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Abstract. Adaptive control methods combine parametrized controller computation with a closed loop
system parameter identifier. This control law design is typically carried out as a parametric version of a
standard nonadaptive design, which possesses desirable stability, performance and robustness properties.
Similarly, the identifier usually is identical to that used for open loop parameter estimation. Our subject
here is to investigate the interconnection between the selection of the control law and the consequent
achieved closed loop input signal spectrum presented to the plant. According to the recent theory
of Ljung, this signal spectrum plus the measurement noise process spectrum dictate the frequency
weighting implicit in the identified parametric plant model. In turn, this identified plant model affects
the controlled plant’s stability through the robustness of the control law at this nominal value. We shall
present results demonstrating the potential coincidence of the control law’s robustness perturbations to
the plant and the implied closed loop identification frequency weighting.
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1. Introduction

A standard class of indirect adaptive control systems is com-
prised of the interconnection of a linear control law de-
sign and a recursive parameter estimator operating jointly
in closed loop. The control law relies upon the identified
parameters and the identification experiment is performed
with input signals determined by the controller. This cou-
pling of linear control laws and linear system identification
is rooted in linear systems ideology even though the effected
controller is manifestly nonlinear in the large [1], [2]. For
slow adaptation and local behaviour, however, it may be
the case that the apparent nonlinearity is ameliorated and a
linearized behaviour pertains — certainly this is the thinking
behind such adaptive designs. The question then arises as
to the local performance and stability of this linearized sys-
tem and, further, of the nonlinear connection between the
parameter identifier and the controller. These are the issues
which we address here.

The study of the ability of a fixed linear control law to pre-
serve closed loop stability and performance in the face of in-
exact plant knowledge is the province of robustness. Because
of the inherent inaccuracy of the identified plant model ad-
mitted in an adaptive context, robustness of the underlying
linear control law is a critical ingredient of any adaptive con-
troller. That is, should the adaptation be stayed at a nom-
inal parameter value, the resulting linear controller should
be capable of stabilizing a neighbourhood of plants about
this nominal value. Of central importance in the considera-
tion of linear system robustness is to define the appropriate
topology within which this neighbourhood is described and
hence to delineate the classes of allowable perturbations to
the plant for which the controller can still provide robust
stability. In this fashion the controller robustness proper-
ties can be tied in to the demands placed upon the identifier,
which determines the accuracy of the nominal plant model.

By appealing to the methods of Lehtomaki et al. [3] we es-
tablish conditions required of the control law in order that
the closed loop be robust to multiplicative plant perturba-
tions, Inverting this, we show that for a fixed control law
for a nominal plant, closed loop stability can be guaranteed
provided the relative frequency response error between the
actual plant and its identified nominal model is kept suitably
small.

Parallel to the above connection between the controller ro-
bustness and the modelling requirements is the property
that linear system identification involves a model fitting

which reflects a weighting determined by the plant input sig-
nal features and the measurement noise properties, see e.g.
Ljung [4]. That is, the plant input signal in closed loop is
affected by the control law which, in turn, affects the fitting
of the identified model. Thus the selection of the control law
design exerts an influence upon the identification stage just
as the identifier determines both the controller nominal pa-
rameter setting and affects its ability to satisfy a robustness
criterion.

The thesis explored in this paper is that this interplay jointly
between the identification rule and the control law selection
is at the centre of adaptive control local robustness and,
further, that there exist certain choices where this interplay
is mutually supportive inasmuch as the controller engenders
an input to the plant that leads to the fitting of a model
which meets the robustness requirements for the control law.

The structure of the paper is as follows. In Section 2 we
consider the linear robustness methods of Lehtomaki et al.,
a version of gain margin arguments, which help us to spec-
ify a mixed modelling/control law criterion for stability with
modelling error. Section 3 is devoted to the development of
closed loop identification formulation, based on the work of
Ljung, which indicates the connection between the fitting of
a model with Least Squares in closed loop and the a.?p}ied



linear feedback law. In Section 4 this is then extended to
treat the case of nonlinear adaptive adjustment of the feed-
back law. Section 5 concludes and sammarises the nature
of the interplay. An example of adaptive LQG/LTR control
is used to support the major thrusts.

