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Abstract

The identification of an undermodeled transfer funclion from
input-output data is stated as a constrained optimization
problem. The constraints determine the identification pro-
cedure, the residual error and whether on the average the
magnitude of the {requency response is overbiased, under-
biased or unbiased, as measured by a certain weighted Lo-
bias integral. The unbiased solutions are linear combinations
of overbiased and underbiased solutions, which are precisely
the classical least squares estimates. They can be obtained
from the solution of certain eigenvalue problems. The results
are illusirated with several numerical examples.
Automatica Key Words Index: Biss reduction, Con-
straint theory, Estimation theory, Frequency response, Iden-
tification, Least-squares estimation, Modeling, Model reduc-
tion, Parameter estimation.

1 Problem formulation

Consider a true linear system G++{s) with input-output
representation y{t) = Gr(s)u(t). The model G(s,0) is
parameirized as

G(J 0): B("ta) — ﬁmsm +ﬁl7l—l‘9'"m' +"'+ﬁ|3 +ﬂll
! A(5,8) T aust + a1 8T + ... ks +

in which all coefficients are real. The parameter vector §
is defined as 0' = (a’ b') with o' = (o oy ... apy @)
and b = ( By By --- By B ). We can rewrite the
true system equation as T

0= 365

where Ga(s,0) represents the unmodelled dynamics.
The input-output equation can also be written as:

A(s, 8)y(t) — B(s, 0)u(t) = A(s,0)Ga(s, u(t) (1)

Although the right hand side could be considered as an
equation error, equation (1) as such can not be used for
the purpose of identification because it contains trans-
fer functions which are not proper, and hence require
differentiation of signals. Therefore, we convert (1} into

u(t) + Ga(s, 8)u(t)
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a system of proper transfer functions by introduc.i-;g__
an observer polynomial E(s) of degree r > maz(m, n).
Moreover, we can improve the signal-to-noise ratio and
avoid aliasing effects by first filtering the data with a fil-
ter with transfer function F(s). This filter can also be
used to focus the model fit into some desired frequency
range. Thus (1) becomes

A(s) B(s)

: : F(s)Ga(s)A(s)
Boy W) - g Fu) R L

By “
e(t) (say) (2)

where e(t) is to be considered as a residual or an equa-
tion error. We can rewrite this equation as

0! ( Z ) = e(t)

in which each element of h(t) is a filtered version of the
input or output signals of the form

F(s)st . F(s)s? .
E(s) y(t),i=0,...,n or _WE%.?“(‘)’J =0,...,m

The object function J(8) is defined as

J(9) = f" " ety = (o' 8%) A ! h{t)h!(£)dt] ( H )

1

The ’information matrix’ D is defined as

D= / oy

It is positive definite if h(t) spans R™+"*2 over the in-
terval [0,T]. This will be the case if the input u(t) is
‘sufficiently rich’ w.r.t. the dynamics Gr(s) over the
interval [0,T] and if Gy(s) cannot be modelled by a
rational transfer function with polynomial degrees less
than m and n. The problem of estimating the trans-
fer function G(s,8) can now be recast as a consirained
minimization problem:

mi"’mmr 8¢ Rrmint2 J(G) (4)

subject to constraints on 6 = (a' b&'). Without con-
straints on e and b a trivial and useless solution to the
minimization problem would be ¢ = 0 and b = 0.

Using Parseval's Theorem, the time domain criterion
(3) (with T = o00) can be rewritten as the following
frequency domain least squares criterion (see e.g. {6]):




10 = o [ Ge)AGe, o)
%(1Cr(je) - BE"" BGa e,  (5)
where
L) = D)

The minimization of (4) or equivalently, (5}, subject to
some specific constraints on @ and &, yields a specific pa-
rameter vector § and a corresponding model G{jw, 9) =

B(jw, 8}/ A(jw,8). The fact that § can be described as
the minimizing value of (5) shows liow (he fit belween
Gr(jw) and the estimated model can be affected by spe-
cific choices of the filtered inpul spectrum L(jw), i.c.
how the hias can be shaped by appropriate frequency
weighting.

