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Abstract: This paper considers a restricted complexity LQG controller design using an
existing iterative identification and control design scheme applied to a disturbance rejection
problem. The cornerstone of this iterative method is a frequency weighting derived from
experimental closed loop input/output signals. This frequency weighting characterises mis-
match between two closed loop systems, one in which the controller design is conducted and
the other in which the controller is implemented. It is shown that the frequency weighting
is mechanism which translates the closed loop mismatch into better control performance
when the enhanced LQG controller acts on the true plant. The results obtained provide
an intuitive link between the iterative design method and an existing closed loop controller

reduction technique.

Keywords:- Iterative Identification/Control Designs, LQG Control, Innovations

1 Introduction

Recently several iterative identification and control
design strategies have been proposed that use input-
output data collected whilst the plant is operating un-
der closed loop control, see Zang et al (1991), Schrama
(1992), Bayard (1992), Lee et ol (1993). Consistent
with each of these strategies is the desire to seek an
improvement of some performance index with each it-
eration, and a recognition that identification and con-
trol design need to be treated as a joint problem.

This paper considers an iterative identification and
control design for disturbance rejection based upon a
H,/LQG iteration as described by Zang et al (1992).
This scheme shapes the design of an enhanced LQG
controller with the objective of ameliorating the global
performance of the achieved closed loop system de-
picted in Fig. 1. Traditional LQG controller design
relies on minimising a local performance objective for
the designed closed loop system of Fig. 2. The it-
erative design introduces a closed loop signal based
correction in the form of a frequency weighting which
modifies the local performance objective such that the
controller minimisation incorporates discrepancies be-
tween the achieved and the designed closed loop sys-
tems. It should be noted that the iterative design
uses the frequency transformed designed closed loop
system depicted in Fig. 3 in which to conduct the syn-
thesis of the enhanced controller. This allows the con-
troller design to proceed via standard LQG methods.

The frequency weighted H,/LQG iterative design op-
erates on a class of fixed order controllers. This is a
distinct advantage over some other iterative designs
(Schrama (1992), Lee et ol (1993)) which produce in-
creased complexity controllers, for which the order
may need to be reduced prior to implementation.

For an optimal closed loop system as depicted in
Fig. 4, that is one with full plant and disturbance
knowledge, Kwakernaak and Sivan (1972) show that
a LQG controller is the optimal solution to an out-
put feedback problem in which the states are unmea-
surable and the measurements are noisy. This result
uses the separation principle to show that the LQG
controller includes an optimal observer to estimate
the unmeasurable states. The optimal observer has
the property that its innovations process is white, see
Kwakernaak and Sivan (1972). The suitability of a
restricted complexity LQG controller in the achieved
closed loop can be gauged by the whiteness of its state
estimator’s innovations in that loop, moreover this
is a measure which describes the closeness between
the closed loop transfer functions of the optimal and
achieved closed loop systems. This provides our mo-
tivation for investigating, in this paper, the innova-
tions process of an LQG controller produced by the
frequency weighted Hy /LQG iterative design. This
paper demonstrates that it is the frequency weight-
ing in the iterative design which is the mechanism for
maintaining the whiteness of the state estimator in-
novations process in the achieved closed loop.

The notion of maintaining the whiteness of an innova-
tion process in an LQG controller as a lever to attain-
ing closeness between the achieved and optimal closed
loop transfer functions is not new. It has been con-
sidered by Liu and Anderson (1986) with respect to
controller reduction in the achieved closed loop sys-
tem given a complete description of the plant and the
disturbance. Using stable factorisation and balancing
techniques to approximate a right coprime factorisa-
tion of the full order LQG controller, Liu and Ander-
son show the closed loop controller reduction results
in a reduced order LQG controller in which the state
estimator’s innovations process is white. This reduc-
tion technique does not require a frequency weighting
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Fig. 1. The achieved closed loop system consists of
a controller X (z) acting upon the true plant
P(z). v is the additive output disturbance.
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Fig. 2. The designed closed loop system consists of a
controller K(z) acting upon the plant model
P(z). v} is a model of the additive output
disturbance.

in order to maintain the whiteness of the innovations
process. Furthermore, Liu and Anderson have derived
an upper bound on the Lo, norm for the closed loop
mismatch between the optimal and achieved closed
loops given an exact plant and disturbance represen-
tation,

The main contribution of this paper is the connec-
tion between frequency weighted iterative design us-
ing inexact plant and disturbance description and
closed loop controller reduction based on full plant and
disturbance knowledge. Both methods deliver LQG
controllers which when implemented in the achieved
closed loop system attempt to maintain the whiteness
of the state estimator innovations process, thereby re-
ducing the difference between the achieved and opti-
mal closed loop systems. Hence, these two design pro-
cedures reach the same endpoint of having restricted
complexity controllers in the achieved closed loop. In
both cases, the achieved closed loop is in some sense
close to the optimal closed loop. The advantage of
the iterative design is that full plant and disturbance
knowledge are not necessary.

