analysis performed in this
paper is limited to ARX models because they lead to a theo-
retically tractable estimation problem; besides, they are very
commonly used in system identification.

The paper is organized as follows. In Section 2, we present
the system and the model structure as well as the data char-
acteristics considered in the paper. In Section 3, we introduce
the parameter estimation method based on the minimisation
of the model prediction errors and we solve this parameter
estimation problem using the singular value decomposition
of the model regressor matrix. This decomposition actually
splits the estimation accuracy into well and poorly estimated
eigen-parameters. The statistical behaviour of these parame-
ters is analysed in Section 4 and linked to that of the original
model parameters. In Section 5, we describe in detail simu-
lations of the parameter estimation procedure applied to the
motivating system example. Finally, a data selection crite-
rion based on the data excitation capabilities along the data
set length is proposed in Section 6 in order to improve the
accuracy of the estimated parameters. The efficiency of this
selection criterion is illustrated on the same example with
input signals exhibiting step-like behaviour.

2 System, model and data

In this section, we discuss the structure of the “true system”

" and of its associated parametric model as well as the charac-

teristics of the data set used to identify this system.

The true system is a scalar stable SISO ARMAX system writ-
ten as ‘

Ao{2)p(8) = Bo(z)u(t) + Coz)e(t) 3)
where (u(t), y(t)) is the scalar system /O data pair, e(t) is a
Caussian white noise (i.e. N(0,0%)) and (Ao, Bo, Co)(z) are
polynomials of order (ng,ns,nc) in the delay operator 27!
with the classical normalization (Ag, Bo, Co)(c0) = (1,0,1).
Moreover, the system stability assumption requires Ao(z) to

have no roots in z~! inside the umit circle.
We choose to identify this system using an ARX model struc-
ture of the form

A(2)y(t) = B(z)u(t) +(t) (4)

where (A, B)(z) are polynomials of order (14, ns} in 27" with
(A, B)(c0) = (1,0). Note that the degrees of the polynomials
constituting the input to output dynamics of the system and
of the model are identical (i.e. (nq,ns)); thus, the system [/0O

- dynamics can be modeled exactly. The model parameters to

estimate are the coefficients of .the A(z) and B(z) polynomi-
als. Their total number is equal to np = ng+ns. By contrast,
the system noise dynamics does not belong to the model set.
Let us then denote by u(t) the unmodeled part of the noise,

Le. pu(t) = (Colz) — )e(t).

We will assume in this paper that our aim is to estimate the
1/0 transfer function as accurately as possible from open-loop
data, despite the fact that the system noise dynamics are un-
dermodeled. Thus; we will want the coefficients of A(z) and
B(z) (i.e. the parameters) to converge as close as possible
to those of Ag(2) and Bo(z), which will be called the “true
parameters”.

At any sample time ¢, an output prediction §{t) can be asso-
ciated with the model equation {4) by the relation

§(t) = B(z)u(t) — (A(z) — 1)y(t) (5)

With the help of the regressor vector &(¢) = [—y(t —
Dyeeny —y(t = na)yu(t — 1),...,u(t — ns)])”, we can rewrite
the system and the prediction equation in the following way

u(t) = ST (D00 + u(t) +e(t) ®)
§(50) = 67(1)0

where 8 = [a1,...,8nq,01,...,bn,]" Is the (np, 1) model pa-
rameter vector, 8o is the corresponding true parameter vector
and §(¢,8) is the predicted output based on any approxima-
tion @ of §5. In the sequel, all the regressor vectors ¢(t) (with
t = 1..- N} will be assumed to be known in full so as to
ignore the initialization transient phase. In vector form, the
equation (6) can be reformulated as :

y Qo+ u+e
9(8) = 0 ™

il

)T

I

where y = [y(1), ..., y(N)]" is the system output vector, §(#)
is the predicted output vector at 8 and @ = [#(1),...,o(N)]”
is the (V,np) regressor matrix while e = [e(1),...,e(N)]T
and p = [u(1),...,pu(N)]" stand for the white noise and the
noise unmodeling vectors, respectively.

Regarding the data set, we assume that the input signal u(¢)
is taken from a piecewise constant and persistently exciting
signal of order n, (i.e. PE(np)). This means that, for all ¢,
there exists m such that (see [7, 5])

t4+m

aln, < Y w(k)p(k)" < B, (8)

k=t )
for some positive o, § with ¢(k) = [u(k — 1), u(k - n))*
and In, the identity matrix of order ny.

