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1.  Ilntroduction

Most of the early literature on the approximation of linear
systems by parameterized models focused on the role
glayed by noise (Goodwin and Payne (1977), Ljung (1987),

oderstrom and Stoica (1989)). Inrecentyears attention has
shifted to the equally significant problem of bias resulting
from undermodelling (LLung (1976), Caines (1978),
Anderson Moore and Hawkes (1978), Kabaila and Good-
win (1980), La Maire et. al (1987) and Kosut (1988)).

The seminal works of Ljun 51987), Ljung and Yuan (1985)
and Wahlberg and Ljung (1986) have produced a number
of important qualitative insights on the distribution of bias
and variance in estimated transfer functions. Here we go be-
yond these works in two respects. Firstly, we show the im-
portant role played by model structure in bias/variance dis-
tribution.This is achieved by use of an exact expression for
the noise error rather than the asymptotic in model order
-result used in Ljung (1987). Secondly, we develop our re-
sults in continuous nmwor equivalently the Delta operator
for the discrete case). We believe this sheds more light on
the role of physical parameters such as observation period,
input energy and noise spectral density than is obtained in
the tradition discrete time shift operator presentation.

The bias and variance formulae that we derive are based on
the use of least squares for the estimation of the parameters
of the nominal model. Our focus will be on formulae for the
bias and variance in transfer functions; the parameters are
only a vehicle for obtaining estimates of the transfer func-
tion.

Because we derive quantitative formulae for the bias and
variance, we can then also make a quantitative analysis of
the role of various design parameters on these two quan-
tities.

One of our contributions of our paper is to show that the
choice of a parameterization for the nominal model is re-
lated to an implicit definition of basis functions. The nom-
inal model can be thought of as a combination of these basis
functions. We examine the role of these basis functions on
biasand variance as well as their interplay with the input en-
ergy distribution, the data filter frequency response and the
noise distribution in some detail.

2.  System Description

We denote the unknown true system frequency response by
Gi(jw) . We assume that, over a given frequency range
[@ min » @ max ] of interest, G7(jw) can be written as the sum

of a parameterized but unknown nominal model,
G(0y, jw) plus a residual Ga(jw):

Gr{jw) = G(6y,jw) + Ga(jw) 2.1)
We assume our input-output description to be as follows:
y=gr*u+n (2.2)

where g is the impulse response corresponding to Gi(jw) ;
u,y,n denote the input, output and noise respectively; and

* denotes convolution in the time domain. We further as-
sume that in the time domain, n is a wide sense stationary

process (independent of G ) with power spectral density
Sn(w), i.e.

1 ;
) = —— | elr § 2.3
Eln(n(t - 7)) @ - { e ()Mo (2.3)
It is also convenient to describe the model (2.2) in the fre-
quency domain as

Y(jw) = G(6o,jw)U(jw) + Ga(jw)U(jw) + N(jw) (2.4)

We acknowledge that the Fourier Transform model (2.4) is
strictly only valid where the signals in the time domain have
an infinite length. When only a finite data record is avail-
able, an additional error term should be added. However,
for simplicity of exposition, we shall not explicitely include
these terms. In the infinite data case, the Fourier transform

of a time-domain stationary noise signal n(f) has the prop-
erty (Cox and Miller (1965)) that N(jw) is uncorrelated in
the frequency domain:

E[NGo)NGws)'| = Su(wp)d(s- w2) (25)
where d(+) is a dirac delta function.

We also introduce the notation ¢,(w) to denote |U(jw)|?.
This represents the input energy spectral density at fre-
quency w . The total energy in the signal u(f) can then be
decomposed into its frequency components as

T 5 ©
1
f ol = 5= j dulwMo 2.6)
0 - .

If u(f) is a stationary signal, then one can define its power
spectral density S, () . Assuming ergodicity, the following
relationship exists between S,(w) and ¢,(w):

o) 1
,ll_L"l T 27[3,,(0)) (2.7)



Mativated by this refationship, we shall sometimes approxi-

mate ¢,{(w) by 57;.5',,(«;) later in this paper.