2 Overbiased, underbiased and un-
biased estimation

The constraints on a and b that are considered in this
paper are of the form

v{a,b) =10 (6)

where v is some linear or quadratic function of the co-
efficients in a and b, Using a Lagrange multiplier }, the
Lagrangean for the optimization problem is given by

L{a,b,A) = J(a,b) — Av(a,b)

In order to minimize (5} subject to {6} one has to solve
the following set of m + n + 3 equations:

ac 8J Gu

67;; = 5—&:—);'5&-::0 i:(],..,,n (7)
8L aJ v

i = me —Aee =0 j=0,... 8
55 ;g j m (8)
v(a,b) = 0 (%)

It is straightforward to derive from (5) that

aJ 1

+o0 . R
= f_ L) 4G G + () AGr G

~(jwYGrB* - (~jw) BG|dw
5 = 2 [RGB+ (<uyiB
- (—jw)AGy ~ (Fw) G-,»A Jdw

From this we find:

143

Yo - bbig

i=0
= 5 [ erapgen - Bl
= 2V(8) say {10)

The number V() will be cailed the Ly-bias inlegral.

The value of (10), for a specific model §, reflects the
bias, in a weighted square sense, between the magni-
tude of the true transfer function and that of the esti-
maled model transfer function. Note that the frequency
weighting is the same in (10) as in the identification cri-
terion (5).

We shall call the estimated model Ly-overbiased il
V(0) < 0. In this case, Lhe magnilude of the model’s
transfer function as a function of frequency, is on the
average farger than the one of the Lrue system. We call
the model Ly-underbiased if V(§) > #. On the aver-
age, the magnitude of the model’s transfer Munction is
smaller than the one of the true system. The model is
Iy-unbiased if V(ﬁ) = Intervals where Lhe magni-
tude of the model's transfer function dominates the one
of the true model, are compensated by regions where
the true system’s magnitude is larger than that of the
model.

We can now combine equations {7)-(8)-(9) and equation
(10} to find that

2(0) = ,\(i: 3”(“’ Lﬁ,

=0 ==t

(11)

The interpretation is the following: While we minimize
the residual mean square error (5) subject to the con-
straint (6), we can at the same time obtain the numeri-
cal value of the Iy-bias integral (10) by substituting the

optimal value of the Lagrange multiplier A in {11).

In {7] it was observed that for a parametrization of the
model transfer function G(s) with o, = 1, the resulting
least squares solution provides an underbiased model. In
[4] it was observed that the constraint B = 1 results in
an overbiased model. These observations and the con-
jecture formulated in [4] have stimulated the present
research, in particular the quest for an unbiased identi-
fication scheme.

The main result of this paper is the observation that
the specific choice for a constraint on the veclors a and
b determines the identification method on the one hand
(least squares, eigenvalue decomposition, eic . o)y the
residual mean square error (3) and the bias mtegml (10)
on the other hand.

It will be shown how, by a careful choice of the con-
straints, one may construct identification schemes that
are unbiased, and at the same time minimize J{§) among
all unbiased models.

Throughout we shall use the following notation: The
information matrix D is partitioned as
n+l m+41
- n+1 D,, -Dub
m+1\ Di, Dy
The inverse of D is partitioned as:

n+l m41

sy _n41l E F
b hm+1(1“‘ G

where E = (Dml"'DubDbb ,,[,)WI F= _D““ Duh(Dbh"‘
D‘me D,,(,) and G = (D, ~ D!y Dz} D)y LIt
is also a positive definite matrix and both E and G
are square, symmetric, positive definite matrices, Esti-

mates are denoted by a superscript " .

