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ABSTRACT: Many practical applications of control sys-
tem design based on input-output measurements permit the re-
peated application of a system identification procedure operating
on closed loop data together with successive refinement of the
designed controller. Here we develop a paradigm for such an iter-
ative design. The key to the procedure is to account for evaluated
modelling error in the control design and, equally, to allow for
the requirements of the closed loop controller in performing the
identification. With an H; control problem, this is achieved by
frequency weighting the LQ control criterion and by filtering the
identifier signals in a logical fashion.

1 Introduction

Theory exists (robust stability theory and robust control} which
allows the inclusion of modelling error into controller design. For
example, in the worst case analysis of Heo optimal control the Heo
norm of the modelling uncertainty is included into the design to
derive a weighted Hoo design, Similarly gain and phase margins
may be specified in LQG control and LTR design methods. There
is a problem apparent with this in that the modelling error (or
at least a bound) is assumed to have been provided ex deus, In-
more realistic situations the model error is the result of system
identification with physical modelling and this does not conform
to the standard picture of robust control because of the avail-
ability of design variables for the identifier. Moreover, in many
circumstances the modelling itself is selectable by the designer and
admits the prospect of being tuned to suit the particular control
law schema. In this paper we shall follow through the development
of a combined iterative control system design which couples the
separate stages of model identification using frequency weighted
Least Squares with controller design from this model using fre-
quency weighted LQG methods. Several successive passes through
these distinct operations will generate our iterative design. Such
a design is not truly an Adaptive Controller but is closely related
in spirit because our control law resulting will be shaped by the
measured data and not just by a priori assumption.

We are describing a quasi-adaptive control scheme in which
the simultaneous control design and parametric identification is
replaced by an iteration of the identification stage with fixed con-
troller and the control design stage based on the identified model.
In many respects this concurs with the averaging approach of [2]
or the periodic adjustment of [3]. In [1] a procedure was presented
for modifying least squares plant estimation to accommodate the
control law requirements. This involved linear filtering of all the
data prior to estimation. The novelty of our approach here will
be to utilize both parameter and variance data from the identifi-
cation phase in the specification of the control objective also. In
this way a more cogent approach to the identification and control

of linear systems will be developed.

" In very many practical applications of modern control, it is
the case that an initial controller may be refined using on-line
performance measurements and that, further, the amount of such
data is effectively unlimited. In such circumstances one may use
these measurements to generate more appropriate models and,
subsequently, better feedback control laws, as opposed to, say, a
once-off robust design which does not utilize process performance
measurements, Our aim here will be to develop a strategy for
successive improvement of control laws using system data.

The paper is organized as follows. In Section 2, we consider
the Ha (least squares) system identification methods and the cor-
responding H; (LQG) control laws. In Section 3 we develop a
computational example and give some comments and discussions
about the results obtained. Finally, in Section 4 we give some
concluding remarks. Throughout this paper, all the results will
be derived for the simple case of single input single output system.
The extension to the multivariable case is reasonably straightfor-
ward but messy,

2 Iterative LS Identification and Frequency Weighted
LQ Control Design '

In this section we shall develop a procedure for iterative plant
identification and LQ control design.;.Here the novelty of our Hp
approach is to account for evaluated modelling error in an L@ op-
timal control design and to allow for the requirements of the closed
loop controller in performing the least squares identification. This
is achieved by frequency weighting the LQ control criterion using a
filter which contains identification information and by filtering the
identifier signals using a filter which contains LQ optimal control
design information. For other ways of identifying a plant model
or estimating model error for the purpose of robust control design
see, e.g., {7], [9}-[12].

2.1 Problem Formulation

Here our global objective is to identify a model P and then, based
on P, to design a controller. With the designed controller and the
identified model the following globa! LQ performance criterion is
considered )

N
J* = limoo — Z{(!}t ~7¢)% + Auf] (2.1)

t=1

where y; is the real plant output, u. is the control signal to be
designed based on an identified plant model to force the output
yt to track a given reference trajectory r¢ as closely as possible,
where r; is modelled as the output of a reference model driven by a




white noise n¢, i.e. re = R(z)n:, where R(z) is a rational transfer
function chosen by designer to reflect the reference spectrum. Our
aim is to minimize J* by applied the designed controller to the
real plant,

2.2 Problem Solution
2.2.1 Modifled LQ Control Design

We follow here the basic error modelling formulation of Ljung {4].
Suppose we are given a real plant with an input-output relation-
ship described by the following equality.

yt = P(2)ut + v ' (2.2)

where P(z) is a strictly proper rational transfer function, u¢ is the
input, v; is an unmeasurable disturbance acting on the cutput y;.
Also we are given a parametrized model set

{P(2,0),4(z,0), 8€DsCR%Y, (2.3)
A particular model in that model set will be described by

§e(8) = P(2,6)ue + H(z,8)q: (2.4)

for a specific value of 8, where g¢¢ is a white process and P and
H are, respectively, strictly proper and proper transfer functions.
Also we suppose the poles of both A and A—1 are strictly inside
the unit circle. Associated with the model (2.4) is the following
one step ahead predictor.

