ég'l,\l_’ L‘.y(ﬁ( Grey
£ %

SENSITIVITY AND ROUNDOFF NOISE OPTIMIZATION OF A STATE-ESTIMATE

FEEDBACK CONTROLLER

Li GANG and Michel GEVERS

Laboratoire d'Automatique et d'Analyse des Systemes
Louvain University, Bitiment Maxwell

B-1348 Louvain-la-Neuve, BELGIUM

Abstract. Expressions are derived for the sensitivity and the roundoff noise gain of the closed loop transfer
function of a system when the state estimate feedback controller is implemented with a finite word length
and when the computations are performed in finite precision. The set of state space models minimizing
either the sensitivity or the roundoff noise gain is computed.
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1. INTRODUCTION

The deterioration of the performances of a realization of a
digital filter due to finite wordlength (FWL) can be separated
into two effects : one is due to the finite wordlength
implementation of the coefficients of the filter, the other is due
to roundoff of the signals after every arithmetical operation.
The first effect can be measured by a global sensitivity measure
of the filter transfer function w.r.t. all the parameters, the other
by the roundoff noise gain. In [1)-[2), expressions have been
obtained for the roundoff noise gain of a state-variable
implementation of a given discrete-time transfer function, and
in [3] a global sensitivity measure of the transfer function
w.r.t. the parameters of the state space model was proposed,
and a reasonable upper bound was computed. It was also
shown that, under a dynamic range constraint on the states, the
roundoff noise and this sensitivity bound could be
simultaneously optimized w.r.t. all equivalent state-space
realizations.

Here we solve a more complicated problem using the same
philosophy : we study the effects of finite wordlength and
roundoff errors in the digital implementation of a pole
placement state-estimate feedback controller. We first derive
expressions for the roundoff noise gain and for a global
sensitivity measure of the closed loop transfer function w.r.t.
the parameters of the observer-controller. We then give a
constructive procedure for the computation of the optimal
realization sets, that minimize, respectively, the sensitivity and
the roundoff noise gain of the closed loop system w.r.t. all
similar state-variable observer-controller realizations.

The theoretical results have been tested on a numerical
example. The sensitivity and the roundoff noise gain of the
closed loop transfer function have been computed for a

companion form realization of the observer, a particular §-
operator realization (see [4]) and the optimal realization (i.c.
the realization that minimizes the roundoff noise gain of the
closed loop system transfer function). The sensitivity of the
optimal form can be an order of magnitude better than that of

the companion form, and is comparable to that of the 8-
operator form. The roundoff noise gain can be several orders
of magnitude better than that of the companion form, and is

better than that of the 8-operator form.

We should note that our sensitivity measure, in line with those
used in [1]-[3), is based on implementation of unscaled
parameters in fixed point arithmetic. The &-operator
realizations may well prove to have better performance when
floating point arithmetic is used.

2. SENSITIVITY AND ROUNDOFF NOISE GAIN:
PRELIMINARIES

Our aim in this paper is to study the effect of various state-
estimate feedback implementations on the sensitivity and the
roundoff noise gain of a closed loop system. To set up the
notations and introduce the problem, we briefly review in this
section the concepts of sensitivity measure, roundoff noise
gain and dynamic range constraint for the finite precision state-
variable implementation of a given filter.

Consider a discrete scalar transfer function :
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and a minimal state-space realization of H(z) :

x(k+1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k) 2.2)

with A in RPXD, B in R, CT in RN and D in R. The transfer
function can be expressed in terms of state matrices as

H(z) = C(zI-A)'B+D (2.3)

If the coefficients in A, B, C, D are implemented in finite
wordlength (FWL), the transfer function H(z) computed from
(2.3) will deviate from its required value. The amount of this
deviation can be measured by the sensitivity of the system
transfer function H(z) w.r.t. the coefficients of the matrices A,
B, C. Here we present a sensitivity measure proposed in [3],
which has proved to be operational. It is based on an
implementation of the unscaled parameters in fixed point;
alternative implementations using scaled parameters have been
discussed in [4].