3 Linear constraints

Consider the minimization of (4) with a linear con-
straint on the k-th component of a:

oy =1 1<k<ntl (12)




We then find from (7)-(8)-(9) that

D(Z):-ik)\/'l

‘The notation 1, refers to the unit vector, which is zero
everywhere, except for its k-th component, which is 1.

Hence (

which implies that the solution vector (a! §*)! is propor-
tional to the &-th column of D!, The Lagrange multi-
plier A can be determined from the constraint ag..; = 1:

o o

) = D‘._Ilk);/'Z

Ty =A2=1fese > 0
For the Ly-bias (10) we find from (11):
2V(8) = A

Hence, the bias integral is precisely equal to the k-th
least squares residual! Its positivity implies that the lin-
ear constraint (12) leads to an underbiased model (which
was observed in {7] for the constraint a,, = 1).
Similarly, it can be derived from (7)-(8)-(9) and (11)
that a constraint of the form

Ber=1 1<k<m+l (13)

leads to an ouerbi;zsed model:
V) = -J(8) = o <0

This was already observed in [4] for the constraint g, =
1. Here we find the more general result that the over-
biasedness holds for all constraints (13). The solution
vector {a! b') is now proportional to the (k-+n+ 1) ~th
column of D~ and the Lagrange multiplier follows from
the constraint (13).

Because all the solutions from the linearly constrained
optimization problems of this section can be obtained
via a 'classical’ linear least squares scheme (sce e.g. [1]
(2] (3] (8]), we propose to call the columns of D~' (nor-
malized such that the constrained component is 1), the
linear least squares solutions. Hence there are m+-n-+2
linear least squares solutions, corresponding to the m 4+
n + 2 constraints (12) and (13).

4  Quadratic constraints
With a quadratic constraint of the form

ala=1 (14)
we find from (7)-(8)-(9) that

Dywa+ Db = ad (15)
Dlya 4 Dyb 0 (16)

il

Since D is invertible and positive definite, it follows
from Cauchy’s eigenvalue interlacing property (5, 1.269])
that the submatrix Dy, is also invertible. Hence b =
~Dp'Dta, so that

( Duu ~ DapDy'Diy)a=ad  ala=1

Hence, we need to solve the eigenvalue problem for the
Schur complement of the matrix Dy in D (which is sym-
metric and positive definite) for its minimal eigenvalue
and corresponding eigenvector. Observe that:

(1)-(£)»

We find that the solution in this case is 2 linear combina-
tion of the first n41 columns of D=1, which are the n+1
least squares solutions of our identification problem,
corresponding to the constraints ay = 1,...a, = 1.
We also observe from (15)-(16) that the optimal value
J(8) is given by:

) -

Using (10} together with (15)-(16) we find:

&

o

J(6) = (&' B )D(

V() =J()=r>0

The last two expressions show that this identification
scheme provides an underbiased model.

Similarly, for the constraint
o =1 (17

the solution vector b is the eigenvector of the Schur
complement of Dy, in D, corresponding to the smallest
eigenvalue A that satisfies:

{ Dy, —~ D:,;,Da"a' D, )b =btx bh=1 (18)

The residual mean square error (3) is equal to the small-
est eigenvalue A of Dy, ~ D!, Dt D, (which is a pos-
itive definite matrix). The solution in this case is a
linear combination of the last m + 1 columns of D-t,
which are the m + 1 least squares solution of our identi-
fication problem, corresponding to the constraints Bo =
1,..48u = 1. The value of the bias integral (10) is
given by ~A and is always negative. Hence, we have a
systematic overestimation of the magnitude.

Observe that the identification method which follows
from 4'b = 1 (i.e. the eigenvalue problem (18) } might
be advantageous from the computational point of view
if the numerator degree m is small.

