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Abstract - The purpose of the paper is to describe and justify a branch-
and-bound approach to system identification that allowed us to reduce
significantly the number of model structures investigated by our expert

system for process identification.
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1 INTRODUCTION

In this paper, we shall justify and extend a branch-and-
bound approach to the identification problem to the case of
ARARX model structures. The technique, which has been de-
scribed by Haest et al. (see for example Haest et al. 1990b),
allows one to explore the model set in a quick and rather sys-
tematic way. It enables us to reduce significantly the number
of model structures investigated by ESPION, our expert sys-
tem for process identification (Haest et al. 1988a, 1988b,
1990a).

Roughly speaking, the model set is first subdivided into
a grid of "equidistant” model structures, where the distance
between two model structures is defined as the number of free
parameters that must be added or deleted from one to obtain
the other. This method, combined with the use of statisti-
cal tests, gives valuable information on subsets in which the
"best” model structure should be searched for. The other
subsets are eliminated. Once a smaller subset that most
probably contains the "best” model structure has been iden-
tified, it can be mapped or explored in turn at a smaller grid
scale and so on until the final grid contains an acceptable
solution.

The paper is organized as follows. After having recalled
conditions under which model structures are hierarchically
nested in Section 2, we show that the model set has a lattice
structure in Section 3. This means that, given a structure
in the model set, it will always be possible to find another
structure in the model set such that a particular dominance
relation will hold between them. It also means that if we
are given two arbitrary structures in the model set, no rela-

*Most of the results presented in this paper have been obtained
within the framework of the "Programme FIRST de Formation et
d’Impulsion & la Recherche Scientifique et Technologique du Ministére
de la Région Wallonne”. The scientific responsibility rests with its
authors.

tion need to exist between them. The consequences of this
property are analyzed in the next four Sections. We show,
in Section 4, that all expressions establishing that two model
structures are in a particular dominance relation can be au-
tomatically replaced by an inequality about their respective
prediction error variance. Then, we present the F-test and
the encompassing principle in Sections 5 and 6, before de-
scribing our branch-and-bound method in Section 7. A sim-
ple but detailed example on an ARARX system is developed
in Section 8. Finally, the branch-and-bound procedure can
be applied, at least theoretically, to the case of more com-
plicated model structures, such as ARMAX or Box-Jenkins.
Here, however, we are faced with the typical problems that
are associated with the methods used to estimate such struc-
tures. Those problems are briefly examined in Section 9,
where some other general concluding remarks have also been
gathered.

2 WHEN DOES A MODEL
STRUCTURE UNDERPARA-
METRIZE ANOTHER ?

Throughout the paper, we will use the symbol M to repre-
sent the set of all model structures, also called the model set.
For two given model structures M; and M, in this set, we
define a dominance relation as follows: the structure M, is
said to overparametrize the structure M, written M; C My,
if the structure M; can be obtained from M, by forcing part
of the latter structure to obey some constraints. If this con-
dition holds, it will equivalently be said that the structure
M, is an underparametrization of M,. In other words, for
M, to be an underparametrization of M, we should be able
to obtain M, as a special case of M,.

By far the most common way to generate underparame-



trizations of a given model structure is by setting some of
its parameters to zero. However, this is equivalent to impos-
ing some constraints on the pole-zero configuration of the
original model structure, Setiing the last coefficient p, of a
polynomial in the backward shift operator ¢~}

Qe =pm+pg +...+paq"

to zero is equivalent to pushing away one of its roots at infin-
ity, while setting the first coefficient po to zero is equivalent
to forcing one of its roots to be zero. Similarly, forcing an
intermediate coefficient p;, 7 € {1,...,n—1}, to be zero intro-
duces some other constraints on the pole-zero configuration
of the original structure.

We can also obtain underparametrizations of a given model
structure by imposing some of its poles and zeros to cancel
each other. For example, the ARX structure

Ag(g™ ) y(t) = Balg™") u(t) + e(?)
overparametrizes all ARARX structures of the form

Al v(t) = Bu(g)u(®) + %

provided the following inequalities hold

d(A1Dh) < d(Aq)
d(B\Dy) < d(Bs)

where d(A;D,) stands for the degree of the polynomial
Ai(g7)-Di(g7Y).