Definiilon 2.1
Let M € RNXM be a matrix and let f(M) € C be a scalar

complex funtion of M, differentiable w.r.t. all the elements of
M. We then define

of oy A of
M= S with §;= Hu. (2.4)



where s;; denotes the (i,j)® element of a matrix S.
Definition 2.2

Let f(z) € O™ be any complex matrix valued function of the
complex variable 2. We then define the lp-norm of f(z) as
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where [l f (ci®) il is the Frobenius norm of the matrix f(ci®) ;

nom 12
I ;= [ZZ [ ] ’] (2.60)
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= (&) f(?N)'? (2.6b)

The overall sensitivity measure of the transfer function H(z)
w.r.t. the parameters in the realization A, B, C is then defined
as follows in [3] :
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Using the Cauchy-Schwartz inequality, it can easily be shown
(see [3]) that an upper bound for Mg is given by
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=uWorW, + tWy + oW, (2.8b)

where Wo and W are, respectively, the observability and
controllability Gramians of the realization (A,B,C).

A similarity transformation x = Tz transforms { A, B, C, W,
W} into { T-1AT, T-!B, CT, T-'W,T°T, TTW,T}*. An
obvious problem is then to search for a choice of coordinates
(i.c. a similarity transformation T) that minimizes the
sensitivity measure Mg. Instead, one solves the easier
problem of minimizing the upper bound M : see [5).

Limited wordlength effects on the signals cause another source
of error on the output y(k) of the realization (2.2) which is
known as roundoff noise : this is due to the fact that the
signals are rounded off after each arithmetic operation.
Assuming that the roundoff residue sequence can be modeled
as zero mean white noise, then the roundoff noise gain G of
the realization (2.2) can be shown to be (see {11, [2]) :

G =tr'Wy 2.9)

where Wy is the observability Gramian. The problem of
minimizing the roundoff noise gain G over all equivalent
minimal state space realizations of H(z) can therefore be
formulated as follows : given an arbitrary minima realization
(A,B,C)find :

min G = min Wy 2.10)

where Wy = TTWQT. As such, the solution appears to depend
only on the choice of C and A. In fact, the problem (2.10)
does not make much sense unless a scaling of the states is
introduced.

In order to maintain the amplitudes of the states within an
acceptable range, and hence to reduce the probability of
overflow, a lz-norm scaling is introduced : a similarity
tranformation T is performed such that in the new coordinate

+ We denote (T-H)Toy T-T,

system

W= W T)=1 i=1,.n 2.11)
i.e. the controllability Gramian has its diagonal elements all
equal to unity. This has the effect of giving an equal
probability of overflow to all components of the state. The
minimum is achieved by a set of optimal realizations, ali of
which satisfy the dynamic range constraint, A constructive
procedure for computing this optimal realization set has been
given by Hwang {2).

3. FINITE PRECISION ASPECTS IN A CLOSED.
LOOP COMPENSATOR : PROBLEM
FORMULATION

The results published so far on finite precision
implementations have turned around the following questions :
given a filter (i.e. a transfer function) that must be
implemented in finite precision, find a realization that
minimizes either a sensitivity measure, or the roundoff noise
gain of the filter or both. These results concern the FWL
implementation of a given filter.

In this section we want to study the effects of finite
wordlength implementation and finite precision arithmetic on
the performances (sensitivity and roundoff noise gain) of a
state-estimate feedback controller. We consider an open loop
system specified by its transfer function Hy(z) : it is t‘l: given
plant. Even though the plant is not implemented in a
computer, it will be useful to think of Hy(z) as being
implemented by an infinite precision state-variable realization
(Ag, Bo, Cp) in some coordinate system ;

Ho(2) = Cozl-Ag)'B, G.1)

Once a controlier design and obscrver design strategy have
beea chosen (e.g. pole placement or LQ, Luenberger observer
or Kalman filter), there results an (infinite precision) control
gain Ko and observer gain Jp. Their corresponding FWL
implementations in the output feedback controller will be

called K and J, respectively. For example Ko is such that A;

(Ag - BoKo) = set of desired closed loop poles, and K is the
FWL. implementation of Ky.

The block diagram of the plant Hyg(z) and its state-estimate
feedback controller C(z) is given in Fig. 3.1.

We recall that (A,B,CJ,K) are implemented in FWL. In
particular :

Clzl-A)"'B # Colzl-Ap) B, (3.2)

What will be of interest here are the effects of the FWL
implementation of (A,B,C,K,J) and of the finite precision of
the arithmetic calculations on the closed loop transfer function
(from r to y) and on the closed loop roundoff noise gain.