Obviously, the constraint (14) can be viewed as a special
case of constraints of the form

ia'f =1 (19)

f={)

with ry < n. This constraint will lead to an (r/ + 1) x
(r1 4 1) symmetric positive definite eigenvalue problem.
The solution will be a lincar combination of the first
71+ 1 columns of D~1, which are the least squares so-
lutions corresponding to oy = 1,...,a,, = 1. The bias
integral will be negative and hence we have an under-
biased identification scheme.

It is interesting to note that, while all identifications
with (19) are underbiased, the minimum of residual mean
square error (3) decreases for increasing values of r,,
This is a direct consequence of the eigenvalue interlac-
ing theorem [5, p.269) applied to the upper {r, + 1) x
(71 + 1) blocks of the matrix D! for r=0,...,n
Similar conclusions hold of course for constraints on b




of the typé Z;’f__uﬁ? = 1 with r, € m. In this case, we
have always an overbiased identification,

We can also combine the quadratic constraints (14} and
(17) into one as

dla4bb=1 (20)
It now follows from (7)-(8)-(9) that

o()-(3)

Obviously, the optimum value of A is precisely the small- -

est eigenvalue A, of the matrix D. The solution for
the vectors of polynomial coefficients a and & is given

by
()=
b - mn

where v,,;, is the eigenvector of D corresponding to
the smallest eigenvalue, normalized such that its norm
equals 1. From (11) we find that

V(8) = Aninla‘a — b')

Hence, the value of the bias integral depends nol only on
the smallest eigenvalue of D, but also on the difference
of the norms of the vectors of polynomial coefficients
{which are constrained by (20)). This identification
scheme is underbiased if a'd — §'b > 0 and overbiased
if a'a — b < 0.

The constraints (14), (17), (19) and {20) might be con-
sidered as a special case of a constraint of the form:

T rq
el pi=1 (21)
i=0 ji=u

with 0 < 7y < nand 0 < 7y < m. This type of con-
straint leads to (7| + r2) X (| + 73} eigenvalue prob-
lems for symmetric submatrices of D {which are neces-
sarily positive definite because of the eigenvalue inter-
lacing property). However, also because of the eigen-
value interlacing property, we know that only with the
full quadratic constraint (20) (ie. for ry = n and
Ty = ), we get the minimal possible eigenvalue over all
quadratic constraints, which is the minimal eigenvalue
of D.

5 Multiplicative constraints

All identification schemes so far minimize the residual
mean square error (3) but are biased with respect to the
frequency criterion (10). The question remains whether
there are certain types of constraints that give an un-
biased model, Consider the minimization problem (4)
with a constraint of the form:

ar1fi-r =7 (22)

with 1< k<(n+1),1<I<(m+1)andyis a given
real number, We'll show that this type of constraints
leads to unbiased models. First observe that we are
not free in the choice of the sign of 4. Indeed, assume
that & = { = 1, then the real number Sy/ap is the
static gain of the transfer function, Therefore, fixing
the sign of y corresponds to fixing the sign of the static
gain, which implies a restriction on the model class.
However, for the moment, we shall assume that we know
the sign of 4. It will be shown below that we really
do not need this information @ priori. As a matter of
fact, the identification scheme will always automatically
allow both choices.

From (7)-(8)-(9) we find

Dyea + Dyyb 1B A/2 (23}
Dlja+ Db = Ljop_ A/2 (24)

Il

It follows from the invertibility of I that:

( ) = D! ( :f‘fi:: ))\/2 (25)

From this equation, we see that the optimal ¢ can be
obtained as a linear combination of two columns of D1,
which are precisely 2 least squares solutions! The coef-
ficients ax—y and Bi.| can be calculated from the 2 x 2
eigenvalue problem:

ot ekk Qe Qi - 2
= 0 (26
( g fu Br-i [ (26)
where & = 2/X. The eigenvalues are given by