Note, however, that one should be very careful when using
similar relations between ARARX structures. For example,
the structure

e(t)

Di(q™)

with d(A;) = 2, d(By) = 1, and d(D,) = 2, could be consid-
ered at first sight as an underparametrization of

82t Ag(q™ ") y(t) = Ba(g ) u(t) + D:((;')'i)

Syt Ay(g™V) y(t) = Bi(g™t) ult) +

with d(As) = 3, d(Bz) = 2, and d(D;) = 1, since it seems
enough to impose one pole-zero cancellation in the second
structure to obtain the first. Nevertheless, we will not be
able to obtain S; as a special case of S; each time a pair of
comnplex conjugate roots will appear in the noise polynomial
of the first structure.

Definition 1: In this paper, we will adopt the convention
that a structure M; is an underparametrization of another
structure M,, if and only if all models in the structure M,
can be obtained as special cases of models in the structure
M,. 1t will also be said that the two model structures are
hierarchically nested.

3 THE LATTICE STRUCTURE
OF THE MODEL SET

It is a trivial matter to show that the set M is a partial
order under the dominance relation, denoted (M, C). This
simply means that, given a structure M; in M, it will always
be possible to find another structure M, in M such that
either My C M, or M, C M, holds, but this also means that
if we are given two arbitrary structures M; and M; in M,

no relation need to exist between them. We encountered two
such structures in Section 2 (S; and S,).

Moreover, the partial order {M, C) forms what is called a
distributive lattice. A distributive lattice is a partial order in
which (see for example Gusfield and Irving 1989):

1. Each pair of elements M;, M; has a greatest lower bound
denoted by M] n Mz, so that (M] n Mz) C M], (M] n
M;) C M,, and there is no element M such that My C
Mly Mo Q Mz and (M1 nMg) C Mo;

2. Each pair of elements M;, M, has a least upper bound
denoted by M; U M, so that M; C (M; U M), M, C©
(M, U Ma), and there is no element M, such that My C
My, My C My and My C (M UMz);

3. The distributive laws hold, namely:

M, UMy 0 M) = (MU M) N (M U M;)
M0 (MU Ms) = (MO M) U (M N M,)

Obviously, in the context of system identification, one can
casily see that the terms "greatest lower bound” and "least
upper bound” in the above definitions can be replaced by
"greatest common underparametrization” and "least com-
mon overparametrization”, respectively. It is also clear that
this terminology is implicitly linked to the model dimension,
which means the number of free parameters in the model
structure. Indeed, each parameter in the structure has to be
considered as one available degree of freedom and a structure
M; can never overparametrize another structure M, if it has
{fewer degrees of freedom than M,.

Every pair of model structures in the model set possess
a greatest common underparametrization. To obtain the
greatest common underparametrization of two given model
structures M; and M, it suffices to construct a new model
structure that possesses only parameters that are present
both in M, and M,. For example, the greatest common
underparametrization of S; and S, defined in Section 2,
Su = S1 n Sz, is

. -1 _ -1 e(t)
SO ¢ Ao(q )y(t) - .Bo(q )‘U(t) + -Do(q_l)
where d(Ap) = 2, d(By) = 1, and d{Dp) = 1. Of course,
M;anzM] ifM; (_:MQ.

On the other hand, it can happen in certain circumstances
that this process gives us a model structure with no param-
eters at all. For this purpose, we define a fictitious empty
model structure Sy in which all parameters are set to zero.
Sp is the greatest common underparametrization of all model
structures in the model set M.

Conversely, every pair of model structures in the model set
possess a least common overparametrization. To obtain the
least common overparametrization of two given model struc-
tures M, and M, it suffices to construct a new model struc-
ture that possesses only parameters that are present in M, or
in M,. For example, the least common overparametrization
of §; and S, defined in Section 2, 53 = S; U Sy, is

e(t)
Di(q7)
where d(A;) = 3, d(Bs) = 3 and d(Ds) = 2. Again, M; U
M‘z = MQ if M1 g Mz.

Note that even though the model set is theoretically infi-
nite, it is never really the case on a computer. Indeed, due

S5 : As(g™") y(t) = Ba(g™") u(t) +




to the finite length of the data, there exist some bounds on
the delays and the orders of the different mode! polynomi-
als for our model structures to remain identifiable, Even if
we have enough data, the maximal model dimension will re-
main bounded by the amount of working memory that has
been allocated at compilation time. In the sequel of the pa-
per, a model structure obeying the above mentioned restric-
tions will be called an admissible model structure. However,
the least common overparametrization of all our admissible
model structures in the model set M will probably always
be an inadmissible model structure.