#(0) = H=Y(2,0)P(z,0)ur + (1 = H™(2,8))w: (2.5)

see, Ljung {4]. In particular, if we model the real plant by using
a disturbance free model (& = 0) or assuming the disturbance
acting on the model output is a white noise, it is easy to see that
the one step ahead predictor corresponding to these two special
models is

3:(8) = P(z,0)u: (2.6)

Combining either one of the above two predictors with the real
plant (2.2) we therefore can define a prediction error

ce(8) = ye — 9:{6)

and its spectrum (assuming closed loop stability and quasistation-
ary exogeous signals, see [4]}).

oo

By_gw)= D Elee(®)eemr(8))e™1"
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where B denotes the appropriate average or expected value. We
suppose that a plant model P is provided together with the in-
formation of the prediction error spectrum @,._4{w). We then
consider the specification of a frequency weighted LQ tracking
problem based on this model.

Since the controller u: is designed based on a known plant
model, we need to transform the above tracking problem (2.1)
into separate but interacting identification and control problems.
The aim will be to take account of the identification of the model
in the formulation of the control law and of the feedback control
objective in performing the identification. These modifications
need to reflect the overall control objective (2.1).

We proceed as follows. Instead of following the traditional for-
mulation of an LQ tracking problem by considering minimizing
the following performance criterion

N
= dim Y@ - e + N () 27)
t=1

we begin with the following frequency weighted L.Q tracking prob-
lem,

N
I= Jim SR - P +NE) (@8)
t=1

where §7 is the output of an identified model operating in closed
loop, Fi and F; are weighting functions (linear filters) to be cho-
sen, A' is a constant to be decided, We shall study how the mod-
elling information might be incorporated into the local control
objective (2.8) to reflect the global objective (2.1) through the ju-
dicious choice of ] and F2. Recall that control design only may
be performed relying on the identified model.

Suppose through identification, we obtain a plant model. Its
input u§ and output §f are related by

9 = Puf +v} (2.9)

where the disturbance v/ is not necessary equal to vy—the unmea-
surable plant disturbance. The above system is depicted in Fig. 1
with the controller denoted by C, Cs yet to be designed. Notice
that here we consider a two-degree-of-freedom controller design
problem. This form of controller (us = Cyns — Cay:) is consistent
with that obtained in LQ optimal control design, whether the de-
sign is based on a state space model or on an input output model,
see, {1}, [8].
By direct comparison we select Fi(z) and F2(z) as

1/2
L S @, 1/2
! (‘I’gc_.,-) P Pye

and )\ as A to make the frequency weighted tracking objective

(2.10)

(28)

N 1/2 2
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This should be compared to (2.1} and interpretted as a distortion
of the local control objective function for the identified model to
reflect the global criterion, as was motivated by the Ho frequency
weighted control design method derived in Section 2.

The question now is: How do we evaluate these filters /1 and
F27 This is done directly from the identification experiment it-
self (in which y; — r¢ and 4 are measured signals) and from. the '
previous control design stage and the identified model using the

relationships )
t.

P(Cy ~RC3)-R 1,
je —ri = n g, 211
Ve o 1+ PC, 1+ PC, (2:11)
and
2 = Cine = Caf = e %y 1y

1T PC, T IvPe,

A specific example of such a calculation of these spectra is given
in the next section and relies simply on the processing of closed
loop experimental data.

Remarks:

¢ Since F} and F, act as weighting functions in the local LQ
optimal control design objective (2.8), both €y, C;, and P
need to be fixed and available before the starting of each
specific design stage. Obviously, the P component in the
weighting functions comes from the identification stage, Cy
and C are derived from an earlier LQ control design stage.

o The selection of the particular factorizations in (2.10) is
the stable, minimum phase spectral factors. This admits
the recasting of the frequency weighted LQ tracking prob-
lem as a non-weighted LQ problem with transfer functions,
P=PRF;, 0 = FKC, C; = RFCy, and R= RF,.




o If we analyse more closely the choice in (2.10), we see that,

using modelling information in the form of Fi and F2, the -

control criterion is being modified to penalise more heavily
both control and output signal deviation in frequency bands
where the model fit is poor.

