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A Convergent Iterative Restricted Complexity Control
Design Scheme

1

Hakan Hjalmarsson#2, Svante Gunnarsson# and Michel Gevers®
#Dept. of Electrical Engineering, Linkdping University, S-581 83 Linképing, Sweden
SCESAME, Louvain University, B-1348 Louvain-la-Neuve, Belgium

Abstract

In this contribution we propose an optimization ap-
proach to the design of a restricted complexity con-
troller. The design criterion is of LQG type contain-
ing two terms. The first term is the quadratic norm
of the error between the output of the true closed
loop and a desired response. The second term is the
quadratic norm of the input signal. It is shown that
the minimization of this criterion do not require a
model of the system. Closed loop experimental data
can be used instead. The result is an iterative scheme
of closed loop experiments and controller updates
which converges to a local minimum of the design
criterion under the condition of bounded signals.
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1. Introduction

Many control objectives can be expressed in terms
of a criterion function, LQG and H,, control be-
ing the standard examples. Generally, explicit so-
lutions to such optimization problems require full
knowledge of the plant and disturbances and com-
plete freedom in the complexity of the controller. In
practice, neither of these conditions are satisfied. Re-
cently, so called iterative identification and control
design schemes have been proposed in order to over-
come these problems, see e.g. [1}, [2] and [3]. These
schemes iteratively perform plant model identifica-
tion and model-based controller update in the closed
loop. Behind these schemes is the notion that closed
loop experiments with the best available controller
should generate data that are “good” for identifica-
tion of models suited for a new and improved control
design. See [4] for a survey.
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However, no one seems to have explored the fact that
the objective is to minimize a control design criterion.
In the case of a known plant, Edmunds [5] has sug-
gested an optimization based reduced order control
design procedure. Here we consider the completely
different situation where the plant is assumed to be
unknown, and we connect the idea of iterative design
with that of numerical optimization. This naturally
leads to a Gauss-Newton scheme that tends to a de-
scent direction of the control design criterion. An im-
portant ingredient of the method is that the gradient
of the criterion is based directly on closed-loop ex-
periments. No modeling procedure is involved. This
is in stark contrast with the optimization based ap-
proaches that previously have appeared in an adap-
tive control context [6] and [7]. There the gradient of
the criterion is obtained through the estimation of a
full order model of the plant and disturbance charac-
teristics.

The scheme lends itself both to direct optimization of
controller parameters or to indirect methods where a
(reduced order) model is used in an intermediate step.
However, in both cases it is the control design crite-
rion that is minimized, either directly with respect
to the controller parameters, or indirectly with re-
spect to the model parameters which can be viewed
as a reparametrization of the controller, given a model
based control design criterion.

The problem of optimization based iterative control
design offers an interesting possibility compared with
usual optimization problems, namely the possibility
of adapting the criterion. If the initial controller gives
bad performance, it can be quite tricky to find the
optimal controller, 7.e. the surface of the criterion
can be very rough, thus allowing only small steps in
each iteration. However, it is the authors’ experience
that the problem is simplified by starting with an
objective that is easier to achieve (lower bandwidth)
and then successively increasing the bandwidth as the
performance is increased. This has close ties with the
so called windsurfing approach {3} to iterative control
design.




This contribution is disclosed as follows. In Section
2 we present the design criterion and in Section 3
we discuss how this criterion can be minimized us-
ing experimental data. The convergence result is es-
tablished in Section 4 while engineering aspects are
considered in Section 5. An example is presented in
Section 6.

2. The design criterion

Let the true system be given by
y(t) = Go(a)u(t) +v(t) (1)

where {v(#)} is a (process) disturbance. The out-
put, {y(#)}, from the true system will be called the
achieved response. We will use the following two de-
grees of freedom controller:

u(t) = Cr(g, p)r(t) — Cy(q, )y (?) (2)

where {r(t)} is an external reference signal. The pa~
rameter p represents the parametrization of the con-
troller pair C = {C,, Cyy}. This parametrization can
be direct, e.g. Cp(p) = p1 + p2g~', or indirect by
means of a model G(#) of the true system. In the lat-
ter case, the controller parameters are functions of the
model parameters, p = p(§), with the function result-
ing from some control design criterion. It is possible
for C,.(p) and Cy(p) to have common parameters. To
ease the notation somewhat we will from now on omit
the time argument of the signals. In addition, when-
ever signals are obtained from the closed loop system
with the controller {C(p), Cy(p)} operating, we will
indicate this by using the p-argument; thus, y(p) will
denote the output of the system (1) in feedback with
the controller (2).