Finally, with the rules we have given to build M; UM; and
M N M,, it is not difficult to verify that the distributive laws
hold effectively. Note also that the concepts developed in
this Section can be extended to define the "nearest” model
structure in a certain model class of a model structure be-
longing to another model class. For example, the least ARX
overparametrization of the ARARX structure Sy of Section 2
is

A7) y(t) = B(g™ ") u(t) + €(1)
where d(A) = 4 and d(B) = 4. Conversely, this latter struc-
ture is also the greatest ARX underparametrization of all AR~
MAX structures

A(q7)y(t) = Blg™"Yu(t) + C(a™) e(t)
for which d(A) = 4, d(B) = 4 and d(C) > 0.

4 WHAT ABOUT THE
PREDICTION ERROR
VARIANCE ?

The reason why the lattice structure of the model set is so
important is that all expressions establishing that two model
structures are hierarchically nested can be automatically re-
placed by an expression about their respective prediction
error variances. We have

MCM = ag(Ml) > az(Mz)

where o?(M;) stands {or the experimental variance of the
prediction errors ex{M;) resulting from the estimation of M;
on N sampled data:

1 N
(M) = 5 3 ek (M)
k=1
Unfortunately, the reverse property does not hold. However,
we have that

o’z(Ml) > O’Z(Mg) = M, ¢ M,y

To be convinced that the above implications hold ftrue,
one should remember that the prediction error variance is
nothing but the output of an optimization procedure during
which the parameters of the model are calibrated so as to
minimize it. So, if My € My, o%(M) is the output of a
constrained version of the problem of minimizing o2{M,).
Thus, we are sure to do at least as well with M, as with M,
since each model in M; can be obtained as a special case of
models in M,. This is true independently of the hypotheses
that can be made about the data, the only restrictions being
that we must use rigorously the same data set to estimate
our models, and that we take care not to be misled by local
minima.

However, if we choose to compare model structures accord-
ing to their prediction error variances, we should modify the
terminology used to state the lattice structure of the model
set as follows:

1. Each pair of elements M;, M, has a least upper bound
denoted by o2(MyNM>), so that o?(MyNM;) > (M),
o (MiNM;) > 0*(M,), and there is no element My such
that Mo C My, My C M, and 0% (M, N My) > o(My);

2. Each pair of elements My, M, has a greatest lower bound
denoted by o*(MyUM,), so that o2(M;) > o*(MUM,),
o}(My) > o*(MyUM,), and there is no element M, such
that M1 g M4, Mg Q M4 and Uz(Mq) > 0'2(M1 U Mz).

3. The distributive laws hold, namely:

02(M1 U (Mz N M3)) = 0'2((M1 (6] Mg) n (Ml ¢} Ma)) )
02(M1 n (Mg UM3)) = O’z((M1 n Mg) v} (M1 n Ma))

The prediction error variance of the empty structure Sy is
arbitrarily set to the output signal variance:

a*(Se) £ o*(y(t))

This is a natural choice since we are sure to do better with
any model structure provided it has at least one free param-
eter.

As a consequence of the finite length of the data set,
we also know that model structures exist somewhere in the
model set for which the prediction error variance is exactly
zero. However, depending on the number of sampled data,
those model structures will generally be inadmissible model
structures. This is no problem since those model structures
are devoid of any interest.

5 THE F-TEST

We cannot compare models on the sole basis of their pre-
diction error variances. Indeed, since the prediction error
variance never ceases to decrease with the number of param-
eters in the model, this would lead us to choose huge models
somewhere on the boundary of the set of admissible model
structures.

On the other hand, the following quantity, which is asymp-
totically F-distributed with (n, —n;) and (N —n,) degrees of
{reedom, can be used to check whether the prediction error
variance increases significantly when the number of param-
eters of a given model structure M, is decreased from n, to
ny, yielding M;, and N sampled data are available:

o* (M) — o} (M) N —n,
o2(M,) ng — g
Indeed, the following expression holds for n; and ng, where

dim(M;) stands for the number of parameters in the struc-
ture M;:

F=

ng = dzm(M.),z = 1,2.