The closed loop tranfer fuaction He(z) is a function of the
actual system and of the compensator C(z) :




H,(z) = F{H(z}, (A,B,C.K,])] (3.3)

where (A,B,C,K,J) are the FWL implementations of {Ag,By,
Co, Ko, Jo). Under a similarity transformation, (Ag,Bg, Co,
Ko, Jo) is transformed into (T-1AT, T-'Bg, CoT, KgT, T-1g)
yielding a different FWL implementation.

Our task in the remainder of this paper is as follows : for a

given Hy(z), a desired set of closed loop poles and a desired

set of observer poles, find

a) a computable measure of the sensitivity of the closed loop
transfer function H.(z) w.r.t. the parameters of the
realization (A,B,CK,J);

b) the roundoff noise gain of the closed loop realization;

<) the realization set (i.e. the set of realizations (A,B,C.K.}})
that minimizes the sensitivity measure, the roundoff noise
gain, or both, subject to a dynamic range constrains on the
states of the observer.

4. SENSITIVITY MEASURE OF THE CLOSED
LOOP SYSTEM

The state-equations of the closed loop system are
[x(k-l-l)] =[ Ay -BK ][x(k)] +[Bo]r(k) (4.1)
x(k+1)] [ICo A-BK-ICjl x| LB
y&)=[C, 0} [x(k)] 4.2
x(K)

We denote :

- A - A -4
A=[A; -B)K ] B= [Bo] C=[c 00 4.3
I1Cy A-—BK-JC] B

The closed-loop transfer function is
H,(2)= C(zI-A)" B (4.4)

Using the notations introduced in Definition 2.1, we now
compute the sensitivities of Ho(z) w.r.t. A,B,C,K,J, evaluated
at the exact (i.e. infinite precision) values Ag,Bg,Co,Ko.Jo.
Abflcr lengthy manipulations, the following expressions are
obtained :

%(m— LG 2IFx@) (4.5)
oH, ,

5@ = ~Ho@Y 1-H ()]G, (2) (4.5b)
%(z) = -HA2)H,(z)Fx(2) (4.5¢)
%!:Tc(z) = ~H2)Fx(2) {4.5d)
E';—ii(z) =0 (4.5¢)

where He(z) is the desired (or infinite precision) closed loop
transfer function

HO(2) = Colzl-Ag+BgKo) 'Bg (4.6)
and where

Go(2) = [21—(Ag-3,Co 'K (4.72)
F(@) = [ - (Ag-BKo)l™By (4.7b)
Hi(2) = Ko(dl~(Ag-BoKo)l "By @70)

H,(2) = Kglzl-(Ag=ToColl Ty 4.7d)

Note that (4.5¢) does not mean that H.(z) is not a function of
J. It means that the sensitivity of Ho(z) w.r.t. J becomes nil
when it is evaluated at the exact (Ag.Bg,Cq,Kp,Jg). The
expressions (4.5a) to (4.5d) contain a common factor, which
is precisely the desired closed loop transfer function, We
define "normalized sensitivities” as follows for X = A,B,C or
K:

oH |
- @,%EL a_'g(f_(f) | ABo.CoKoy (4.8)

The normalized sensitivity SHy/8X is like the sensitivity of the

Bode plot of Hy(eJ®) w.r.t. X.

With these definitions we get :

8H

-ﬁc-(z) =-Go(2)FL(z) (4.9a)
SH

55 @ = ~[1-Hk )]G, (2) (4.9b)
SH,

E‘(Z) =~H,(z)Fx(z) (4.9¢)
5H,

‘gﬁ-(z) = —Fg(z) (4.94)
=0 | “s0)

We now define the sensitivity of InH,(z) w.r.t. the parameters
of A,B,C,K,J as (see (2.9) for comparison) :
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An upper bound for this sensitivity is given by

2 2 2
M= G, Tl 1, + lla-npG, 1,

2 2
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M can be rewritten as

M=t Wt W+t W+ W+ W, 4.12)
where
1 1y -
w°°:77§ $ 122 Gol2) Gl )z 'a (4.13.2)
1 T -1y -t
w°°:2_nj§ bol=1 Fx@ Fg () 2 'dz (4.13.b)

and W3 are Wy are defined similarly. It follows from (4.7)
and (4.13) that W,, and W are, respectively, the
observability Gramian of the state observer and the
controllability Gramian of the feedback controller. It is easy to
compute the effect of similarity transformations on the
Gramians Woo, Wee, W3 and Wy appearing in (4.12). The
optimal sensitivity realization problem can then be stated as
follows : given a particular realization A,B,C,K,J and the
corresponding Gramians Woo, Wee, W3, Wy, find the (set of)
nonsingular transformations T such that