This paper is orgenised as follows. Section 2 de-
tails preliminary and motivational aspects behind the
iterative identification/control design of Zang et al
(1992). Section 3 presents the theory which describes
the mechanism for maintaining the whiteness of the
Kalman Predictor innovations in the achieved closed
loop with LQG controllers produced by the iterative
design. An example promoting this theory is given in
Section 4. Section 5 concludes.

2 Frequency Weighted H,/LQG
Iterative Control Design
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Fig. 3. The transformed designed closed loop sys-
tem consists of a controller X(z) acting
upon the plant model P(z) HF is the fre-
quency transformed disturbance model and
controller. K is the frequency transformed
controller.
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Fig. 4. The optimal closed loop system consists of
the truly optimal controller K °?*(2) designed
using full knowledge of both the true plant
P(z) and the true output disturbance H{z).

The control problem considered in this paper involves
the rejection of an additive disturbance v; which acts
upon a plant output y;. Without any feedback control
the plant output y, is given by

Yo = P(z)ut + Vg, (1)

where u, is the plant input and P(z) is a strictly
proper rational stable transfer function. Furthermore,
vt is assumed to be a quasi-stationary zero mean
stochastic process represented by

vy = H(z)ey, (2)

where e, is a white noise process with zero mean and
variance ¢°. H(z) is a proper stable rational transfer
function.

In many cases, the plant and disturbance transfer
functions are not known exactly. Associated with the
plant and disturbance are a set of parameterised mod-
els,

{P(ztg)aﬁ(z:9)1 6 €D C Rd} s

where Dy in R? is a subset of admissible values. This

set is not presumed to contain the true plant and dis-
turbance {P(z)}, H(z)}.

A particular model in that model set, driven by an
input ug, will produce an output described by

yi = P(z,8)uf + H(z,0)e}, (3)
for a specific value of §, where €, is a white noise

process and P(z,8) and H(z,6) are strictly proper
rational transfer functions.




A controller K can be implemented in closed loop
with the true plant and disturbance as depicted by
the achieved closed loop system of Fig. 1. The global
performance of the controller in the achieved closed
loop is given by an LQ cost criterion of the form,

N
« .1
J'= lim wE {Z(yt)z + )\(ut)z} » o (4)
t=1
where ) is a penalty fmposeé upon the control action.

The iterative scheme proposed by Zang et al (1991)
uses two frequency weightings F and F, to quantify
a signal-based model mismatch. That is,
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where ®,,®,c, Py, Bye are the spectra of the corre-
sponding closed loop signals. These signals are all
readily available for measurement.

Transfer function expressions for the above ratios be-
tween the corresponding achieved and designed closed
loop signals are given by,

v m _ H[1 +PK]

(6)
vi  ui A [1+PK ]

where K is a frequency weighted certainty equivalence

feedback controller.

For the disturbance rejection case, the only case con-
sider in this paper, it is apparent that the frequency
weightings i and F, are equivalent. Define a fre-
quency weighting F' as,

FéFl :Fz. (7)

The frequency weighted local performance LQ crite-
rion associated with the designed closed loop system
is given by,
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Here, the frequency weightings serve as a mechanism
by which to manipulate the iterative design procedure
in order to deliver controllers which accomplish high
performance in the achieved closed loop system. This
manipulation recognises that controller performance is
always measured in the achieved closed loop system.

The standard non-frequency weighted version of the

above local performance LQ criterion (8,3} is given
by,

J= A}_r‘n -«E{Z(yc) + A(ug)? }, (10)

t=1
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Consideration of minimisation criteria for J° (9) and
J (11) reveals that the only frequency transformation

required to mould the frequency weighted LQG con-
trol problem into a standard non-frequency weighted
LQG problem is on the disturbance model H. That
is,

H=HF. (12)
The standard non-frequency weighted LQG design de-
livers a standard LQG controller K for the trans-
formed designed closed loop system as depicted in
Fig. 3. Again, perusal of the minimisation criteria
for J° (9) and J (11) discloses the equivalence of the
frequency weighted LQG controller X in the desxgned
closed loop with the standard LQG controller K in
the transformed designed closed loop. That is,

K =K. (13)

The certainty equivalence principle is evoked when the
frequency weighted LQG controller X is implemented
in the achieved closed loop.

Having sketched the canvas outlining the controller
enhancement of the iterative design, the painting of
a picture which captures the role of the frequency
weighting with respect to the state estimator inno-
vations of the enhanced controller can now begin.