Here, we become dependent on the hypotheses that can
be made about the data and the true system that generated
them (see for example Ljung 1987, or Séderstrom and Stoica
1989).

Definition 2: In the following, a model structure will be
considered as an acceptable solution if all its underparametri-
zations yield a significantly worst prediction error variance,




while none of its overparametrizations yield a significantly
better variance.

Definition 3: An optimal solution, in turn, will be de-
fined as the acceptable solution with the least prediction er-
ror variance.

6 THE ENCOMPASSING
PRINCIPLE

Finally, the F-test cannot be used to compare non-nested
model structures. One may then ask what should be done
in the case of the two structures Sy and S; we encountered
in Section 27 To cope with this problem, the trick s to use
the encompassing principle (Mizon and Richard 1986), the
key idea of which is to compare both model structures with
their least common overparametrization §; U §;. Once the
F-tests have been computed, one for §; and $,U S, the other
for S; and Sy U S, the structure yielding the least value is
preferred. A similar procedure could be devised with the
greatest common underparametrization S; N.5;.

Now, if one wants to combine the encompassing principle
with the use of a particular confidence level, three cases may
be encountered in practice. If S; U S, is used, we have to
consider the following situations:

1. One of the structures, say S, is significantly worse than
51 U S, while the other, S, in this case, and 57 U S; do
not differ significantly from each other. S, which is said
to encompass S;, should be preferred;

2. Both structures S; and &, are significantly worse than
Si U S;. In this case we are unable to decide which
structure from Sy or §; should be preferred but we are
left with a new structure that transcends both §; and
S, in merit;

3. Neither S;, nor Sy, is significantly worse than $; U S,.
Here, the structure with the least number of parameters
should be preferred from a parsimony point of view.

On the other hand, the following cases apply when $; NS,
is used:

1. One of the structures, say Sy, is significantly better than
81 M S, while the other, S; in this case, and S; N S, do
not differ significantly from each other. Sy, should be
preferred;

2. Both structures S, and S; are significantly better than
81N 8. In this case, the structure with the highest value
of the F-test should be preferred;

3. Neither Sy, nor S5, is significantly better than $;NS;. In
this case we are unable to decide which structure from
Sy or S; should be preferred but we are left with a new
structure that transcends both S; and S, in merit.

7 BRANCH-AND-BOUND

The lattice structure of the model set provides a conve-
nient way to partition the set of all underparametrizations
of a given model structure. Moreover, the prediction error
variance of a given model structure represents a lower bound
on the best value of the prediction error variance that can

be achieved in the set of all its underparametrizations. This
allows to tackle the identification problem from a branch-
and-bound point of view, a problem solving paradigm which
has been developed mainly in the context of integer program-
ming and artificial intelligence (see for example Hillier and
Lieberman 1989 or Nemhauser and Wolsey 1988).

One way to implement the technique in the context of
system identification is to start in the model set with a root
or parent model structure of high dimension. Doing this,
we are almost sure to start with an overparametrization of
the optimal solution we are looking for. Let us assume that
an upper bound o2 on the prediction error variance of an
optimal solution has already been obtained. The set of all
the underparametrizations of the starting model structure
is first divided into several subsets. This is done, for ex-
ample, by generating all child model structures that can be
obtained by removing a constant number of parameters at’
a time from each polynomial in the parent model structute.é
Then, it suffices to estimate these model structures to ob-!
tain a lower bound o} on the prediction error variance of an’
hypothetical optimal solution within each of these subsets.
Those underparametrizations whose lower bound exceeds the’
current upper bound and those that are significantly worse:
than their parent model structure are definitively excluded’
from further consideration, or pruned, together with a/l their;
underparametrizations. Then, one of the remaining under-
parametrizations is chosen to be split further into several
subsets. Their lower bounds are obtained in turn and used
as hefore to prune some of them.

An overestimation of the prediction error variance of an
optimal solution is obtained the first time a model structure
is found ali the underparametrizations of which are either
significantly worse or already excluded. In the sequel, each
time a better acceptable solution is encountered, it replaces
the current solution and the upper bound is modified ac-
cordingly. Another underparametrization is selected from
the remaining ones to be partitioned again, and so on: this
process is repeated until an acceptable solution is found, the
prediction error variance of which is no greater than all the
lower bounds on the remaining subsets. We are sure that
this solution is optimal since none of the remaining subsets
can contain a better solution.