M= (T W DT W T + t(T"W,T)
+ T W I + T W, T 4.14)




is minimized :
n}rin M (4.15)
det T#0

In the next section, we characterize the set of optimal
transformations, i.c. the solution set of the problem (4.15),

§. MINIMIZATION OF THE CLOSED LOOP
SENSITIVITY

We now solve the problem (4.15) with M defined by (4.14).
First notice that the problem can be reformulated as follows :

M= (T MIDET M) + e(r"™MED)
+(TMD) + (T METT) .1)
where
M) = Woo, M3 = W, MJ= Wy, M3 =
1 = Yooy VA2 = ¥eey VI3 = WV 3, M4'“W4+ch (5.2)
These are four positive definite matrices; the supercript 0
denotes the fact that they comrespond to an arbitrary initial state

space realization. First notice that there exists a nonsingular
matrix Tp such that ;

TTMITy=2 (5.32)
Tp' MyTg =X (5.3b)
where

Z = diag(oy, 0y, ..., 6,), ;> 0 (5.4)

This transformation matrix is unique up to a signature matrix,
1t transforms Mg and Mf into

A A
My=ToM3 Ty, Me=To' M{TG 5.5
Now let
T = TOTI (5.6)

where T) is nonsingular. Then Tj can be written (see [2]) :
T, = R,TIR}. 5.7
where Ry and Ry are orthogonal matrices, and
I =diag(/”, 3%, ..., x}/?), x;> 0. (5.8)
Therefore M can be rewritten as
M = (RTER,IT%) te(RTZR,1172) + r(RTM,R, T1P)

+ HRTMR,ITD) (5.9)

n n n
= z(xikﬁ)z(xi_lkii) + E(xiqii +x'py) (5.10)
i=1 i=1 i=1

where kj;, qj; and pj; are the diagonal elements of

A

K=R{ZR, ={k}  ij=i,..n (5.11a)
a0T s

Q=RM3R; ={qy} ij=i,..n (5.11b)
A LT -

P= R1M4R 1= {p’J} 1L} = 1, o (5.1 lc)

N%xi) we notice that the following constraints apply to K, Q
and P :

n
A
Dki=tK =Dt s, (5.12)

"
A
Zqiiquzter’ =Sl (512b)

n
4
Zpii =uP=uoMy=§, , (5.12¢)
i=1

The optimization problemn (4.15) can therefore be reformulated
as follows :

min M w.r.t. {Xi}, {kii}' {qii}‘ {pﬁ}, i= 1,00
subject to (5.11)-(5.12). (5.13)

The solution of (5.13) has been derived in {6].
The optimal solution set, i.e. the set of similarity
transformations T that minimize M in (5.1), is defined by

T=ToR, [TR} (5.14)

where Tp is (almost uniquely) defined by (5.3), R is an
arbitrary orthogonal matrix, T is given by :

S 1/4
n= (-—3) I (5.15)
5y
and R} is any orthogonal matrix satisfying
S

(RT M3 R,) = s—; RTM Ry i=l,u n (5.16)
where S1 = r M3 and S3 = tr M4, The existence of such Ry is
proved in [6].

6. ROUNDOFF NOISE GAIN OF THE CLOSED
LOOP SYSTEM

Recall that the closed loop system is described by (4.1)-(4.2).

We now consider the case where the estimated state x(k) is
rounded off to by bits before multiplication in (4.1), and we
denote by Q[x(k)] the quantized value of a vector x(k),
rounded off to the first by bits. The model (4.1)-(4.2) is then
replaced by

|:x.(k+1)]=[Ao ~BgK ][ x"(K) ]+[Bo] k)
x(k+1)] LICo A-BK-IC] qix’w)l} LB
y‘(k)=[coo}[ (k) ] ©.1)

Qix (k)]

Here we neglect the effect of roundoff on the signal r(k).
Denote

s(k)i[x<k)~x‘(k)], e(k):{ 0 ] (6.2)
x(6) — x"(k) x'10 - QIx" (k)

