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COMPUTATIONALLY OPTIMAL IMPLEMENTATIONS VIA POLYNOMIAL OPERATORS

E.I. Verriest, G, Li, and M. Gevers

ABSTRACT

A new parametrization quadruple of a transfer function is
suggested in terms of some generalized polynomial operators,
for which the effective computational sensitivity is easily
analysed. Optimal implementations are derived.
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1. INTRODUCTION

The use of the delta-operator form, was motivated in a recent text
book [1]. It was argued that the § form was more insightful, since the
coefficients of a companion form realization in this § form are close
to the corresponding coefficients in the continuous model. The numeri-
cal properties of the implementation resulting from the delta operator
representation are also noted to be superior. 0f course, the §-opera-
tor is not directly implementable in state space form, since it is not
implemented by a causal Structure, i.e. past data determining the
present output by means of a sufficient statistic. The standard §-
operator form is a companion form corresponding to

Sxk - Axk + buk (1)
Vie = ex 2)

transformed (via § = [z=1]/A) to a causally implementable form consis-
ting of two parts: a (companion form) implementation of (Axk+bu )=pk,
and the causal construction XptAp.  In essence t?is construction boils
down fo replacing the "basis"—polynomials zl, Z1" »++.,2,1 by the forms
s, 60" »+++,6,1 as function of z. In this paper, such a construction
is extended to larger classes of polynomial operators, and optimal
implementations are derived within thig class.

2. POLYNOMIAL OPERATOR REPRESENTATIONS

The realization of a transfer function via the so-called canonical
forms [2] are here generalized. We restrict our attention to the class
of strictly proper transfer functions, whose denominator is monic.

H(z) = b(z)/a(z) = (b'S(z))(z™a’s(z)) 1 (3)

where a'=[a1,...,an], b’ = [bl,...,bn], and S(z)' = [zn'l,...,z,lj.

The polynomials in the vector [zT, S(z)] play a role as indicators of a
partial state. We shall now consider another polynomial representation
of the transfer function, by selecting a different set of representa-
tion polynomials. So let T be the matrix transforming the polynomial

vector [zn,S(Z)']' to [Z (2) Z(2)"1!  whasm oo e .. O w



degree of Z(z) be n-1. With these constraints, T is of the form

1 r!
T = (5)
0 T

Since the coefficients of 2z in numerator and denominator are always
respectively 0 and 1, they are redundant, The transformation matrix is
fully parametrized by the n-vector 7 and the n by n matrix T, It is
not necessary that the submatrix T, and hence T be inveEtible, as was
assumed by Li [3]; the transfer function H(z) = [z+1]/{z +22z+3] is also
represente%, corresponding to a siggular transformation, by H(z) =
{{0,1,0]([=z +2z43,2+1,0]1/{(1,0,0] [z +22z+43,2+1,0]"}. A generalized
transfer function is then specified in terms of coefficients (acting
as coordinates) and polynomials (acting as frames). Let Hy be the
class of these polynomial operator parametrizations. A particular
element will be denoted by the quadruple

%WﬁM%MJMNeﬁxﬂmeﬂxmﬂmﬂ (6)

where MR,[z] is the set of monic polynomials of order m in z. For the
above example, the two genera ized polynomial representations are
therefore Ho[((2,3)',(1,1)'), 2%3z,1)] and the generalized transfer
function Bo[((0,0)',(l,O)'),(z +22z43:2+1,0) 1.

Letting Rat,[z] denote the set of the strictly proper rational func-
tions of z of degree n, the map H

H: H -R2TMR [z]xR g (2]" —> Ratylz] %)

specified by the rational function H = ﬁ'Z(z)/[zo(z)+a'Z(z)] in terms
of the coordinates and the polynomial frame defines an observable in

the terminology of [4]. Alternatively, one could specify the transfor-
mation T, i.e. the matrix T, together with the vector 7 wvhich gene-

rates [zo(z), Z(z)'] from the ugtandard® [z, S(z)']. Ve denote this
class of parametrizations by Hl{(a,ﬁ),(r,T)].

A class of restricted polynomial operators was congidered in ([3],
for the case where T is restricted to be nonsingular. By relaxing the
requirement that T be nonsingular, a new equivalence is defined in the
class H, of polynomial operatox representations, for which the
observable H(z) (the transfer function) is invariant.