Now the above choice of the weighting functions allows us to con-
clude that designing a controller Cy, C2 based on an identified
model such that the performance criterion {2.1) is minimized is
approximately equivalent to minimizing the performance criterion
(2.8) with F1, F; and )\ chosen as above. In this fashion, sensible
modelling informatior modifies the local control objective.

2,2,2 Modified Least Squares Identiflcation

Now the remaining task is to identify iteratively the plant model
and then design a controller so that in each identification and
control design step the criterion (2.8} is reduced.

First we need to specify an identification criterion which suits
our interacting identification and control design implementation.
For the prediction error € (6) = y¢ — §:(8) we define Vy(8) as

N
V(o) = 5 S O)F
t=1

where c{ (8) denotes the prediction errors filtered through a stable
linear filter with transfer function D(z):

e (8) = D(z)ex(8).
Qur identification criterion is then defined as

V()= Em Vy(9), (2.13)
Naweoo

Using (2.2), (2.6) and the definition of V{#), the above criterion

can be written (in the frequency domain) as

v(e) = % /
(2.14)

Note that here we have used the whiteness of n¢ and the uncor-
relatedness of ny with v¢. Here, without loss of generality, we
can assume that H = 1. The exertion of influence over the Least
Squares identification criterion is through the choice of filter D,
so that the (local) identification criterion (2.14) is commensurate
with the global criterion (2.1).

In selecting the filter, D(z), to be applied to affect the identi-
fication criterion we draw the distinction between modelling for
closed loop control and prediction error minimization.

Two systems are depicted in Fig, 2 and 3, defining signals ¢,
the true plant output, and §7, the model output, operating in
closed loop with the feedback controller and identical input se-
quence ng

Our identification-for-control aim is to select a plant model P
from some admissible class so that §f is closest to y: in a least
squares sense. More exactly, we try to select a plant model from
the model set (2.3) through identification such that the following
performance criterion is minimized.

2
+

2

(P - P)C, s,

1+ PCy

1+ PCy)
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1+ PC, dw
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A

N
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v= Jim X Et 1 [ve = 98)* + Mue — u)?) (2.15)

This should be compared to the prediction error minimization
depicted in Fig, 4, which is an open-loop identification. We may
now ask how these two minimizations are connected.

Clearly from Fig. 2 and 3 we have

_ PCy n 1 v
TI+PC tT1xPC T

Yt (2.16)

PCy
= —y
14 PC,

Thus, in the case when X = 0, v} = 0, v (we use o to denote~ in
this case) can be written as (in the frequency domain)

T
(P ~ P)Cy|? + 1 o b dw
I(1+ PC2)(1+ PCa)E (14 PC2)

(2.18)
Note that here we have used the whiteness of n¢ and the uncorre-
latedness of ne with v¢. A comparision between (2.18) and (2.14)
immediately suggests that to achieve a minimization of closed-loop
identification error the open-loop signal be filtered through

D(z) = (1 + P(z)Ca(2))™!

Since the identified plant model P appears in this frequency
weighting, it would normally only be feasible to adjust this fil-
ter using an earlier estimate of P.

This choice of D(2) is suited to the minimization of the squared
error between y¢ and §¢, which is an aim consistent with minimum
variance control, i.e. A = 0in (2.1). More exactly, we have the
following

Theorem 2.1 Suppose that the plant P, the model P, and the
controller Cy, Co are given as above. Also suppose that the con-
troller Cy, C2 stabilizes both the plant and the plant model, Then
with the filter D(2) chosen as in (2.19) we have

Ve =

MG

Ye (2.17)

Yo = —
2 —r

(2.19)

1/2 N i/2
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t=1

v
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To extend this line of reasoning from minimum variance control
through to the more general criterion J*, we proceed as follows.