3. 'aran

We will assume that the nominal model can be parameter-
ized as foHows:

G(0.jw) = Vja)0 3.1)
Where V{jw) is a p-row vector of known basis functions
and 6 € R?

One sitvation whea the model (3. 1) is immediately obtained
is whpn one fixes the denominator in a rational transfer
function model. Thus we write

ization of th ming

G(0,jw) = %%fg-’« 3.2)

where

p-1
N joy = 3 (wf (3.3)
k=t
and D(jw) is a given stable p order polynominal. In this
case, we have

Wiw) = o, (3.4)

;%6[1 e Gy

The model (3.1) also holds (at least approximately) in the
following situation : suppose the nominal model is

; B(fy.jw)
Glfy, jw) = —L0=L
Bo.jo) = Goja)
where  B{(fyjw),A(f jo)
(- 1) and n respectively and suppose that an approxima-

tion F of fy is known, then we can expand G(fy, jw) as

@.5)

are polynomials of order

GlBo.jw) = Tijw) + W)y (3.6)
Gljw) = %%%- Wjw)p 3.7
and
W) = b [- BP0 - - = Go) BB jo)
ABjo). . . oy AR ju) (3.8)
= m[l,jw, ) § 3.9)

where § is the transpose of (he Sylvester matrix for the
polynomial pair B(f}, jw), A(f.jw) which we assume to be
relatively prime at . Thus

. T
-bo = b
0-by by
l~ \~
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@y a1
. .
~’ “
\Q ‘\
L a, a1 J

(3.10)

[

where a;,5; are the coefficients of the polynomials
AB,jw) and B, jo).

We note [rom (3.6), (3.9) that by defining A(jw) L A@ jw) -
1

Wjw) & W[l’jw' o Gopt] @.11)

9238 (3.12)
and

Y &y-g*u (3.13)
Then we have

Y'(jw) = Uju)ju)dy + Uje)Ga(io) + Njw) (3.14)

We note that is the same model as obtained in (3.4) where
D(jw) takes the value A(jw)?.

4.  Least Squares Estimation

The least squares criterion for estimating & can be conveni-
ently expressed in the frequency domain using Parseval’s
theorem (Ljung (1987)) as

J = J | Fy-rFuve |? 4.1)
where F(jw) represents prefiltering of the input and output
data. In this, and subsequent expressions, we have omitted
the argument dw for simplicity of notation, as well as the
interval of integration. Uniess otherwise stated, this interval
will always be [@nin, Omax)- '

The value, 8, of 6 minimizing J in (4.1) is readily shown
by differentation to satisfy

U iFI2¢,.VV]é - [ [ ;F.zuw]

The corresponding eslimate of the parameterized imodel is

G(8,jo) = V(ju)i . We shall denole the matrix in the left
hand side of (4.2) as M. Equation (4.2) has a unique solution
provided the spectrum |F|2g, of the filtered input is such
that it makes M nonsingular. We shall discuss the interela-
tionships between the choice of filtered input spectrum, the
choice of basis functions and the nonsingularity of this ma-
trix in Sections 7 and 8.

(4.2)

We next turs to the study of the properties of 6 . Substitut-
ing (2.4) into (4.2) yields

[ J [FPqS“VV]é =

I:J [F;z[qﬁuVVo., + ¢V Gy + U‘V‘N]] 3

Defining = -0y, it then follows that

U IFV@,W](} = I (P4 Ga+ UVN] (40

This expression shows the respective contribution in the
error @ of the unmodelled dynamics G, and of the noise

N. We thus partition 8 into
9= G.;, + 0]4

‘where 0, and Oy are defined by

(4.5)




[ j |r|2¢,,w]éb - [ |FI% Ga 46)

[J IF3_2¢:IVV]0N = J IFI2U'V'N 7))