Definition (of Equivalence): The polynomial operator representations
Ho[(al,ﬂl),(zol, Z)] and HO{(az,ﬁz),(zoz,Zz)] are equivalent (~) iff
there exists vectors 7y and matrices T; , for i = 1,2 such that

2y4(z) = 2% + 1{5(2) (8
2;(z) = T;5(2) 9
T{a + 71 = Thag + 7 (10)
T{81 = Th82 . (11)

it is clear that the common vectors a = Tiog+7y and b = T{f; uniquely
specify the denominator and numerator of the Fransfer function H(z).
It is easily verified that the above is an equivalence relation. H is
constant on the equivalence classes of H.

. = n - wrd 7 will be demon-



3. GENERALIZED REACHABLE IMPLEMENTATIONS

We start from the polynomial operator parametrization Hy( (e, B),
(zo,Z)] as a right fraction description (rfd), T?e relation between
input and output is then Ye = ﬂ'Z(z)[zo(z)+a'Z(z)]’ u(t). Via Kelvin's
principle, this leads to a "natural" implementation, akin to the con-
struction of the canonical realization., First this rfd separates into

Ye = B'Z(z)t, (12)
[zo(2)ta’2(z)] Lu, = ¢, (13)
In turn (13) leads to

Fol®)le = up = @21 ()¢~ = apz (), (14)

where the polynomial z,(s) plays a privileged role, and will be
referred to as the CORE-POLYNOMIAL. Note that it has' the highest
degree n. With this core-polynomial, a CORE-REALIZATION of

Zo(2)¢, = p, (15)
is derived in a feed-out companion form [2], by implementing (15) as
#Xe = pe (212" Yo b vz 0 (16)

This “core of the core is identified as the usua% chain of n delay
elements, $+ 1is the partial state, and y_ = [z~ ,...,z,l]’g‘t is the
CORE STATE. It follows from (16) that the core-realization of (14)
consists of a weighted feedback of the core-states Xt superposed on Pt
and fed to the input of the core-core.

The state space representation of this feed-out core implementa-
tion follows:

Xktl = Ao ()X + bopy an
Se = [0,...,0,1]x, (18)

vhere A (r) is a top companion form matrix with characteristic polyno-
mial zn+r'S(z), and b, =~ [1,0,...,0]". Next, Py is assembled by iden-
tifying the right hand sides of (14) and (15),

P = U = apzi(s)fy ~ .., ~ nZn(8) » (19)
Define now the STATE of the implementation X, by
[zl(z)'-~~’zn(z)]'§t =T {zn'l(z),...,z,l]’g‘t = TXt el xt (20)

The core-input Pe in (19) is generated by a linear combination of input
and realization states Pr = ug - (“1" n)xt and finally, the system
output follows from (12): Ve = ﬁ’Z(z)gt = [ﬂl,...,ﬁn]xt.

The implementation requires three inner products: <a,x>, <B,x> and
<7,x>, together with the matrix vector product Ty. The latter
should have as many "fixed" (i.e. Zeros or ones) elements as
possible, since these do not contribute any perturbation terms,

The implementation and its States can be interpreted as follows: The
¢ore consists of a bhank of n filters, with transfer functions
zl/zo,...,zn/zo. All these are driven by p. Their outputs are the
core-states, Feedback of the core-states is performed around the core
with gains «, while the read-out oFf +he o msas e oA




with the linear combiner f. Note that the actual number of independent
filters in the core filter bank equals the rank of T. In particular,
if T has rank one, then there is only a companion form realization of
b/z,, with scalar output feedback over oqp, and output scaling with fp.
Tt was already pointed out that the §-operator realizations can

yield excellent roundoff noise performance. In fact, barring minor
changes, all of the above implementations results can also be expressed
jn terms of the §-operator rather than the shift operator z [53. Some

of our simulation results show again the numerical superiority of such
implementations, however to illustrate the main ideas, the shift opera-
tor is used throughout the remainder of this paper.

4. SENSITIVITY OF THE IMPLEMENTATION.

The reason for distinguishing between realization and implementa-
tion is that the latter allows a more direct analysis of the sensitivi-
ty, as it involves directly the parameter values that are implemented,
and not combinations thereoff. A singular system sensitivity analysis
as in [6] 1s also not suitable because of the many fixed elements in
the implementation. Conversely, changes in these parameters show up
directly in the associated observable H.