2. Linear System Robustness

We suppose that our linear plant system is described by
o= P(zju + v ey

where y¢, u; and v; are the plant output, input and mea-
surement noise signals, respectively, and P(z) is the true
or actual linear plant transfer function. Based on input-
output measurements, however, we presume that we have
an identified plant model or nominal plant transfer func-
tion P(z). For the moment we treat the case where P(2)
is fixed and consider characterizations of circumstances un-
der which stabilizing feedback controllers designed for P(z)
maintain stability also for the'actual plant P(z). (For ease
of development we consider only single input single output
plants here. The results extend directly but tediously to
MIMO systems. Further, we assume no unstable pole-zero
cancellations in the nominal and actual plants.)

v Suppose that the linear controller is described by

up = ~C{z)ys +wy (2)

where w, is an external reference signal and C(z) is the con-
troller transfer function. Note that in an adaptive context
such a controller would be designed based upon the nominal
plant P(z) and applied to the actual plant P(z). Hence we
denote the cascaded plant/controller pairs as,

P(2)C(z) @)
P(a)C(z). @

&)
G(z)

It

il

Further, we write the multiplicative error between the actual
and nominal plants as L{z), i.e. we have,

P(2) = L(z)P(2) (5)
or, R

G(2) = L), ®)
Thus G(2)[1+G(2)]~" is the designed closed loop and G(z)[1+
G(2)]7! is the achieved closed loop. The robust stability

question is: under what conditions does stability of the de-
signed closed loop imply stability of the achieved closed loop.

We have the following discrete-time counterpart to the re-
sults of Lehtomaki et al. {3].

Theorem 1 The achieved closed loop system, G(z){1 +
G(2)]1, will be asymptotically stable if,

P(z) and P(2) have the same number of unstable poles,

« P(z) and P(z) have the same unit circle poles,

the designed closed loop G(2)[1 + G(2)]™" is asymp-
totically stable,

at each z on the unit circle,

[Z7(z) = 1] < min [|1 + G(2)|, 1] - (7)

The import of this theorem is that it delivers explicit con~
ditions upon the model and upon the controller in order
to achieve robust closed loop stability. Specifically, G‘(z)
is directly determined by the controller design and L(z) is

related to the plant modeiling.

Robustness can be enhanced by choosing the controller C(z)
so that the designed return difference, 1 + Glz) = 1+
P(2)C(z), is well bounded away from zero for z on the unit

circle. This is nothing else than a gain margin condition on
the controlled plant since it states that the Nyquist diagram
of the cascaded plant/controller should remain well clear of
the minus one point. The left side of (7) is interpretable as
a bound the relative modelling error because, from (5},

L7(z) = 1= [P(z) - P(z)] P~'(2), (8)
or, returning to (7)
|[2(2) = P(2)] P*(2)| < min (L + B()C(2)],1)  (9)

Thus we can see that robustness enhancement of a specific
controller design can be achieved by jointly maintaining the
gain margin large and/or keeping the relative modelling er-
ror small. Reinterpretting, provision of good gain margin
provides robustness to multplicative {or relative) modelling
erTor,

We may now state a set of prioritised criteria for controller
design in an adaptive control scheme.

Stabilize the nominal closed loop system.

« Achieve adequate closed loop performance for the nom-

inal plant with respect to tracking of references and

disturbance rejection.

Maximize robustness so that stability and performance
are preserved in the face of modelling errors.

In operational terms these requirements are reflected in con-
ditions on the chosen control law schema for the adaptive
controller. The final point above indicates that, after sat-
isfaction of the first two conditions, a control law which
endeavours to keep the return difference frequency response
large is prefered.

3. Linear Closed Loop Identification

We develop here a closed-loop, fixed controller version of the
frequency domain modelling ideas of Ljung [4], where Least
Squares Prediction Error modelling ideas are reassessed via
Parseval’s theorem. This linear development follows closely
that of Gunnarsson (5] and subsequent to this presentation
we move on to consider the extension to adaptation and the
nonlinear situation where the controller parameters are ad-
justed according to current parameter estimates. By closed
loop identification here we mean that, while the input and
output signals of the actual plant are measureable, the input
is not freely assigned from outside but, rather, consists of

external reference signals and feedback of the output mea-
surements. In developing this theory we shall presume that
all externally prescribed signals, i.e: references and noises,
are quasistationary so that notions of averages and spectra
are appropriate. We shall also be concerned with off-line
and on-line (i.e. recursive} adaptation.