We then immediately have the following result

femmad.l

The error_ in (he transfer function estimate
Gi{jw) - G(8,jw) can be decomposed as follows:
Gi(jw) - G(@.jw) = Gyjw) + Gaijer) 48)
where '
Gyljw) = Galjw)~Vjw)0s (4.9)
Gajw) = - V(jw)ly 4.10)
Proof

Gr(jw) - G(6,jw) = Gi(jw) = G(0pjw)
+ G(B,.jw) - G(6, jw)
= Ga(jw) - Wiw)d

= Galjw) - Vjw)dy ~ Vijw)on  (4.11)
We will call the transler functions Gy and Gy the ‘under-

modelling’ and ‘noise’ contribution of the transfer function
error respectively. (In the literature, these are sometimes
called bias and variance errors - Ljung {1987)).

We next analyse some possible choices and properties for
the vectors Vjw) .

5. Discussion of basis functions

" Itis clear from expression (4.2) that the vector V{jw) plays
an important role in the estimation of Lhe transfer function.

We note that G(f,jw) is simply a linear combination of the
elements of V{jw), that is

Gl.jo) = S i) (5.1)
i=1

Thus the Vi{jw) play the role of elementary frequency re-

sponses from which G(f,jw) is constructed by superposi-
tion. We shall therefore call Vijw) ; i =1, ... ,p the
basis functions for our nominal model.

In the next two sections we shall study the role of these basis,
functions, not only how they effect the description of-

G(8,jw) but also how they effect the estimated 6.

To gain some insight to the format of Vi{jw) we will next

analyze several representative choices for these basis func-
tions.

5.1  Orthogonal Frequency Domain Pulse Functions

One possible set of basis functions is a set of non-overlap-
iﬁg andbass filters. Consider the vector constructed as
ollows:

Vaa(jw) = Bljw) ; i =1, . .. ,% (5.2

Vadjo) = jsign(@))Bijw) ; i = 1, % 6.2)b

where { 5;} represents a set of non-overlapping ideal’
bandpass filters with bandwidths BWy , .. . BWz. i

A property of these basis functions is that
[1Frsiv=0: ik 63

These basis functions are implicitely used in "so called”
non-parametric frequency response estimation. It is usual
to take the bandwidths BW; . . . BW% as equal. However,

this is not necessary. Indeed, it may be desirable to subdi-
vide the frequency response more finely in some intervals
if it is known a-priori that the frequency response is likely
to exhibit more variability in these intervals.

52  Rational Transfer Function Basis Functions

We have argued in section 3 that a generic set of basis func-
tions for rational transfer function estimation has the form

Vo) = -b—ég;)-[l.jw, ooy (5.4)

For this set of basis functions, equation (5.3) does not hold
in general. However, what is true, is that basis functions
whose indices differ by an odd number are orthogonal, that
is (5.3) holds for (i-k} odd

To reveal more of the structure of these basis functions say
we have a second order rational transfer function with four
parameters with basis functions chosen as in (3.11). Further,
assume that A(s) = (s + ap)(s + az)with aand az real
and distinct, Then the magnitude of the frequency response
of the four basis functions is as shown in Figure 5.1.

In the figure we also show the frequency support for each
of the basis functions. These have been defined as the fre-
quency interval over which the magnitude of the basis lunc-
tien does not drop by more than 3 dB from its maximum va-
lues, The support for Vi{jw) is denoted by [w;, @7} .

Althou%h thefunctions are not strictly orthogonal in the
sense of (5.3), on noting that the result holds for (i-k) odd,
we see from Figure 5.1 that the functions do exhibit a high
degree of orthogonality. This is apparent from the fact that
the interval {w;, @] has small overlap with [w3, @3] for
example.