Since Hy is parametrized by «, g, 7, and T, the sensitivities of H,
as functions of z, are obtained from the gradients

aH(z) /e = ~TH(2)S(z) /a(z) (21)
8H(z) /88 = T5(z)/a(2) (22)
aH(z) /8T = [a(z)ﬂ—b(z)a]S(z)'/a(z)2 (23)
SH(z) /81 = ~H(z)S(z) /a(2) (24)
ith the constraints a = T'a + 7 and b = Tf.  The frequency dependent

sensitivity measure 1s the sum of the Hy-norms of these quantities.
For a parameter p this Hg norm is

u, = Joncr/opld = 2xid) ™ § (an/ap) (an/ap)t 27t az (25)
The contour integral is over the unit circle |zt=1, and the superscripg

H deTotes the Hermitian cgnjugate. Noting that on the unit clrcle, z
= z°L, and that $(z)'S(z"") = n, one finds (3]

M, = lla8()/3al3 = Tr (TW,T") (26)
My = lauC)/0p1F = Tx (TG @7
My = lan(e)/8T]} = Tx (c1pp'-2epfa’+egoa’) (28)
M, - Joucsorls = = (29)

The constants ¢4, i=1,2,3 and the W, and Wﬁ are given by

ep = (et fn (za(zya(z" 1))t az (30)
¢y = Ref (2n))"t § m Hz'ly (za(zaz" )t dz ] (31)
ey = (2x)7L § 0 H@HED (za(zya(z" )L dz (32)
eyl iz bs@sE D (za@az )T d (33)



g = 2ai)"t f s(zysz" ) (za(zdaz" )L dz (34)

The latter is in fact the reachability gramian for the reachable reali-
zation. The sensitivity term M, is implementation independent, and
therefore just adds a constant term to the overall sensitivity. The
optimal implementation is therefore obtained by constrained minimiza-
tion of the quantity M = M + Mg + My = Tr TWI' + My, and leads to a
particular solution :

™ - [ E?{?:??%T?'} , T = (c1ca~cg)/ca (35)
0

F* = (b'ub/r)¥es (36)

¥ = ((ep/e3) [b'Wb/T]%)e, (37

¥ = a ~ (ep/ep)b (38)

The total optimal performance M + M, is

1
Mpe = 2[b'Wb1*1% + 7r W, (39)

Although the sensitivity term with respect to r is implementation
independent, it may contribute largely to the overall sensitivity.
However, the above sensitivity was based on an infinitessimal analysis.
In digital computing, the perturbations are not infinitessimal but
rather quantized. This has for effect that if for instance the parame-
ters 7 are choosen a priori in a perfectly implementable form, then the
sensitivity with respect to this 7 must vanish., This fact was not
captured in our infinitessimal model. In view of this observation, one
can make the analysis faithful to the computation environment by mini-
mizing the performance measure M with respect to @, B, and T only
(vhile keeping 7° fixed). From the solution to the optimization prob-
lem, we know that 7 close to 7 is near optimal. Hence let 7° be for
instance an 8-bit FWL approximation to the optimal 7. With fixed 7°,
the optimization leads to the necessary condition

PWP = Mc (40)
where now

My = cpbb’ ~ cp(ba™'+a*b’) + cqa*a®’ (41)
which in general will have rank 2. The solution to this sub-optimal

formulation does mnot necessarily require that a" and b are parallel.
Note that whereas analytically, the solution is suboptimal, for practi-
cal purposes, its performance will be superior, since the additional
term M, now disappears, thus greatly reducing the overall sensitivity!
As indicated in our introduction, the performance of the implemen-
tation depends strongly on the choice of the core-realization. The §-
operator forms are numerically much better than the shift-operator
forms. For this reason, we could just as well have considered the
generalized §-operators [5]. In fact some of the numerical simulations
that we shall discuss below were exactly implemented in such a §-form.

5. NUMERICAL VERIFICATION
For the realization in state space form, the performance was com-
puted for the controller canonical form, and the balanced realization.



These were then contrasted to the implementations for fixed choices of
r, namely 7 = 0, a, 7 and an exactly implementable finite wordlength
(8 bits) version of 7. The latter are given foxr the §- and the shift
(z-)operator, For the §-operator with 8-bit implementation of 7=, a
good coefficient dynamical range resulted as well. The latter imple-
mentation has also been simulated, and for an 8-bit word length, a
performance exceeding that of the balanced state-space realization was
observed.

6., CONCLUSIONS

1) A new implementation of systems, parametrized by a gquadrapule
(«,B,7,T) was presented. This form allows the discrimination of exactly
implementable, and non-exactly implementable operations, towards the
coefficient sensitivity problem. The sensitivity of the transfer func-
tion with respect to the free parameters is optimized, and it was found
that the optimal structure consists of a scalar feedback and output
scaling of some implemented core system, The realization of the core
itself, greatly influences the overall sensitivity. For the shift
operator, we have taken this to be the companion form, but for a §-
operator implementation a much better performance was found [5].

2) If T is restricted to be nonsingular, then an extremum does not
exist. This indicates that the extremum actually sits on the boundary,
where T is singular. Hence only asymptotically optimal solutions can
be obtained in this case.
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