Notice that by using (2.12), {2.16), (2.17), and Parseval’s identity,
in the frequency domain, (2.15) can be written as

1 [T [IP=PYCi P+ NC2?) | (1+MC2P)
i - + 3 Dy > dw
[(1 4+ PC2)(1 + PCR)2 (1 + PCh)|
(2.20}
Now it is easy to see from (2.20) and (2.14) that if we define G(z)
ag a stable filter obtained from the following factorization problem

G(2)G*(z™1) = 1 + ACa{2)C3 (z71) (2.21)
by selecting

v= 2
-

D(z) = G(z)(1 + P(2)Ca(2) ™

we have V(8) = «~. In fact, we can pr:)ve the following

(2.22)

Theorem 2.2 Suppose the assumptions in Theorem 2.1 are sat-
isfied with G, D chosen as in (2.21) and (2.22), then we have

V(Ee) = (2.23)
SN (C A AR (2.24)

where J* is defined as before and J is the unfiltered version of J,
and defined in (2.7)

Now we conclude from the above theorem that by selecting the
filter D as in (2.22) we therefore achieve, with open-loop identi-
fication, a model fit which causes the closed loop performance to
be as close as possible to J*. Note that as in the derivation of the
control design filter F} and Fy, here the identification filter D(z)
needs to be fixed in each step of identification. Obviously the P
component in the filter is derived from an earlier identification
stage and the C;, Cy components are derived from the local LQ
control design stage. Another important point to note is that if
we assume H = H, the preceding implementation for the selec-
tion of the filter D(z) is still valid. In the case when H # H and
H # 0, exira effort needs to be taken in the selection of the filter
D. However, the underlying ideas are completely the same as we
have developed here. We are now in a position to state our Hy
iterative identification and control algorithm.




2.2.3 The Algorithm

We propose an identification and control schema as follows

Step 1. (Initial Closed Loop Identification:} Suppose there
exists a controller C, C? which stabilizes the real closed loop
system depicted in Fig. 4. (In the case when the plant itself is
stable, we choose Cy = 1 and C2 = 0,) We use this controller to
begin our closed loop identification. That is, we choose a plant
model Py from the model set (2.2) to minimize V(#) with Do(z) =
1. The identifier, together with C?, C2 provides Po(z), F?, and
F2° . Where

1/2 2
_ (8 ()"
f= (%“-r) IRt

Step 2. (Initial LQ Control Design:) From Step 1 we get B,
Ff ,and F.:,’ We then use this information to design a new con-
troller so that (2.8) is minimized. That is, the following weighted
LQ tracking criterion Jigcqi,1 is minimized.

N
Bocat = Jim_ 2= S {FPGE = vl + MF ()}

e}

This defines a new controller C}(2), C}(2).
Step 3. (Identification:) Using the newly obtained controller
component C} we solve

G1(2)G1(z™") = 14+ AC}(2)C3 (= 71)
for stable minimum phase G'1(z), select
Dy (2) = G1(2)(1 + Po(2)C3(2)) "

and perform the identification stage to minimize V{(6). This, to-
gether with C}(z), C} (), provides us with Py(z), F} and F}.

Where
1/2
oo (2o )Y A= (22)"
1 Qg‘—r ] ¢u¢

Step 4. Continue as in Step 2.
Step 5. Continue as in Step 3.
Remarks:

o The selection of the D-filter in least squares identification
as in (2.22) is a feature countenanced in {1} but which here
includes the explicit appearance of the global L@ control ob-
jective. An analysis of the form of D{z) shows how the predic-
tion error identification is modified to reflect better just those
properties required of a model to perform well in closed loop.
Specifically, it is clear that in the frequency region about
the gain crossover point, D will have a significant magnitude
which will emphasize fit. Similarly, with higher weightings on
the control penalty, greater importance is attributed to mod-
elling errors where the control gain is high. Thus, it would
appear that this style of D concurs with some sensible intu-
itions,

¢ The question of convergence of the global performance crite-
rion, J*, is moot however. It is not clear that J* itself reduces
at each pass. Rather, at each control design, J* is reduced
for the particular model and then, at the identification, the
model is fitted in concert with the applied control to cause
the performance to conform. Clearly, questions remain and
the issue of preservation of stability has not been resolved.
Nevertheless, we believe that the approach augurs well for
the logical refinement of controllers.

3 Design Example

3.1 Computer Experiment Setup

In this section, simulation results are presented to show the
effectiveness of the theoretical approach of our iterative model
identification and LQ control design. The iterative design
strategy was performed on the following example.