8 A SIMPLE EXAMPLE ON AN
ARARX SYSTEM

Branch-and-bound was run on 1000 sampled data ob-
tained from the following seven parameter, one input - one
output ARARX system

(1~1.2¢71 +0.72¢7 ) y() = ¢ (1 — ¢ + 0.5¢72) u{t)
e(t)
1+4¢714+0.5g72

where a pseudo random binary signal with amplitude 1 {vari-
ance 1) was used for u and a Gaussian white noise with zero
mean and variance 0.25 was taken for e. In what follows,
the notation n,(7 — ny)ng has been used to characterize such
ARARX structures where n, and ng are the number of pa-
rameters in the autoregressive and noise polynomials, while
7 and n; are the positions of the first and last nonzero pa-
rameters in the exogeneous polynomial. For simplicity, ng
will be omitted in the case of ARX structures. :




Beginning from 10 (1-10), an exploration was first con-
ducted in the set of ARX structures, This search is summa-
rized in Table 1 where the stripping factor (s;), defined as
the number of parameters that are removed at a time when
attempting to progress from a parent structure, is given for
each step {step) together with the parent structure number
(from) and a list of the child structures (models) that should
be investigated during the step. Only the structures which
required estimation have been numbered (n). The predic-
tion error variances (o%) of those structures that had to be
pruned are followed by a { mark. The prediction error vari-
ances of the structures which did not require estimation are
replaced by a {mark followed by a pair of parentheses en-
closing the number of the pruned structure that allowed to
avoid the estimation. When the structure has already been
estimated, its number is indicated in place of its prediction
error variance. Model dimensions are also given in the last
column {dim(#)).

step | 87 | from | n | models P dim(0)

1 [10(1-10) | 0.2560 | 20

1 51n=1]2]| 5(1-10) 0.2575 15
3 | 10(1-5) | 02138 | 15

4 | 10(6-10) | 1.2554f | 15

2 5 n=215]0(-10) | 0.3469} 10
515) | tr=3) | 10

5(6-10) | tn=4) | 10

3 | 4| n=2]6]1(1-10) | 03171t | 11
71 5(1-6) 0.2586 11

8 | 5(5-10) 1.26341 11

i dn=7 106) | {n=06) 1| 7
5(1-2) | f(r=3) 7

5(56) | tn=8) | 7

5 13| n=7]9] 2(1-6) | 0.3286% 8
513) | Hn=3) | 8

10| 5(4-6) | 1.2644f | 8

6 [ 2| n=7|11| 3(1-6) | 0.3024f | 9
5(1-4) | t(n =3) 9

12| 5(36) | 126445 | 9

7 1| n=7 (13| 4(1-6) 0.2586 10
515 | tn=3) | 10

14| 5(26) | 02588 | 10

§ |1 |n=13 3(16) | n=11 9
415) | tn=3)| 9

15| 4(26) | 0.2589 9

9 [1|n=14 426) | n=15 9
525) | n=3)] 9

536) | n=12 | 9

10 {1 in=15 3(2-6) | t{n =11} 8
4(25) | tn=3) | s

4(36) |tn=12)] 8

Table 1: The search in the set of ARX structures.

During the first step, we tried to strip the starting struc-
ture of five parameters at a time (step = 1, s; = §,
fromn = 1), leading to the estimation of three under-
parametrizations (n = 2,3 and 4). We could have restarted
the procedure from a higher model structure than 10 (1-
10) if all the child structures were significantly worse than
the root one at this stage. However, since one of these un-
derparametrizations, 5 (1-10) with o® = 0.2575, does not
differ significantly from the root structure (% = 0.2560),
it is believed here that the latter is an overparametrization

of the structure we are looking for. The underparametriza-
tions that differ significantly from the starting one, 10 (1-5)
with ¢ = 0.2738 and 10 (6-10) with 0 = 1.2554, are pruned
forever (1) and the procedure is restarted in step 2 from 5 (1-
10), the underparametrization with the best prediction error
variance obtained so far (step = 2, s; = 5, fromn = 2).