&= fut /fquerk (27)

and are always real since the diagonal elements of E
and G are positive. The 2 x 2 matrix in (26) is obtained
by interchanging the columns of the 2 x 2 matrix

ek ful
28
( frt gu ) (28)
But the 2 x 2 matrix in (28) is positive definite as a

consequence of the eigenvalue interlacing property, In
particular this implies that ex > 0, gy > 0 exigy > £

o B

Hence there is always a positive and a negative eigen-
value in (27). Recall that we could not a priori fix the
sign of ¥ in ag—1f1 = 7. But here we find precisely
that such an a priori preference is not needed because
we will always have the choice between a positive and
a negative eigenvalue. In particular, when & = 1 and
{ =1, the product agfy is either positive or negative,
corresponding to a static gain 8/ oy which is either pos-
itive or negative., We are interested in the eigenvalue &
with the largest absolute value (which corresponds to
the A with the least absolute value). Iis sign will also
determine the sign of 7, The eigenvectors have to be
normalized such that |ax_ 18| = {v|. Having deter-
mined the coefficients a._;,f;-; and A, the remaining
coefficients are determined from (25).

Premultiplying (23) with a‘ and (24) with 5! and adding,
we find

J(6) = (a" ¥)D ( ‘;) = g fro1 A = 72

Obviously, from J(é) > 0, we have that if ¥ > 0, then
A > 0 and if ¥ < 0, we must have A < 0. For any
specific choice of 4, we want to minimize J(8), hence
it suffices to look for the value of A with least absolute
value. From (10), it follows that

ZV(é) = (&llkﬂ.l_; - alllék.q A/2=0

Hence, this identification scheme is unbiased!

The results just derived have a very appealing inter-
pretation: Recall that the columns of D~! are precisely
the least squares solutions. The first n + 1 columns of
D-! are the solutions to the optimization problems (4)




with one linear constraint (12) on a cocfficient of A(s),
while the remaining m+ 1 columns are the solutions for
a linear constraint (13) on a coefficient of H(s). The
former ones yield underbiased models while the latter
ones yield overbiased models. For the constraint {22},
we now see from (25} that the solution is described as
a linear combination of the two least squares solutions
obtained with a linear constraint on ax_; and one on
Bi-1. The respective weights attached to these two so-
lutions follow from the 2 x 2 eigenvalue problem (26).
The resulting solution is unbiased. Hence, we find that
a certain linear combination of an overbiased and an
underbiased solution, results in an unbiased one!

The multiplicative constraint (22) can be generalized
to a constraint of the form

,
Doaimfir=7 1<r<m+1 (29)

=1

where ¥ € R is given. For the same reason as before, the
sign of 7 is not fixed but will be determined furtheron.
For the time being however, it is assumed that 7 is
a fixed given real number. Using the notation a, =
(@ oo oy Yand b = (B .. .Br1 ) we find
from (7)-(8)-(9) that

be
a 0
D ( b ) =l a A2
0
Observe that if § is a solution, then

)

Since J(d) is always positive, it follows that A and v
must have the same sign. We need to find the least
absolute value of A, It also follows from (10) that:

V() =0

J(6) = (a" B )D(

o &

Hence, the resulting identification scheme is znbiased !
From the nonsingularity of D, it follows that

a E F 0"
()-(22)[5 e w
]

From this equation, we see that the solution will be a
linear combination of the first r + 1 columns of D-! and
its columns (n + 2) up to (n + r 4 2). The coefficients
o, Biyi = 0,1,...,r — 1 can be determined from the
2r X 2r eigenvalue problem:

(& 2)(x)=(s) o

where & = 2/). Here E,, F, and G, are the r X r lead-
ing submatrices of I, I and G respeclively. The matrix
in (31} is obtained by interchanging the relevant block
columns of the partitioned matrix D', We are inter-
ested in the real eigenvalue x of maximal absolute value.
The corresponding eigenvector should be normalized so
as to satisfy (29). The other coefficients can be de-
termined from (30). It is interesting to note that all
eigenvalues of (31) are real and that there are 7 positive
and r negative ones. This is a direct consequence of the
following lemma:

Lemma 1
Let Q be a 2¢ x 29 real, symmetric, posilive definile

malric with square ¢ X ¢ blocks: Q = Q,” @r2
12 Qa2
Then the eigenvalues of the matriz Qi Q,“ are
Q2 QY

real; ¢ of them are positive and g negalive.