Let T4 be a desired stable closed loop response from
reference signal to output signal

yq = Tyr. (3)

The error between the achieved and desired response
is ’

#(p) = y(p) — va
Cr(P)GO
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It is natural to formulate the design objective as a
minimization of some norm of §(p). Although it is
not necessary from a procedural viewpoint we shall
restrict the attention to the quadratic criterion:

p* = argmin J(p), (5

where

70) = 3B (L)) + SE[(Lauto))] . (6)

Here E denotes expectation over » and r which we as-
sume to be realizations of stationary stochastic pro-
cesses. In this criterion the first term is the, by Ly,
frequency weighted norm of the error between the de-
sired response and the achieved response. The sec-
ond term is the penalty on the control effort which is
frequency weighted by the filter L,. As formulated,
this is a model reference problem with an additional
penalty on the control effort. Notice though that with
Ty =1 this becomes an LQG problem with tracking.

With To(p) and So(p) denoting the achieved closed
loop response and the sensitivity function with the
controller {C,{p), Cy(p)}, and given the statistical in-
dependence of r and v, J(p) can be written as

o) = 3B (LT~ Too))r}* +{LySo(p)o)’]
+2EB (L)) @

The first term is the tracking error, the second term is
the contribution due to the disturbance and the last
term is the penalty on the control effort.

3. Criterion minimization

We now address the minimization of J(p) given by
(6). To facilitate the notation we shall in this section
assume that L, = L, = 1. It is straightforward to
include these. It is evident from (4) that J(p) depends
in a fairly complicated way on p. Furthermore, the
true system Gp and the spectrum of {v} are unknown.

The problem we would like to solve is to find a solu-
tion for p to the equation

0= J'(p) = E[§(p)7 ()] + AE[ulp)d'(p)] . (8)

This is done by taking repeated steps in a descent
direction

pir1 = pi — YR T (p3). (9)

Here R; is some appropriate positive definite matrix,
typically an estimate of the Hessian of J, such as
a Gauss-Newton approximation of this Hessian. As
stated this problem is intractable since it involves tak-
ing expectation. It is, however, exactly a problem
that can be attacked with stochastic approximation
procedures such as suggested by Robbins and Monro
[8]. One replaces J' with an approximation based on
the current samples. In order to do this, the signals
#(p;) and u(p;) and their gradients §'(p;) and w'(p;)




are required and in what follows we examine how to
generate estimates of these signals.

From (4) it is clear that §(p;) is obtained by taking
the difference between the achieved response from the
system operating with the controller C(p;) and the
desired response. Regarding §'(p), we have the fol-
lowing expression

g’(P) C ( )C (p)Tﬁ(p)T

c, ( 5C(0) (T3 (P + Tolp)So(e)v) - (10)

In this expression the quantities C,(p), CL(p) and
Cy(p) are known functions of p which depend on
the parametrization of the restricted complexity con-
troller, while the quantities 75(p) and So(p) depend
on the unknown system. Thus, §'(p) can only be ob-
tained by running experiments on the actual closed
loop system. We note also that the last two terms
in (10) involve double filtering of the signals r and
v through the closed loop system. Thus, to obtain
these signals more than one experiment is needed. In
{6] this problem is avoided by using an estimation
procedure of the full order plant and then a synthetic
generation of the gradient. Here we shall use experi-
ments for the computation of §'(p;) in each iteration.
To proceed, notice that

Toy = Tér + ToSov.

Thus the last two terms in (10) can be obtained by
taking the output signal from one experiment on the
closed loop system and using it as reference signal in
a separate experiment. In each iteration ¢ we will use
three experiments, each of duration N say, with the
fixed controller C(p;) operating on the actual plant;
we denote the corresponding output signals by {y?},
4 = 1,2,3. The corresponding reference signals are

1_ .. .2 .1, .3 _
TPET TS EYy Ty =T (11)

This gives the following expressions for the output
signals

gl = To(pi)r + So(pi)v} (12)
y2 = Te(ps)r + To(pi)Solpi)vi + Solpi)vi(13)
v = Tolps)r + Solpi)v} (14)

where v] denotes the disturbance acting on the sys-
tem at iteration ¢ and experiment j. Notice that
these disturbances are mutually independent since
they come from different experiments. With these
experiments

Gi=9 —Ya (15)
is a perfect realization of §(p;) and

/

is a perturbed version (by the disturbances v? and
v?) of §'(p;) since

b= 9'(ps) + ngpz; (Cl{ps)v} — Colpa)v) . (17)
There are several things to observe here. Firstly, the
disturbance that is generated in the first experiment
is not a nuisance. The output of the first experiment
is used in (15) to create an exact version of the signal
%(p;) which is used in the criterion J: see (4). Sec-
ondly, the output of the first experiment (with the
digturbance) is exactly what one wants to use as ref-
erence signal in the second experiment. The only nui-
sances that are introduced are the disturbance con-
tributions from the second and third experiments.