However, we consider situations where the value of m required
to make the left-hand inequality hold in {(8) can be much




larger than the time constants of the system, and where only
a finite length of N > n, data are available such that the
regressor matrix ® has full column rank but is poorly condi-
tioned. For example, the available input data record contains
only a few step changes that are separated by long periods
where the input is kept constant. This situation is typical of
industrial processes for which the only excitations correspond
to occasional reference changes.

3 Optimal estimation vector solution

The parameter estimation approach used in this paper is the
classical LS estimate of the linear model (7) : it consists of
minimizing the mean square of the model prediction errors

over all possible values of the parameter vector §. With the

prediction errors defined as e(8) := y — §(8), the LS cost

function takes the form

C(6,N) 1= ¥I€(9)Ilz )

where ||.]|2 denotes the £2-norm. The optimal solution vector
(N, which is unique if the regressor matrix ® has full rank,
results from the following minimization

§(N) := arg eg‘%xylip {C(8, N)} (10)
The solution of this LS problem can be written in terms of
the pseudo-inverse ot (see {8, chapter 3]) of the regressor
matrix ® as § = ®*y. Using the singular value decomposition
techniques {SVD), we can split the ® matrix into
® = U © VT
(N,np) (Nyr) (rr) (rinp)
where © = diag(o1,- -+, 0+) is the singular value matrix with
o = X(®T®) > 0fori=1---r, and r =rank(®). V and U
are left-orthogonal matrices respectively called the right and
left singular vector matrices of ®. The pseudo-inverse of
then takes the form ®F = VE~'U7. As the regressor matrix
& is assumed to have full column rank (see Section 2}, r = np
in (11).

(11)

Let us reformulate the system and the model equations (7)
with the help of the right singular vector matrix V of @, as

follows : y = Bylboy +(u+e) . 12)
9(6) = Qvov

where @y 1= ®V = UL is the (N, np) eigen-regressor matrix,

8v is the (np, 1) eigen-parameter vector and fov = V7o,

is the corresponding true eigen-parameter vector. Note that
each column of ®@v is orthogonal to all the others, for U and ¥
are, respectively, left-orthogonal and diagonal matrices. The
optimal estimate can then be expressed either in terms of the
eigen-parameter vector dy (le. = of Y

By = bov + S U (i +e)
or in terms of the original parameter vector § (i.e. = Véy) :
§ = 8o+ VE~'UT (u+e), which is seen to consist of ny inde-
pendent linear combinations of the optimal eigen-parameter
vector fv.

(13)

4 Statistical analysis of the parameters

[n this section, we derive asymptotic expressions for the first
two probability moments of the eigen-parameter and of the
parameter vectors, respectively.

4.1 Excitation assumption

Recall from (11) that, for a fixed value of N, the eigenvalues
of the matrix ®7®, i.e. the square of the singular values of
®, are denoted :

ol = )«.'(‘PT(I)) (14)

such that diag(e?) = VT (®T®)V with V the right singular
vector matrix of ®, Note that each ¢? is monotonically in-
creasing with N (see {8, Corollary 4.9]). Similarly, the eigen-
values of the matrix E{®T®}, with E{.} the expectation op-
erator over the noise characteristics, are denoted

st = )\E(E{‘I‘T@}) i=1np

i=1---np

(15)

such that diag(s?) = VT(E{®T®})V with V the correspond-
ing eigenvector matrix.

The excitation assumption then stipulates that :

& is such that o® K o} fori=1--'n (16)
where o is the variance of the white noise in (3). This ex-
citation assumption imposes that each eigen-subspace energy
o? is much larger than the system noise power o7; in other
words, the input-induced energy dominates the noise power
in each eigen-subspace. Under this excitation assumption, it

is shown in [1] that
0?