Ay() = y() -y (k) (6.2b)
It then follows from (6.1), (6.2) that

E(k+1) = AE(K) + Ae(k) (6.32)
Ay(k) = CE(K) + Celk) (6.3b)

with Aand C defined in (4.3). We assume that (k) is
sufficiently exciting so that e(k) can be modeled as a uniformly
distributed zero mean uncorrelated random vector with




variance 621 It then follows from (6.3) that the roudoff noise
gain of the closed loop system is

G= L tim E[A%(K)] = - u[W_R) (6.4)
= 02 Jlim. y = 02 r{W, | 6.
where
RiE[e(k)eT(k)]=[O 0] (6.5)
0 o1
W, 2 Y (ADFETCAx (6.6)
k=0

V_Vo is the observability Gramian of the closed loop system. It
can be shown that this roundoff noise gain of the closed loop
system is approximately given by

G= u[% § 1ol H,‘:(z)Hg(z'l)Go(z)GI(z"l)z'Idz]

= [R2)G, @) |2 6.7

where the approximation sign is there to indicate that the finite
precision quantities have been replaced by infinite precision
quantities in the computation of G. The roundoff noise of the
output of the closed loop system can therefore be interpreted

as white noise with variance o2 passing first through the
observer dynamics, then filtered by the desired closed loop

system HZ(2).

7. MINIMIZATION OF THE ROUNDOFF NOISE
GAIN UNDER DYNAMIC RANGE
CONSTRAINT

In this section, we characterize the set of all state observer
realizations that minimize the roundoff noise gain G of the
closed loop system subject to an I2-scaling on the observer
states, which is meant to guarantee an equal probability of
overflow. By the same token, we will give a constructive
procedure for the computation of a realization that minimizes
this roundoff noise gain.

Let W, be the controllability Gramian of the closed loop
system :

W= 3 ABBTAT (7.1a)
k=0
= 2L1l:j§|1[=l FF () dz (7.10)
=(\"vc(1,1) Wc(l,z)) (7.1¢)
W(2,1) W2,2)

where A , B are defined by (4.3) and

Fz) = (d-A)'B = [fl(z)] 12)
f2(z)

Here f1(z) and f2(z) are the first n and last n components of

E(z). Imposing a lz-scaling on the observer states X

corresponds with finding a coordinate basis for A, B, Cin
which

(W(2,2));= 1 fori=12,..n (1.3)

Replacing again (A,B,CK,J) in A by the infinite precision
quantities (Ag,B0,Co,K0,Jo) and calling the resulting matrix

A, yields

£3(2) = (2I-Ag+ByKo) "By = Fy(2) (see 4.7b) (7.4)

Therefore :

W,(2,2) = 2—:‘]'§ 2]=1 Fx@Fgz 2 dz (7.5a)
=W, (7.5b)

with W, as defined by (4.13b). The minimization of the

roundoff noise gain subject to the dynamic range constraint
can therefore be formulated as follows :

min TTWT) (7.68)
detT#0

subject to

(T'W T y=1 i=1,.,0 (7.6b)
where

W= .2.}5],§ la]e 1 HH@HENGGN 2z (7.79)

1 1y -
W, = ”2'1?3'§ 2=t Fe@FRGE 2z (7.7v)

To solve this problem, we follow the procedure of [2). Given
an arbitrary initial realization (A9, BO, C0, KO, J0) and the

corresponding Gramians WO and WY, defined by (7.7), we
first compute a square root factor of W?C :

We. = TqTg (1.8)

Notice that Tp is not unique. We denote by 6 the singular

values of the product Wg, W. The optimal realization set Sopt

is obtained from the initial realization (A0, B0, €0, K9, JO) by
the set of similarity transformations

Top = ToT; = ToR,TIRG (7.9)

where Tois defined by (7.8) and Ry, 1 and Rg by

,, n
2
. mst
1= diag(lL), ;= o
where Rg and R are orthogonal matrices (RoR5 =R Ro = 1)
satisfying :

i= l,.,n (7.9a)

RJTRDi=1  i=1,..n (7.9b)
RIW'R, = £2 = diag(o?) i= 1,...,n (7.9¢)

The existence of such Rg has been proved in [2], where it was
also shown that Ry is not unique. However, it is unclear how
to parametrize the freedom in Rg. Anim t remark is that,
with Top defined by (7.9), the upper bound M on the
sensitivity is independent of Rg : see (4.14).