An estimate of the gradient

With the signals defined in the preceding subsections,
an estimate of the gradient of J can be formed by
taking

N

= '11\7 > (?z'(t)i“l;(t) + /\ui(t)ﬁg(t)) .8

=1

Notice here that
B[Jl] = 7', (19)

which basically is what is needed for a stochastic ap-
proximation algorithm to work. The requirement (19)
is the motivation for the third experiment. Other-
wise, it would be tempting to use the data from the
first experiment instead of the third one in (16), but
then (19) would not hold because the error between

ﬁ; and §; would be correlated with §; and the error
between @} and 1} would be correlated with u;. When
one is far away from the minimum this bias is negligi-
ble and one can omit the third experiment. However,
as soon as the algorithm seems to converge the third
experiment should be included.

Modification of search direction
There are many possible choices for the update direc-
tion R; in the iteration (9). The identity matrix gives
the negative gradient direction. Another interesting
choice is '

1 X

R (i ] o), @o

for which the signals are available from the experi-
ments described above. This will give a biased (due
to the disturbance in the second experiment) approx-
imation of the Gauss-Newton direction. It is the au-
thors’ experience that this choice is superior to the
pure gradient.
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Implementation

Notice that the computation of 37: in (16) requires the
filtering with the inverse of C,.. If C, is non-minimum
phase, as may happen, this is not feasible. A simi-
lar problem occurs if the gradients of Cy and/or C,
are unstable. These problems can be overcome by ex-
tending L, and L, with an all-pass frequency weight-
ing filter L,, which leaves the objective function J{(p)
of (6) unchanged. We omit the details due to lack of
space. We now summarize the algorithm.

Algorithm 3.1
With a controller C(p;) = {Cy(ps), Cy(ps)} operating
on the plant, generate the signals y}, v?, v? of (12)-
(14) and compute ¥, ﬁ:, u; and @ using (15), (16)
and the corresponding expressions for the input sig-
nal. Let the next controller parameters be computed
by:

piy1 = pi — iR, (21)
where J! is given by (18), where {v;} is a sequence
of positive real numbers that determines the step size
and where {R;} is a sequence of positive definite ma-
trices that are, for ezample, given by (20). Repeat
this step, replacing © by i+ 1.

4. Convergence analysis

The convergence properties of the algorithm are given
in the next theorem.

Theorem 4.1 Consider Algorithm 3.1 with R; > 61
Vi, for some § > 0. Assume that the procedure is
complemented with the all-pass filtering procedure de-
scribed above included if necessary so that we have
an unconstrained minimization problem, i.e. p € R?
for some integer d. Assume that the {v;} satisfy the
usual conditions for convergence [9):

(o] X
Simw, Yort<ow.
=1 i=1

Let the reference signal {r} and the disturbances in
each experiment {vl} be realizations of bounded sta-
tionary stochastic processes where these processes are
mutually independent.

Then, provided that the signals {yf L, i=1,23;i=
1,2,... stay bounded,

pi—={p: J(p)=0} wpl (22)
Proof: The theorem follows from Theorem 1 p. 77

in [10] (which originally appeared in [9]) by the use
of f(z) = 3E [#?*(z)] + 3B [v*(z)]. [ |

This appears to be the first convergence result for an
iterative restricted complexity control design scheme.

5. Engineering aspects

We believe that this scheme has the potential of be-
coming a useful tool for the tuning of controller pa-
rameters in practical use. The method is simple and
applies to tuning of simple PID controllers as well as
more complex controllers. A special feature is that
there is no need to select an appropriate input spec-
trum. The engineer is supplied with design tools that
are easy to grasp: the step size which controls how
much the controller is allowed to change in an itera-
tion; the frequency weighting filters L, and L, which
can be used to emphasize certain frequency regions,
and the possibility to modify the desired bandwidth
of the system. We now go through these tools in more
detail.

Interactive smooth controller update

The engineer can use the step size to control how
much a controller changes from one iteration to an-
other. Before actually implementing a controller it is
possible to compare the Bode plots of the new con-
troller with the previous ones to see whether they are
reasonably consistent. If one doubts whether it will
work or not one has the possibility of decreasing the
step size and/or of extending the experiment so as to
reduce the effects of the disturbances in the gradient
calculation. The situation is quite comforting: one is
backed up by the knowledge that for a small enough
step size and large enough data set one will always go
in a descent direction of the criterion.

Criterion modification

There is full freedom in modifying the criterion at any
iteration. At an initial stage one may not know how
large a bandwidth it is possible to achieve with the
chosen complexity of the controller. Thus, one may in
the beginning make a conservative choice and as the
performance is improved increase the requirements.
This is much in the spirit of the windsurfer approach

(3].