VOTY® &1 and ;‘g—zpl i=1---n, (17}
1

where V) is the i-th column of V, and ~p denotes approx-
imation in a wide probability sense!. This means that each
V) can be considered as an elgenvector of ®7® with s? as
eigenvalue. The expressions (17) are of special interest in

‘the present context and will be used in the sequel of this pa-

per in the form of the following transitivity relations with
i=1---np

E{VO[)} mp VOE{(]} and B {,[,—1} ~ 2L (1)

1 oy
In other words, it turns out that, under this excitation as-
sumption, V(" and o7 are approximately determimstic. This
allows us to indistinctly use, in the sequel of the paper, o7
for s? and V) for V(J,

Finally, let us give a close expression to the eigenvalues s7 of
the matrix E{®T®}. Considering the eigen-regressor column

Qs) = ®V{) as a signal over time (i.e. @S)(t)). we have the
following relations :

IRIG)

il

V) (z)u(t) — VI (2)y(t)
Gi(z)u(t) + Hi(z)e(t)

where the filters Gi(z) and Hi(2) are causal and stable infinite
impulse response (IIR) filters with effective length? less than
Ny, say. In vector form, we may write :

o) = Giu + Hie (19)

1 A random variable 2 € R is said to approach the real constant
2o # 0 in a wide probability sense (i.e. & &p xo or o ®p z) if and
only if E{(z/x0 — 1)?} € 1.

2 The effective length of a stable filter F(2) = fo + fiz7! +-
is defined as the smallest integer Ny such that fx = 0 for k > Nf




with Gi, Hi € R¥*¥ | the Teeplitz matrix representation of
the filters Gi(z) and Hi(z), respectively (see [1]). So, we
have :
s = E{12915)
= [|Giull3 +mNo® (20)

with n; 1= Tr{HF H:}/N, where Tr{} is the Trace operator
(see {8]). Note the respective contnbutxons of the input and
noise signals to these eigenvalues : s? increases with N due to
the stationary noise power {i.e. ~ o) but also with {|Giu||3
(which is input-signal dependent). Actually, this latter term
brings high contributions at the time instants for which the
input signal excites the ¢-th elgen-subspace determined via
the corresponding eigenvector V (%, This is in contrast with
classical exc:ta.t;lons (i.e. pseudo-random mput signals [3, 4])
for which s? can be expressed as Ns3; with s2; constant, for
the @8 ’s are stationary over the data set length V.

4.2 Eigen-parameters : §v(N)

Assuming that e(£) is a Gaussian white noise (i.e. ~ N(0,0%))
and that the excitation assumption (16) holds, we can com-
pute the first two probablhty moments of the eigen-parameter
vector distribution v (V) (see (13)). Using the same decom-
position of ‘I’v as in (19), the transitivity relations (18) as
well as the independence between u and u + ¢, and also be-

tween H;e and e, we obtain :
2

; 4
E{8vi(N)} =p bovi + a;N;?-(N—), (21)
where a; := Tr{HF(Co — I)}/N denotes a real constant with
Cy € RN*N the Teeplitz matrix representation of Cg(z).
Similarly : .
p [WTGFCoCT Gju+kijNo?]
6 i

COU{ V(N)}lj P O'?(N)U?(N) 4

where kij i= Tr{HT CoCT H; + HF (Co — NH(Co — I)}/N
is an appropriate constant (see [1] for more details).

(22)

Let us point out that :

o the mean of the eigen-parameter fvi is independent of
the other fv; (for 7 # i). However, the noise under-
modeling term introduces some correlation between the
By i’s. Actually, if the true system is ARX (i.e. Cy = 1),
the eigen-parameter fv: is unbiased and uncorrelated
with the others : E{0vi(N)} = 0 and Cov{fv(N)}ij =p
8iy0° o} (N).

o the bias of §vi(N) (i.e. fvi— Gov.) may become large if
the associated singular value o7 (N) behaves like n; No?
(see (20)), i.e. when there is no significant input energy
in the t-th nght singular subspace associated to V() (i.e.
o} (N) ~ niNa?, see (20)).

o the variance of §v;(N) monotonically decreases with N
because of the monotonic increase of o7 (N) of ®.

e in the presence of a singular value oy, significantly
smaller than the others (i.e. i, € oi with ¢ # imin),
the corresponding eigen-parameter, denoted by éVimanv
is the most poorly estimated one for it has the largest
bias and variance.

Let us then consider the parameter vector 8, which contains
the actual model coefficients of real interest.
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Figure 3: Eigen-regressors ‘P(\j) and associated nor-
malized energies o?(N).
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Figure 4: Bias and variance of the §v, (—) and v
{——) eigen-parameters with V.