Only one of the three underparametrizations that should
be investigated during the second step needs to be estimated
since overparametrizations of the others have already been
pruned. For example, it makes no sense to compute the
prediction error variance associated with 5 (1-5) since this
structure is an underparametrization of 10 (1-5), which has
been pruned during the first step (n = 8). The same holds
for 5 (6-10) since this structure can be obtained by removing
parameters from 10 (6-10), a structure that has been pruned
also during the first step (n = 4). At this stage, since the
only structure which required estimation during the second
step, 0 (1-10) with o? = 0.3469, must also be pruned, we are
unable to go further by stripping five parameters at a time
without significantly increasing the prediction error variance.

We then repeat the same procedure during the third step
but, now, by trying to strip four parameters at a time (step =
3, sy = 4, fromn = 2}, Only one promising structure is
encountered here: 5 (1-6) with o? = 0.2586. During the
fourth step, we try to strip it of four parameters at a time
(step = 4, sy = 4, fromn = T). Without success, all the
child structures (1 (1-6), 5 (1-2) and 5 (5-6)) have to be
discarded. We then try to strip 5 (1-6) of three parameters
at a time in the fifth step (step = 5, s; = 3, fromn = 7).
Two structures have to be pruned here {n = 9 and n = 10),
while the third one, 5 (1-3), has to be discarded. So, we try
to strip 5 (1-6) of two parameters at a time in the sixth step
(step = 6, sy = 2, fromn = T). Here again, two structures
have to be pruned (n = 11 and n = 12}, while the third one,
5 (1-4), can be ignored since it underparametrizes a pruned
structure (n = 3). We then enter the seventh step where we
try to strip 5 (1-6) of one parameter at a time (step = T,
sy =1, fromn =T7), and so on. The procedure is continued
until a dead-end is encountered when trying to strip one
parameter at a time (siep = 10, s; = 1, fromn = 15).
After completion of the whole process, the only structure all
the underparametrizations of which are significantly worse,
while none of its overparametrizations is significantly better,
is 4 (2-6) with o? = 0.2589.

An exploration in the set of ARARX structures can now be
started from the structure on which the ARX search stopped.
The results are shown in Table 2.

from | n | models a* dim(8)

step | sy
11 | 4 in=15]16 | 0(2-2)4 | 0.3081 5
12 | 3 {n=156]17[1(2-3)3]0.3179 6
13 12 |n=15]18]2(2-4)2 | 0.2592 7
4 | 2fin=18 0(2-2)4 [ n=16 5
16 |1 [n=18 1(2-3)3 | n= 17 6

Table 2: The ARARX search from the best ARX model.

In step 11, we try to remove four degrees of freedom by
imposing four poles and zeros of the model structure 4 (2-6)
to cancel each other (3; = 4}, leading to the estimation of
0 (2-2) 4 with ¢® = 0.3081. Since this structure has to be
pruned, we then impose three poles and zeros of 4 (2-6) to
cancel each other in the next step, and so on. As can be




seen, the ARARX search from the best ARX model ends very
quickly on the structure with which the data were gener-
ated: 2 (2-4) 2 with o? = 0.2592. However, this is not very
surprising since the ARX search already ended on the least
ARX overparametrization of the structure that generated the
data. The results are not always as clear-cut. Depending on
the number of sampled data and the value of the parameters
in the true system, the ARX search can stop on structures
that do not overparametrize the true data generating pro-
cess exactly.

Here, for the sake of clarity, we first restricted the search to
the case of ARX structures. One cure would have been to try
ARARX structures from the very beginning of the procedure.
In this case, 12 ARX and 25 ARARX models were estimated to
reach the same conclusion. Since ARARX structures accept
least ARX overparametrizations, we then started an explo-
ration in the ARARX set from 10 (1-10) after completion of
the ARX search and tried to use existing pruned ARX struc-
tures to avoid estimating too many ARARX models, but we
saved the estimation of only one ARARX model. It could be
interesting to first estimate the least ARX overparametriza-
tion of any ARARX structure before estimating it, just to see
whether the ARARX structure could not already be pruned
on 2 cheaper test.

Finally, we could also have run ARARX explorations only
from some of the best ARX structures obtained in lower di-
mensions. However, one is free to use validation tools here
to decide whether or not the exploration can be stopped.
In particular, confidence levels on the parameters could be
used to check if the walk through the model set could not
be pursued further by zeroing some intermediate polynomial
coefficients.