The near orthogonality of these basis functions is borne out
in simuiation studies (Goodwin et.al 1991).
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5.3 Qruthogonal Basis Functions

Given any set {V,(jw)] of basis lunctions, then it is always

possible to find a new set [V (o)} of basis functions witl

the same span but which satisfy (5.3) (or a particular filter
F and input spectrum ¢, (w) . This can be achieved via the
standard  Gram  Schmidt  orthogonalization procedure

(Goodwin et.al 1991). This amounts to taking a linear
combination of the basis functions as follows:

vige) i Vijw)
' |
_ |m 1 5.5)
Vo)) o 1] IVplw)

Thus, we may assume (5.3) holds without loss of generality.

6.  Undermodelling Error

We note that the nominal model can only be formed as a
linear combination of the basis functions. Thus, for
example, if we are given the basis functions whose ampli-
tude response is shown in Figure 5.1, then it is clear that the
true frequency response can, at best, be averaged over the
frequency support of each basis function. This teils us that
to get a good model at all frequencies will require us to
choose basis functions consistent with the expected smooth-
ness of the true [requency respnse.

To be more specific about the nature of the bias errors we
need to say more about the actual nature of input signal and
the smoothness of the true frequency response.

We first prove a preliminary result (or a specific choice of
input energy distribution. Roughly speaking the result says
that if the lgl{tered input spectrum has less than or exactly p
points of support (where p is the number of unknown para-

meters), then the undermodelling error Gp(jw) is identical-

ly zero at those points of support. Further, if there is no.

additive noise, this result means that at those frequencies,
G(8,jw) is exactly equal to Gy{jw) !

Lemma 6.1

Assume that the filtered input signal is a linear combination
of I sinusoids where [ < % and p is the number of basis
functions in the nominal model. Then at the corresponding
frequencies wy.... @ in the input spectrum we have

Gojw)=0;i=1,...1 ©.1)
for all possible realizations of Ga(jw).
By our input assumptions, we can write
!
[P0 = 3 Bdd(w - ) + (o + wi)] (6.2)
1

Therefore (4.6) can be written as

{ !
[ZﬁkV(iwk)V(iwk) 0 = D BV (or)Galiwr) (6.3)

1 1

Equivalently ; we have

.
. BV Gon)| Vi)l - Gajw)| = 0 ©4)
. ,
For all non trivial choices of basis functions, the vectors
ViGw), ...,V({w) will be linearly independent,.
Hence from (6.4) we have that

V(iwi)fs ~ Galjar) = 0fork =1, ... I (6.5)

The result then follows from (4.9)
vy

‘the fact that in the noise free case, the estimated transler
function G(jw) can be made to coincide with the true
transfer [unction, Gy(jw) , when pure sinusoidal inputs are

applied is well known when G(jw) is estimated by non-

arametric methods (Ljung (1987)). That this result also
ﬁolds when a parametric model and a least squares estima-
tion method is used, is less obvious and we have been unabie
to locate a proof elsewhere in the literature,

It follows immediately [rom lemma 6.1, that if one wants to
minimize the bias at a particular frequency, wp, one nced

only applr a filtered input spectrum that has less points of
support then the model has degrees of {reedom provided
one of the input frequencies is at wg. Indeed, this is a

special case of the following more general result.

Theorem 6.1

Suppose we want to optimize the following weighted func-
tion of undermodelling errors:

Jy = Ile(iw)!zX(w)dw (6.6)

by choice of the filtered input spectrum | Fijw) | gl w) ,
where X(w) is a given non-negative definite even function
of w . Then the optimal solution is obtained using

| Fjo) | *pulw) = aX(w) 6.7)

for all possible realizations of Ga(jw)and wherea is any
real positive scalar.