4.3 Parameters : §(N)

Using the excitation assumption (leading to {18)) and the first
two probability moments of the eigen-parameters computed
above, we can evaluate the first two probability moments of

the original parameters § = Vfy. In case of ¢:_;, < 0i with
¢t 7 min, We can write :
No
E{8; — 85;} ~, (Vmin) ﬂmn.f..._,.

VGT{G} =p (V('mm))zvar{av‘mln}

where (V('mis)}; denotes the i-th component of the imin-th
right singular vector associated to Tirmins and Var{f)v.mm} is
obtained from (22} with i = j = ¢min. Thus, the probabil-
1ty moments of the most poorly estimated elgen-parameter
9Vrm.n determine the accuracy of every parameter d; and,
moreover, the lowest singular value o;_;, is the dominant fac-
tor of the estimation quality.

5 Simulation

In this section, we give more details concerning the simula-
tion presented in the introduction, building on the concepts
and results worked out in the preceding sections.

The input and output signals are shown in Figure 1. The
columns of the associated regressor matrix ® are made up of
the vectors —y and u, respectively. The singular value de-
composition of the regressor matrix @ is performed for each
value of the data set length V. The columns ‘I)v) of the eigen-
regressor matrix are made up of two signals represented in the




upper part of Figure 3 for N = 250; the associated squared
singular values o7(NV) are displayed in the lower part of the
same figure. Actually, these squared singular values are nor-
malized with respect to their final values shown on the same
figure : these are 07(250) = 1629 and o3 (250) = 5.228.

It is seen that the SVD has split the regressor matrix @ into
two columns @8) behaving very differently with .V : the first
one (—), denoted @9), is similar to the step input signal;
the other one (~—}, <I>(lf), is significantly non-zero only at the
jumping part of the data set. From an energy viewpoint, we
remark that the o7 (N)’s have specific behaviours : o}(N),
associated with @(Vl}, increases linearly with N, while o3(N)
jumps to 30% of its final value just after the jump in the
step input instant and then (N > 50} increases very slowly
and linearly with N, due to the noise (see the r; No? term in
(20)). Finally, note the difference in the final energy of the
eigen-regressors, i.e. o ~ 30002 with only 250 data sam-
ples, together with the inequality o3(50) 3> o? supporting
our excitation assumption (see (16)) even for a small number
of data.

Since the system is not in the model set, we have seen in
Section 4 that the parameter vector #(N) must be biased
with respect to the true parameter vector 8. To investigate
this question, let us consider the statistical behaviour of the
estimated parameters. Therefore, we make Monte-Carlo sim-
ulations over 200 experiments to estimate the means and the
variances of the eigen-parameters and parameters, v and
8;, respectively. The bias and the variance of the estimated
parameters, computed by such Monte-Carlo simulations, are
shown in Figures 4 (for the eigen-parameters) and 2 (for the
actual parameters). It can be seen that the statistical be-
haviour of the eigen-parameters are quite different : v (N},
associated to the highest singular value o;(N), has insignifi-
cant bias and very low variance while By (N) (associated to
o2(N)) becomes highly biased with a variance that slowly de-
creases with /¥ after the input jump (N > 50). Actually, 8v2
is the most poorly estimated eigen-parameter (i.e. imin = 2).
Moreover, the actual parameters é;(N ) become strongly bi-
ased with slowly decreasing variances for N > 50 (see Figure
2), for they both depend on the most poorly estimated eigen-
parameter fv;_, = fy,. Note also that these observations
are fully consistent with our remarks of Sections 4.2 and 4.3.
For what concerns the total mean square error (MSE) of the
estimated parameters, it can be written with the help of the
estimated eigen-parameters fvi(N) as :

2
MSE(N) = Z{E{év.-(m — Bovi}? + Var(fvi(N))} (24)

i=1

With the bias and the variances computed by the Monte-
Carlo simulations, we see in Figure 5 that a minimum of
MSE(N) (—) is reached just after the step instant. More-
over, MSEv2(N) (—-), that is the MSE computed for the
most poorly estimated eigen-parameter fjvz(l\’) (ie. 1 =2
in (24) for tmin = 2) almost exactly matches MSE(N).
The squared bias (—) and the variance (---) of fv2(N) are
also represented in the figure in order to emphasize the re-
spective contributions of the bias and the variance errors to
MSEvy(N).