8. A NUMERICAL EXAMPLE
In this section we present an example that illustrates the typical

improvement in accuracy obtained by the optimal realization in
comparison with two other widely used realizations, a




companion form and a §-form. We refer to Middleton and
Goodwin (1987) for a presentation and a thorough discussion

of 8-form realizations.

Let the system to be controlled be given by

_ 0.0022 (z+1)?
(z - 0.9588) (z - 0.9231) (z - 0.8763)

H.(z)

Let the desired closed loop poles be
(A g— BgKg) = 0.9067, 0.7523, 0.6231 and let the poles of
the observer be A,(A; - J,Cq) = 0.4532, 0.5761, 0.8437.

We compare the sensitivity and the roundoff noise gain,
computed by using the formulae (4.12) and (6.4), for a
control canonical realization, a delta form realization and the
realizations that minimize the sensitivity of the closed loop
transfer function and its roundoff noise gain, respectively.
For this third order system, the control canonical realization
takes the form

A=[0 1 0 B.=[0 C.=lc; cp¢5)
0 0 1 0
~3y —8) —ay 1

The delta realization (with § = ZT;I- , where Ts is the sampling
S
period) takes the form

Ag=f 1 1 0 By=[0 Cs=[C|¢qQ_;]
0o 1 1 0
—dy —d; 1-d, 1

with Ts = 1.The optimal realizations are typically fully
parametrized.

Consider first the case where there are no scaling constraints
on the states of the realizations, and where the closed loop
sensitivity is minimized using the procedure of section 5. We
then obtain the following values for the closed loop
sensitivities of the optimal, conwol canonical and &
realizations, respectively (The corresponding roundoff noise
gains are also indicated) :

Mop = 12,4557 G = 2.4265
Me =1444x104 G, =3.3268
Ms =19268x103 Gs = 0.6616

We now consider the case where the roundoff noise gain of
the closed loop system is optimized with 13 scaling using the
procedure of section 7. We compare the roundoff noise gain
of the optimal structure with that of the 12 scaled control
canonical form and delta form, noting that these are obtained
from the unscaled realizations by a suitable diagonal
transormation, Their canonical structure is thereby not
preserved, except for the zeroes which remain in the same
positions. We then obtain the following values for the
roundoff noise gain of the 1, scaled optimal, control canonical
and & realizations, respectively (The corresponding
sensitivities are also given) :

G®,=0.3811 M =37.3962
¥ =1.5006x10°  MP=1.1914x 10*
GP =1.0305 MP = 26.4696

Comments

We notice that the sensitivity of the realization that minimizes
the sensitivity is several orders of magnitude smaller than the
sensitivities of the companion form realization and of the 8-
form realization, while the corresponding roundoff noise gains
are of the same order of magnitude, with a certain superiority

for the 8-form realization.

On the other hand, when it comes to the objective of
minimizing the roundoff noise gain under dynamic range
constraint, superiority of the optimal realization over that

derived from a 8-form is only marginal, both of them being

several orders of magnitude better than the ! scaled
companion form realization.

These results are rather typical of other examples we have.
studied.

9. CONCLUSIONS

We have derived expressions for the sensitivity and the
roundoff noise gain of a closed-loop transfer function w.r.t.
the parameters of a state-variable realization when the regulator
is a state-estimate feedback regulator implemented in finite
wordlength with the computations also being performed in
finite arithmetic,. We have then computed the set of optimal
realizations, i.¢. the set of realizations that optimize either the
sentivity, or the roundoff noise gain under dynamic range
constraint.

We have illustrated with a numerical example the typical
accuracy gains that can be achieved by the optimal realizations
as compared to a companion form in the shift operator or a
companion form in the 8 operator. We should note that, in
line with the results of {1}-[3] for open loop transfer
functions, our computations have all been performed using
fixed point arithmetic without scaling of the parameters.
Extensions using either a scalin %:f the parameters or {loating
point arithmetic are presently being studied. We also note
that, in our numerical example, the optimal realization shows

to yield superior performance when compared to a §-form
implemented in companion form (i.c. §-companion form).
This particular 8-form is clearly not optimal among all possible
8-forms. A further cxtension, recently suggested by Goodwin
{7}, is to compute the optimal realizations for both sensitivity
and roundoff noise, among the set of all §-operator state

variable representations. These optimal 8-operator realizations
might well prove to have better performance with floating
point arithmetic than the optimal shift operator realizations.
These questions are the subject of continuing investigations.
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