Proof: Define the block permutation matrix P as P =
¢ I
I, ©
@ P, which are the roots of the characteristic equation
det(QP —~ Al,;) = 0. Let the eigenvalue decomposition
of @ be @ = XAX", Then:

det(P — AQ™1) = 0 <= det(P ~ AXA™' XY =0
= det( XA~V AYV2XPXAY? - AL AT 2XY = 0
< det(APX'PXA2 - 2L,) =0

So the eigenvalues of QP are the eigenvalues of
AMIXUPX AU which is symmetric, hence has real
eigenvalues, Furthermore, A!/2X{PXA'/? is congruent
to P, the eigenvalues of which are +1 (g times) and —1
(¢ times). Sylvester’s Theorem {5, p.274] states that a
congruence transformation preserves the inertia, which
completes the proof. (=]

. We are interested in the eigenvalues A of

6 A numerical example

Consider a ’true’ system G(s) with a delay of 1 second:
e *(s 4+ 1)
s242s5+5

This true system will be approximated by a transfer
function

Gr(s) =

., g2
G(s) = ﬂo + ﬁjs + ;2615 <
ag + s + st 4 ags

The sampling time is 0.05 seconds and the simulation
time is 40 sec. Al simulations were done in MAT-
LAB. As an input signal we apply white noise which
is normally distributed with mean zero and variance
L. Both input and output are filtered through a 6-th
order Butterworth filter with passband [1,3] rad/sec
(see fig.1): I(s) = By(s)/As(s) where By(s) = 84
and As(s) = 0.349s% 4 1.983s% + 8.777s" + 19.904s" +
26.333s% 4 17.8553 + 9.431. The observer polynomial is
E(s) = (s + 2)"

In figure 2 we compare the identified transfer function
with the one of the true system, for 4 different con-
straints. In figure 3, we show the Lj-bias integrand of
the integral (10) as a function of frequency. The pres-
ence or absence of bias can clearly be seen from these
figures and is conform with the theoretical results.

7  Conclusions

In this paper, we have shown how the estimation of
undermodelled dynamics can be formulated as a con-
strained optimization techrique. The constraints deter-
mine the identification method to be used (solving sets
of linear equations or eigenvalue problems), the value of
the residual mean square error and whether the mag-
nitude of the estimated transfer function is overbiased,
underbiased or unbiased as measured by a frequency




weighted integral. A survey of the results is given in
the table at the end of this paper.

’Square root’ versions of the algorithms in this paper
are derived in (8], These are algorithms where the ex-
plicit formation of the matrix D is avoided and the data
matrix itself is used. The least squares solutions are
obtained from QR-decompositions of the data matrix
while the eigenvalue decompositions are replaced by sin-
gular value decompositions. In {8] we show that these
square root versions are much more robust in certain
modeling situations.
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Figure 1: Magnitude of frequency responses of a/ the
Butterworth filter, b/ the observer transfer function
L/E(s). c/ the filter L{s) = F(s)/E(s).
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Figure 2: The magnitude of the real transfer function
is plotted in full line. The lines with stars are the mag-
nitude of the identified model for the constraints a/
o =15/ fy=1,¢/ aa+bth=1, df ayfy = +1
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Figure 3: Integrand of the Ly-bias integral V{§) as a

function of frequency. We see that for the constraint
a/ &y = 1, the model is underbiased, for b/ 8y = 1,
overbiased, for ¢/ a'a+ b = 1, underblased {a‘a~b'b >
0) and d/ aefa = %1, unbiased