As mentioned in Section 1, this simulation provides evidence

Figure 5: Mean square error (—) of the parameters
of the ARX model : see text for details.

that it may be sensible to discard parts of the identification
data set while estimating the model parameters. These data
do not bring enough information about the input to out-
put system dynamics to significantly decrease the variance of
the estimated parameters; but, worse, they seriously increase
their bias. '

6 Removal of data

This last remark suggests the idea of selecting appropriate
data subsets of the data set that lead to monotonically in-
creasing model parameter accuracy with N, i.e. decreasing

MSE(N).

On the basis of the statistical analysis performed in the pre-
ceding sections, it appears that the interesting time intervals
are those for which the information carried by the input data
is much larger than that coming from the noise. And the ex-
citation information exhibited by the data set as a function
of time can be read in the singular values of the model regres-
sor matrix ® (i.e. the energy of its associated eigen-regressor
columns). From (20), the input and noise signals are seen
to contribute to their values in a very different manner (lin-
ear with N for the noise). So, from the time variations of
these singular values, we can determine the time intervals for
which these variations are significantly larger than the noise
contribution alone. Moreover, as the accuracy of the model
parameters ﬁ depends on the most poorly estimated eigen-
parameter fv;_. , it is enough to consider the time varia-
tions of its associated singular value i _; (N). This is why
we propose to use a data removal criterion of the form :

Aot L(N):=af (N)—al (N1 <n (25)
for some appropriate threshold value n.. This selection cri-
terion means that we discard the regressor vector ¢(N) for
which the inequality is satisfied. Note that the threshold n.
depends on the power (or variance) of the noise acting on the
output : referring to (20), n. should be chosen at least of
order 1, o°.

We have tested this selection criterion on the simulated ex-
ample using the system and model description of Section 1
and an input signal made of successive steps with n. = 0.035.
The original data set and the normalized squared singular
values associated with its eigen-regressors are shown in Fig-
ure 6. Figure 7 displays the same variables after removal from
the original data set of all the data satisfying (25). On the
first hand, it is seen that the surviving data subset is 4 times
shorter than the original one and that the index imin of the
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smallest singular value does not change with N in both the
original and the restricted data set : imin = 2 (——). On the
other hand, it can be noted that the qualitative behaviour of
the singular values are in both cases quite similar.

The bias and the variance of the estimated parameters have
also been computed and are shown with further details in [1].
Regarding the overall parameter estimation accuracy, Figure
8 shows the MSE (24) of the parameters estimated from the
original data set (—} and the associated restricted set (-- ).
Actually, the dotted line represents the evolution of the MSE
obtained from the restricted data set but drawn as a func-
tion of the actual data set length N: this allows a realistic
comparison of the evolution of the MS errors as a function
of time. We see that the proposed removal of data leads to
a generally decreasing MSE with N whereas the whole set
obviously does not.

Hence, the proposed criterion properly selects the high signal-
to-noise ratio samples from data sets exhibiting problems of

excitation. Of course, the criterion threshold 7. has to be cho-
sen to keep the really informative data (n. not too big) and
to discard as efficiently as possible the uninteresting ones (1.
not too small). The selection of a threshold n. that is deter-
mined by the data themselves and that is robust with respect
to prior assumption is the object of continuing researches [2].
Finally, from a practical viewpoint, this removal criterion is
applied on-line along the identification data and provides an
efficient way to focus on the interesting parts of the data set.
This is in contrast with the classical forgetting factor intro-
duced in recursive identification algorithms (see e.g. [6]) in
order to enhance the contribution of the most recent data
whatever their impact is on the global estimated parameter
MSE. So, replacing this forgetting factor by our data selec-
tion criterion would lead to an improvement of the quality of
the estimates of the I/O system dynamics in recursive iden-
tification.

7 Conclusions

We have exhibited a situation where the use of insufficiently
rich input data for system identification may deteriorate the
accuracy of parameter estimates of the input-output model,
and therefore the accuracy of the transfer function estimate.
Our statistical analysis has been limited to the case where the
“true system” is an ARMAX system, and where the model
structure is of ARX type, in such a way that the I/O dy-
namics of the true system can be modeled exactly, but not
the noise dynamics. A characteristic feature of this setup is
that the I/O and noise dynamics have a common denomina-
tor. We have shown that, for such setup, the MSE of the
estimated parameters may increase during time intervals in
which the input signal is not exciting, and we have explained
why. We have also proposed a data discarding procedure that
eliminates data that cause a deterioration of the total MSE.
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