3 State Estimator Innovations
within the Enhanced LQG
Controller

Consider the design of the certainty equivalence con-
troller K for the designed closed loop system of Fig. 3.

Suppose that the plant model P can be written in
state space form, that is

Li41 = Aw,«,~§~Bu{, (14)
¥yl = Coitof, (15)

where 4, B, C' are the system matrices, vf is the addi-

tive disturbance acting on the plant model output y{ .
A similar state space representation can be derived for
the disturbance model H. That is,

¢ + B%{, (16)
v{ = ¢ a:t +qt, an

d — 4
T4l = Az

where A?, B¢, C¢ are the system matrices, pf and ¢
are respectively, the process and measurement noises
associated with the disturbance model.

As described by Bitmead et al (1990), state space re-
alisation of the plant and disturbance models can be
combined into a composite state space representation
given by,

A 0 B 0
m{+1__:(0 Ad)w{+(0>u{+v(3d)p{1 (18)

£ Aol + Bl + W™, (19)
¥ = (C C¢%)el+d, (20)
£ omal 44 (21)

The Kalman predictor state estimator for the above

composite state vector m{ +1 may now be constructed

as,

A™&),_ +B™
1P

"i’{-i-ltt ‘u{+M"(y¢ Cm‘{lt 1) (22)
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Fig. 5. The transformed designed closed loop sys-
temn showing the Kalman Predictor Innova-
tions §/. Note E = (2] ~ A™ + B™L™yY,

= (A™ -MFPCo™)2f

T +B™uf +MPyf, (23)

where M¥ is Kalman predictor gain.

The frequency weighted LQ criterion (8) applied with
state estimation gives an LQG control law of the form,

u = (L LY)i],_,, (24)
£ ~L™8),_,, (25)

where L?, L¢ are LQ gains associated with the plant
and disturbance states, and a?:fl .1 is the state estimate
given by the Kalman predictor (23).

Combining the Kalman predictor (23) with the LQ
feedback control law (25) yields

Wl = —L™(2l - A™ 4+ B™L™)
x M*(yf - C™3], ], (26)

—L™(zl - A™ + B™ L™ M?3!, (27)

it

where ﬁ{ is the Kalman predictor innovations process
in the transformed designed closed loop. By defini-
tion, the innovations process is the estimation error

between the predicted output, cmi{u@ , and the mea-

sured output, yf, that is,
nf A -
g 2-cmel,_ +yl. (28)

Fig. § explicitly shows this innovations process in the
transformed designed closed loop.

Using (23) and (25) to substitute for the estimated
f

state vector 2] in terms of the plant output y/ in the -

above equation (28), the transformed designed closed
loop innovations process §; becomes

# =+ 0™l - A™ + B™L™)7 Py (20)

This innovations process can be expressed in terms of

the white noise sequence ef which drives the frequency
transformed disturbance model A, that is

# = H+C™(el—A™ +B™L™) MF]?
x (L+ PR|'AFe!, (30)
2 T(2)ef. (31)

As the innovations in the transformed designed closed
loop system are white, T'(z) must be all-pass.

Now consider the implementation of the above non-
frequency weighted certainty equivalence LQG con-
troller K in the achieved closed loop. Recall that
equation (13) implies that this controller X from the
transformed designed closed loop is the same as a fre-
quency weighted LQG controller K implemented in
the achieved closed loop. Using the innovations defi-
nition given in (28), the Kalman predictor innovations
process §; for the achieved closed loop system is given
by,

G o= —C™&#),_, +u, (32)
= [[4+C™l-A™+B™L™)'MF|?
X {14 PK| ' He,, (33)
= T(z)-l-l—ﬂ}i‘e(. (34)
1+ PK|AF

The full order frequency weighting F from (5) can be
expressed in terms of spectral factors given by the
achieved and designed closed loop sensitivity func-
tions. That is, F(z) equals

{I;I(z)u + P@)K(a)] Hz™)L + ?(z“‘)x(z-‘n}‘” .
B+ PR R+ PemKe ] o

The minimum phase spectral factor, F(e’*), satisfies

H(&)[1 + P K ()]
B(e%)[1 + P(e)K ()]

[F(e)]| = ‘ (36)

Substituting the minimum spectral factor of F (36),
and recalling the relationship (13), causes (34) to
yield,

e = T{z)es. (37)

Hence the effect of the frequency weighting F is to
maintain the whiteness of the innovations process in
the achieved closed loop. It should also be noted that
the innovations process in the achieved closed loop will
not be white when the controller is delivered based
upon a non-frequency weighted controller synthesis in
the designed closed loop system. This result reinforces
the focus of the frequency weighted iterative design
toward the achieved closed loop system and cements
its connection, as alluded to in the introduction, with
closed loop controller reduction given full plant and
disturbance knowledge.