Lroof:
Recall that Gy(jw) is described by (4.9) where 0, is a sol-

ution of {4.6). 6 can alternatively be described as the mini-
mizing solution of the following least squares minimization
problem: ,

0 = argmin. [ 160} - Vi) 4@ FGo)I* (69

Therefore the problem of optimizing Jp is equivalent to
solving ,

min Jy i Jo = [ 1Gaio)- iolhlK(@Mo  (69)

v yYu

Subject to , being described by (6.8). It then follows from
Lemma 13.1 in Ljung (1987) that the optimal solution is

$u(@)| Fjw)|? = aX(w), (6.10)
Where a is any positive scalar.

vvy

Comments

1. Itis clear from (4.6) (4.9) that the value of @ has no
effect on the bias error G, . However, it will appear
later, that in order to decrease the noise error Gy , we
will use the largest possible value of a subject to
input constraints,

2. Note that the result specializes to the single frequency
case if X(w) is 8(w - wg) + &w + wp).

3. In the case where X(w) is constant, the optimal ‘sol-
ution is to use the filter F to equalize the actual input
spectrum, i.e. |F(jw)|?pu(w) = constant. This is an
intuitively appealing result,

4, It is interesting to observe that the result holds inde-
pendent of the choice of basis functions,




7. Noise Error

We next examine the component ol error due to noise. We
will compute the expected value of the square magnitude of
the noise error Gy in the estimated transfer function.

To simplify the analysis we will require that the least squares
problem has a unique solution. We argued in section 4 that
equation (4.2) has a unique solution if the matrix M is non-
singular. We note that this matrix depends on the filtered
input energy distribution. M cau only be nonsingular if the
co'”esi)(‘m‘ ing matrix with unfiltered input is nonsingular.
With this in mind, we introduce the following definition:

Definition 7.1
The input signal u(f) will be called sufficiently rich for the

vector V{jw) of basis functions if there exists ¢ > 0 such
that

M, = [ a0V o) o) = al .1
Theorem 7.1

Provided the input is sufficiently rich for the choice of basis’
functions, i.e. M is nonsingular, the magnitude of the noise
error satisfies: '

E{|Grj)?} = Vi) !
[ J |F|2.5',,;Fi2¢,,V‘V]M-'V(im) (1.2)

Proof:

'(IgrgS) expression follows imnediately from (4.10), (4.7) and
\AAY

We also have the following result

Theorem 7.2

The expected value of the square magnitude of the noise
error is minimized by filtering the inpuls and outputs with
a filter Fjw) such that |F(jw)|%S\(w) = constant. The
optimal value of the expecled square of Ga(jw) is then
given by

-1
EljGuif] = VUw)I:J%'iVV:l V() (7.3)
i
Lroof:
Follows immediately from the result in Appendix A,
‘ VvV
Comments

1. Since ¢,(w) isan energy density it grows propottion-
ally to time T, while S,{w) is independent of this vari-
able (being a power spectral density). Tt follows from
(7.2) that the variance of |G(jw)| is proportional to

%. However, expression (7.2) also shows that the

variance of G(6,jw) is not just proportional to the
Sll(w)
Topw)
gested in Ljung (1987), where an asymptotic (in the
model order) theory was used. The expression shows
that the distribution of |F|%@, over frequency plays
a role. Bquation 7.2 also shows the exact role played
by the basis funclions in determining the distribution
of noise errors..

noise to signal ratio atfrequency @ asissug-

2. For orthogonal basis functions obtained as in section

5.3 we can compute a more insightful estimate for the
noise error. In such case, we first define the following
quantities:

Peak magnitude of the ith orthogonal basis function:
7is sulgol (7.4)

Effective support of the ith orthogonal basis function:
l{w) 2 1if o) = %“17',-

= (} otherwise (1.5)

Effective bandwidth of ith orthogonal basis function:

@wy; = j I{w) (7.6)

Maximum Noise Power Deunsity in effective band-
width of ith basis function:

Sinax & Sup I{w)Si() .7

Average input Power Density in effective bandwidth
of ith basis function:

i & u-l—J 7.8
S @y Su{wl{w) (7.8) -
We then have
Corollary 7.1 Let the filter F{jw) be chosen optimally as

in Theorem 7.2 and let {V"{jw)} be orthogonal set of basis

functions with the same span as {V{jw)] . Then the noise

error Gn(jw) satisfies

i o $ % 7.9
Elovial] =8 2 75 oy 5

Furlher, if the set ['(®) = {k : l(w) = 1} is non empty,
then

o) = 5 =SS 7.10
llewiol) = 3. wmwm (7.10)
Proof

By using the orthogonality of the basis function in (7.3) and
by approximating the integral by values where V' (iw) is
above 0.7 of ils maximum value,

"A'AY

We note {hat the variance at a frequency @ decreases with:
the observation length, the power spectral density of the
input over the support of the corresponding basis function
and the frequency bandwidth of that support. Assuming that
the total frequency bandwidth of interest is fixed, and that
the number of basis functions is equal to the number of
parameters, this expression also shows that increasing the
width of the support of one basis function reduces the vari-
ance over that range of frequencies at the expense of an in-
crease of variance over other frequency ranges. Moreover,
if the basis functions contain resonant structures, then the
bandwidth of the corresponding basis function will necess-
arily be narrow and the variance of the frequency response
estimate in the region of the resonance is thus likely to be
large. Another observation is that, contrary to the impres-
sion given in Ljung (1987), increasing the number of para-
meters in the model does not necessarily increase the mean
square noise error. This will not occur, for example, if the

"effective support of additional basis functions lies outside

the frequency range of interest. On the other hand, there
are at least two mechanisms whereby the mean square noise
error can increase when additional basis functions are




added, Firstly, if the new basis functions are distinguished

3

via their a:qrhlude response, then adding additional basis
functions will reduce the bandwidth available for any one

1 .
————| in
[TSL(B Wy,
(7.10). Secondly, if the new basis functions are distinguished
via phase (as in the case of orthogonal ail pass networks with
a white noise input), then the input energy (TSL(BW),-)

going into each basis function will remain roughly constant
but more terms will appear in the set I'(w) in (7.10) for each
frequency of interest thus increasing the mean square noise
error.

8. i i i
We have seen in seclion 6 that if one wishes to minimnize the

integral square undermodelling error weighted by X(w)
then one needs to choose the input and filters so that

[ |F| 2r,f:,,/)('(w)] is constant. On the other hand, to minimize

the mean square noise error one needs to choose the filter
so that |F|%S, = constant. Note that when both

F(jw) and ¢,(w) can be adjusted, then both of these condi-
tions can be simultaneously satisfied. On the other hand if
¢u(w) is given (i.e. the experiment has already been per-
formed) then one has to make a compromise between mini-
mizing bias errors and minimizing variance etrors when
choosing the filter. Another observation from (7.10) is that
it is clear that it is important that non-negligible input en-
ergy go into each basis function whose eflective support
overlaps the frequencies of interest. This is a more intuitive

result than the usual statement that it suffices to have %

basis functions, thus increasing the term

sinusoids (of arbitrary frequencies) to estimate p para-
meters in a model.

9.  Conclusions

This paper has addressed the issue of the distribution of er-
rors in the estimation of the frequency response of a linear
system. Particular emphasis has been given to the role of the
basis functions in the nominal model and their connection
with errors arising from undermodelling and noise respect-
ively. Explicit expressions have been obtained for these er-
rors and the expressions have been used to determine the
optimal design of input spectra, and data filters to minimize
the crrors. The results are believed {o offer deeper insights
into the problem of estimating linear models than have
been hitherto available, Potential application areas include
off-line estimation and adaptive control. .

Appendix A

L AL

Let g(w) be a real nonnegative even function of w and let
Wjw) be a complex row-vector in €. Then for all real
nonnegative even functions f{lw) we have:

wl
PUE) & U ﬂw)V(;w)thwﬂ Uﬂ(w)g(w)v’ow)vuw]

Ul(w)V(iw)V(iwﬂ-L > P(g()
S

where S, denotes the support of g(w) . In other words, the
minimum (in a matrix sense) of P{f{-)) is obtained for

@) =glw).
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