On-line considerations

Even though the second experiment uses a different
reference signal than the desired one, the scheme is es-
sentially one that functions with data collected during
normal operating conditions. It is possible to show
that the the regsponse of the second experiment, which
uses the reference signal r? = y7, is not so much dif-
ferent from the response of the two other experiments
that are driven by the desired signal r.




6. A numerical illustration

To illustrate the Algorithm 3.1 we have used a sam-
pled version of the following system

9

G(s) = (s + 1)(s% + 0.065 + 9)

which has also been used in [3]. The sampling fre-
quency used was Ts; = 0.1 s. The Bode diagram is
depicted in Figure 1. The sampled data were cor-
rupted by a zero mean white disturbance with vari-
ance ¢ = 0.02. The design objective was to have a
step response corresponding to a second order system
with a double pole corresponding to a (continuous
time) -6dB bandwidth of 4 rads™!, i.e. the desired
reference model T is of the type

(1-a)?
Ty = el
‘T (-agty

where o = ¢~ %1%2 where wp is the desired continuous
time bandwidth. The criterion was taken to be (6)
with A = 0. The controller has one degree of freedom
and is a simple extension of a PID controller:

p1+ p2a ! + p3q 2 + pag?

The reference signal was chosen to be a square wave
with a period time of 10s. Each experiment used 30s
of data and since only a one degree of freedom con-
troller was used only two experiments were required
in each iteration (rather than three), thus 60s of data
was used in each iteration. The initial controller gave
the closed loop response shown in Figure 4a. Since it
was fairly obvious from an initial step response that
the system contains a poorly damped mode around
3 rads~! and the reference signal contained little en-
ergy at that frequency, a frequency weighting filter L,
was used to alert the scheme of this undesirable and
potentially destabilizing mode. The filter was taken
to be

1
Y (1 - 0.95¢0-3ig—1)(1 — 0.95¢—0-3ig—1)

L

which emphasizes the region around w = 3 rads™'.
In Figure 2 the first updated controller is shown with
and without this filter. When the filter is used, the
method is clearly aware of this mode and decreases
the gain in that region while it clearly neglects it when
no special emphasis is given to this frequency region.

During the first eight iterations the bandwidth of Ty
was restricted to 1 rads™!. Then it was gradually in-
creased by 1 rads™! after each second iteration. For
each iteration the choice of step size was based on
a comparison between controllers using different step

sizes and experience from previous iterations. Ini-
tially, due to the large values of the gradient that are
obtained when a badly tuned controller such as the
initial one is updated, the step size was kept at 0.25.
As seen in Figure 3, the controllers quickly formed
a notch around the resonance which indicates sta-
bility enhancement. Due to that, the step size was
increased to 1 after iteration 6. The desired and
achieved responses with the controllers obtained after
iteration 8,10 and 14 are shown in Figure 4b), ¢} and
d). Figure 5 displays the closed loop transfer func-
tions for the initial and final closed loops. Figure 6 is
the corresponding plot for the sensitivity functions.

7. Pinal discussion

In this paper we have examined an optimization ap-
proach to iterative control design. The important in-
gredient is that the gradient of the design criterion is
computed from measured closed loop data. The ap-
proach is thus not model-based. The scheme has been
shown to converge to a local minimum of the design
criterion under the assumption of boundedness of the
signals in the loop.

From a practical viewpoint, the scheme offers sev-
eral advantages. It is straightforward to apply. No
sophisticated tools are necessary. It is possible to
control the rate of change of the controller in each
iteration. The objective can be manipulated between
iterations in order to tighten or loosen performance
requirements. Certain frequency regions can be em-
phasized if desired.

The method presented in this paper can be viewed as
a local approach. By this we mean that the method
only tries to estimate the shape, i.e. the gradient, of
the criterion at the current operating point at each
iteration. This is very different from model based ap-
proaches where the experiments are used to estimate
models relevant for the control design. This means
that the information in the data is extrapolated in
some sense to form a global model. These methods
could thus be called global. In view of this one could
suspect that the local approach is more robust. It
takes the data for what they are. This is, however,
another story.
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Figure 1: Bode diagram of the true system.
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Figure 2: Controller after first iteration. solid line:
without frequency weighting filter; dashed
line: with filter.
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Figure® 3: Evolution of the controller. The initial one
has the lowest low frequency gain. This gain
increases in each iteration.
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Figure 4: Output response together with ideal responses
Tyr (dashed lines). wp is the -6dB band-
width of Ty. a) Initial. b) After 8 iter-
ations, wp = lrads™!. c¢) After 10 itera-
tions, wp = 2rads™?, d) After 14 iterations,
wp = 4rads™"
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Figure 5: Initial and final closed loop frequency func-
tions
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Figure 6: Initial and final sensitivity functions