Zang et al (1992) have shown for an exact plant de-
scription, P= P, and an inexact disturbance descrip-
tion, H # H, the iterative design will deliver the truly
optimal controller in one iteration. With an inexact
plant description, P # P, and an exact disturbance
description, H = H, the iterative design will achieve
approximately the same performance for the achieved
and frequency transformed designed closed loop sys-
tems. This paper generalises these findings for the
case of inexact plant and disturbance knowledge, i.e
PP H#H.

The iterative design algorithm uses a fixed order
auto-regressive (AR) models to approximate signals
Q.},/ 2,@;‘:2, from finite length data sequences y, yf,
before computing the frequency weighting. AR mod-
els were selected for use in the iterative algorithm as



e they produce stable frequency weightings.

e many commercial software packages include AR
identification algorithms,

Third order AR models were perceived to be suffi-

ciently accurate to give a good approximation of the -

frequency weighting in many examples,

The degree of approximation in obtaining the fre-
quency weighting determines the ability of the fre-
quency weighting F' to cancel sensitivity terms in
equation (34) which represents the Kalman predictor
innovations ¢ in the achieved closed loop. There-
fore, in practice the role of the frequency weighting in
maintaining the whiteness of the state estimator inno-
vations in the achieved closed loop is an approximate
one.

An example demonstrating the influence of the fre-
quency weighting in the iterative design is given in
the next section.

4 Example

The example considered below demonstrates that the
Kalman predictor innovations in the achieved closed
loop are initially whitened and subsequently main-
tained white by the frequency weighted iterative de-
sign.

The real plant under investigation is 7th order of the
following form,

= P(2)ue +ve = % + H(z)e: (38)

where the coefficients of the polynomials A(z), B(z),
represented in vector form as a and b, are respectively

e = [10.0049 —0.0848 —0.1953 0.1450
~0.0159 —0.0505 0.0145]
b = [0 0.5000 1.5069 0.8575 0.0897

0.5463 0.0738 0.0002]

This is a stable non-minimum phase plant with unit
delay. The disturbance filter is high pass with a trans-

fer function 1 0.075
- 0.975z
H(z) = 77571;

Fig. 6 gives the frequency response for the true plant
and the true disturbance.

The iterative identification and control design per-
formed on this plant uses a composite iterative scheme
based on refinements to the original iterative design
methodology as proposed by Partanen and Bitmead
(1993). This composite iterative design performs a
model adjustment and controller enhancement during
the first iteration, subsequent iterations directly refine
the controller without a model adjustment phase. The
advantage of this scheme is that only one closed loop
identification experiment with a suitably selected ex-
citation need be performed. With this iterative design
3rd order plant models and 1st order disturbance mod-
els were identified using a Box-Jenkins algorithm to
minimise sum-square filtered prediction errors. Iden-
tification of AR models for computation of the fre-
quency weighting was conducted using 4096 sample
length closed loop input/output data sequences. The

frequency weighted local performance criterion in-
cludes a low penalty cost on control action, that is
A = 0.01. Eight iterations were performed.

Fig. 7 plots the Kalman predictor innovations in the
achieved closed loop system for the first three iter-
ations of the design. The solid line in Fig. 7 gives
Kalman predictor innovations of the full order opti-
mal LQG controller (designed using the true plant
and the true disturbance), predictably this innova-
tions process is white. The initial iteration is based
upon an achieved closed system with an initial non-
frequency weighted LQG controller K derived from
an initial plant model P, which captures only the low
pass nature of the true plant, hence the Kalman pre-
dictor innovations (dashed line) in the initial achieved
closed loop are not white. After two iterations Pig. 7
shows the iterative scheme has delivered an LQG con-
troller with white Kalman predictor innovations in
the achieved closed loop. Numerical approximations
have given an imperfect pole/zero cancellation for the
Kalman predictor innovations near dc after the sec-
ond iteration. This is not significant due to the near
zero disturbance energy around dc. Further iterations
did not alter the whiteness of the Kalman predictor
innovations in the achieved closed loop.

5 Conclusions

This paper has considered an existing iterative iden-
tification and control design for disturbance rejection.
It has been shown that for this iterative design, a fre-
quency weighting is responsible for maintaining the
whiteness of the Kalman predictor innovations in the
achieved closed loop system. This result links the it-
erative design with an existing closed loop controller
reduction technique, with respect to the difference be-
tween the achieved and optimal closed loop transfer
functions for which an upper bound already exists.
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Fig. 6. Bode plot of the True Plant P (solid line) and
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