9 CONCLUSIONS AND
PERSPECTIVES

In the worst case, only 37 ARX and ARARX structures
have been estimated. However, a few more could have been
investigated if another confidence level had been used for the
F-test, but what really matters is that many more could have
been generated if another strategy had been used to adapt
the number of parameters that are removed at a time. In this
case, an exhaustive search over all ARX underparametriza-
tions of the starting structure would have required the es-
timation of 550 models. This number grows up to 1,864 if
all ARARX underparametrizations have to be visited. Since
ARARX structures are far more expensive to estimate than
their ARX counterparts, one easily sees that considerable sav-
ings in time can be gained by pruning the search three judi-
ciously.

Run on industrial data, a strict application of the F-test
sometimes leads the branch-and-bound procedure to stop on
a structure with too many parameters. This is especially
true when the search is limited to the case of ARX model
structures. The problem with real-life sampled data is that
we are never sure of what can be considered to be the "true
generating process” and when it becomes interesting to use
more complicated model structures. We have indicated how
branch-and-bound can be used to cope with ARARX struc-
tures. This strategy, and other scenari that can be imag-
ined in order to save the number of models estimated when
working with ARMAX and Box-Jenkins structures, are be-
ing studied. Two problems are in order here. First, we

have to consider the existence of local minima. An under-|
parametrization M; of a given model structure M, could:
yield a better prediction error variance than M, simply be-
cause the algorithm used to estimate M, stopped at a local
minimum rather than getting a global one. Therefore, we
will have to devise a special mechanism to check such incon-
sistencies. A simple solution would be to use the parameters
obtained for M, as initial conditions and to restart an esti-
mation of M, from that point. Second, it is well known that
overparametrizations can give rise to numerical problems.

One way the branch-and-bound procedure could be
brought to stop on more reasonable model structures when
run on industrial data, would be to base it on a combina-
tion of tools rather than relying only on the values of the
F-test. Investigations are currently carried out in order to
include classical validation tools in the objective function.
For example, the original data set could be separated into
two different subsets, one for parameter estimation and the
other for model validation. Doing this allows one to compute
values of the F-test on the basis of prediction errors obtained
on the first data set, while the second data set allows one to
test how the estimated model behaves on data that were not
used to calibrate its parameters. We also intend to use con-
fidence levels on the parameters to conduct the search more
competently and adapt the number of parameters that are
removed at a time to map the model set. This could be in-
teresting when working on sampled data from systems with
high delays.

REFERENCES

Gusfield, D. and R. W. Irving (1989). The Steble Mar-
riage Problem, Structure and Algorithms. The MIT Press,
Cambridge, Massachusetts.

Haest, M., G. Bastin, M. Gevers and V. Wertz (1988a).
An Expert Workstation for System Identification. Proc. 8th
IFAC/IFORS Symposium on Identification and System Pa-
rameter Estimation, Beijing, P.R.C., Vol. 3, pp. 1990-1995.

Haest, M., G. Bastin, M. Gevers and V. Wertz (1988b).
An Expert System for System Identification. Proc. Ist
IFAC Workshop on Artificial Intelligence in Real-time Con-
trol, Swansea, U.K., pp. 101-106.

Haest, M., G. Bastin, M. Gevers and V. Wertz (1990a).
Espion: an Expert System for System Identification. Auto-
matica’s Special Issue on Identification and Sysiem Param-
eter Estimation, Vol. 26, No. 1, pp. 85-95.

Haest, M., G, Bastin, M. Gevers and V. Wertz (1990b).
On the use of Search Methodologies in System Identifica-
tion. Proc. 29th IEEE Conference on Decision and Control,
Honoluly, Hawaii, Vol. 6, pp. 3182-3187.

Hillier, F. 8. and G. J. Lieberman (1989}. Iniroduction to
Operations Research. McGraw-Hill, New York.

Ljung, L. (1987). System Identification. Theory for the
user. Prentice Hall, Englewood Cliffs, New Jersey.

Mizon, G. E. and J, F. Richard (1986). The Encompassing
Principle and its application to testing non-nested hypothe-
ses. Econometrica, Vol. 54, No. 3, pp. 657-678.

Nemhauser, G. L. and L. A. Wolsey (1988). Integer and
Combinatorial Optimization. Wiley, New York.

Soderstrdm, T. and P. Stoica (1989). System Identifica-
tion. Prentice Hall, Englewood Cliffs, New Jersey.