The real plant is chosen to be fifth order of the form

B(z})
== 3.
ye A(z)“t+ut (3.1)
where
A(z) = 1-1.28z"% 40457522 1. 0.02792~°
-0.0491z~* 4 0.00772 =%
B(z) = z~!'-1.2z"%-032"% 40156271 +0.084527°

which is stable and non-minimum-phase with single delay.
The plant model to be identified is assumed to be third order
with a single delay, i.e. of the form

9§ = P(z)uf + v} (3.2)
and the reference model is chosen to be second order

R(z) = 0.1311 + 0.2622z~! 4 0.1311z2
#) = T T 0.74782-1 1+ 0.27227—2

(3.3)

In the whole experiment both the plant disturbance v and
the model disturbance v’ are the same and assumed to be
white noise. The LQ control cost A = 0.4 and the Kalman
filter is designed with process noise of unit variance entering
through the input channel and measurement noise of variance
p = 0.8 (Roughly an LQG/LTR strategy.) The closed loop
signal spectra ®y_r, yc_r, Py, Pyo are modeled from mea~
sured signals using third order AR models. The closed loop
identification was performed on 2048 samples per iteration.

3.2 Simulation Results
3.2.1 Open loop identification and control design

Figure 5 shows the frequency responses magnitudes of the
true plant (solid line) and théi open-loop-identified plant
model (dashed line). Figure 6 shows the frequency response
magnitudes of the closed loop sensitivity functions (solid line
for the achieved sensitivity function and dashed line for the
designed one) with the controller obtained from the LQG op-
timal control design based on the open-loop identified plant
model, By the end of first iteration of plant model identifica-
tion and control design we have J* = 0.1413 and J = 0.1181.
That is, the open loop plant model and its corresponding un-
weighted controller yield this figure of merit according to the
global criterion {2.1}.

3.2.2 First and second iteration of the plant identi-
fication and LQG control design

Figure 7 gives the simulation results for the frequency re-
sponse magnitudes of the identifier filters G(z) (in dashed
line} and D(z) (in solid line). Both filters G(2) and D(z)
are derived from model 1 (open-loop-indentified model) and
control degign 1 experiments.

Figure 8 gives the frequency response magnitudes of model 2
and the real plant.

Figure 9 gives the frequency reponse magnitudes of the
weighting functions F1 (z) (in solid line) and F2(z) (in dashed
line} which we obtained from model 2 and control design 1




experiment. )

Figure 10 shows the simulation resuits for the frequency re-
sponse magnitudes of the closed loop sensitivity function ob-
tained from model 2 and control design 2 experiment. In this
round of the iterative plant identification and control design
we have reduced the costs to J* = 0.1156 and J = 0.1295
for the achieved closed loop and designed closed loop respec-
tively.

3.2.3 Further iterative plant identification and con-
trol design

Further iterations lead to very slight modifications with alight
decrease of J*. By the end of third iteration we have the
performance criteria J* = 0.1114 and J = 0.1285. Most
improvement was achieved from the first and second itera~
tions. After second iteration the filters G, D, the weighting
functions Fy, F; and the achieved and designed closed loop
sensitivity functions are all stabilized.

3.3 Summary

This design example performed by computer demonstrates
several points.

— The most crucial observation is that the achieved closed
loop performance with the true plant improves from
step to step as measured by the J* global criterion, even
though the local control criterion is not decreasing.

~ (With later iterations sometimes a slight diminishment
of performance is seen temporarily.)

— An inspection of the iterated closed loop sensitivities
shows two features: the achieved sensitivity function
is reduced in both an Ly and an L sense, the de-
signed sensitivity approaches the achieved sensitivity
more closely.

— The weighting function, F1 and F3, and the identifica-
tion filters, G and D, stabilize to fixed values as the
iterations progress.

~ {With the choice of particular control criterion, i.e, A

small, the effect the LQ criterion on the identification .

is slight. That is there is little benefit in using the G
filter.)

4 Conclusions

We have developed an iterative identify-then-control paradigm.

The focus of the approach is to consider a single global con-
trol objective and then to perform a sequence of

1. frequency weighted system identification,

2. frequency weighted control design,

each with their respective local objective functions. These
criteria (embodied in the frequency weighting) for each case
reflect the current (local) circumstances but are turned to
address minimization of the global objective. Methods were
presented for the Hy (LQ and Least Squares) control design
and plant identification.

To implement the methods requires that the identification
stage provide not only a best fitting model but also a measure
of model error. In the Hy case the prediction error spectrum
is used from the identification experiment. The model error
is introduced to modify the local control law specification.
In a complementary fashion, the global control objective and
local controller are used to adjust the identifier’s frequency
weighting.

There exists a considerable amount of work to establish more
detailed properties of such mehtods and to extend their va-
lidity fully to adaptive control. This work is on-going but it

is clearly of interest to establish the connection between the
applicability of these schemes and the provision of a priori
plant information. In terms of practical applications, how-
ever, the methodology advanced here goes a long way towards
adressing the questions of how to adjust and improve existing
controllers using current on-line experimental data.
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