Associated with our actual plant description (1)
Yt = P(z)us + v,

we take a class of linear time-invariant models parametrized
by the vector 8,




v = Pz, 0)uc + H(z,0)q, (10)

where P, I are time-invariant, finite-dimensional linear sys-
tems for fixed & values and ¢, is a zero mean white pro-
cess. The parameter vector § may also include initial con-
dition data appropriate for unstable systems. Directly from
such models we may define associated parametrized one-
step-ahead predictors for 3 via

Gi-1(0) = B (2,0 P(2,0)ue + (L~ H(2,0)]3e. (1)

Using standard techniques and parametrizations these pre-
dictions may also be written in pseudoregression form,

ﬁtit-l = '5{(9)9 (12)

where {4,(8)} is the sequence of pseudoregressors. From the
predictions one defines a one-step-ahead prediction error

A ()] - ege-1(0) (13)
H(z,0) [[P() — P +o]  (14)
and a filtered prediction error

d(8,m) = D(z,n)e(8) (15)

where D{z,7) is a finite-dimensional, time-invariant, linear
filter parametrized by the vector 7,

il
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On the basis of these prediction errors one may propose
a model fitting criterion for the plant, such as the Least
Squares criterion,

N
W) = 5 L0 (16)

and define a best parameter estimate at time &,
In = in 17
O = arg muin Vx(d,n) (17)

where Op is a domain of feasible ¢ values. Assuming closed
loop stability, letting N — oo and applying Parseval’s the-
orem to (17) we may write the minimizing 8 value as

o = agmin [ [[P(e*) = P, 0Fu(w) + B(w)
[D(e?,n)?
“JHEE o
Here &, and @, are the power spectral densities of the plant
input and noise processes respectively,

(18)

In this formulation one sees directly the frequency weighting
effects of the plant input spectrum, the noise spectrum, the
prediction error filters D and the noise model H. For con-
trolled systems we see that ®, will itself be a -dependent
quantity, increasing the complexity of (18). Before attempt-
ing to deal with this case, however, we consider firstly the
effect of a fixed linear control law

uy = Ci(2, p)re — Ca(2, p)ye (19)

with ; an external reference signal and p a vector parametriz-
ing the controller. In terms only of external signals, this
control law is expressible as

ug = Wa(z, p)re + Wa(z, p)oe (20)

with Wy = Cy(1 4 CoP)"" and Wy = —Cy(1+ C2P)™%. The
minimization (18) is altered to

* H 4 17 2 Jw 2 21
o = aggin [ AP0 WA(E, P B () (21)

(|AP(e"“’, 0)]?‘|i'1/';»(e"°",p)|2 + l)fDu(w)]M dw

[H (e, 0)[*
where we write P(z) -—P(z, d) = AP(z,0). This is the closed
frequency response formula of Gunnarsson [5], which may be

abbreviated as
0* = 6%(p,1). (22)

As stated above the explicit criterion minimization is an off-
line procedure. That is, the selection of Oy is performed as
a global minimization of (17) using the entire set of data
{yr,us5t € 1,..., N} as a block. Using the pseudoregression
form (12) we may also construct recursive (or on-line) es-
timators which update On-y to yield On given yy and uy,
based upon gradient or Newton-Raphson methods. Ljung
[6] and others have considered general circumstances for the
convergence of on-line estimates to their off-line counter-
parts in deterministic and stochastic environments. We shall
make contact with some of these ideas in the next section.

The formal solution (22) indicates that in linear closed loop
identification the control parameters, p, and the prediction
error filtering parameters, 5, both play an important réle
in determining the model fit. If the controller in an adap-
tive context were designed according to some fixed schema
such as pole-positioning or LQG then p would represent, for
example, the specification of the LQG or the tracking ob-
jective. Returning to the robust stability objective (9) we
can divine the complexity of the controller selection issue in
adaptive control because C(z) influences both sides of the
expression (9). We have also made explicit the adaptive con-
trol design parameters available to the designer to attempt
to achieve robust stabilityt of the linear system. In the next
section we shall consier how the theory needs to be amended
to remain applicable to (nonlinear) adaptive control.

4. Adaptive Closed Loop Identification

4.1 Existence of Stationary Points

The rewriting of the minimization (21) as (22) portrays the
implicit involvement of the control objective and the error
filtering in the determination of the off-line best 8 value for
the prediction error criterion (17) with fixed linear systems.
In indirect adaptive control one maintains the prediction
error identifier for the plant parameter but includes the si-
multaneous controller design and error computation based
on this § estimate. That is,

= P(ét) = "(ﬁt)'

In searching for potential convergence points of indirect adap-
tive control it is necessary to contemplate the solution of

0% = arg min V (6, p(6),7(9)) - (23)

This is a highly nonlinear problem and it is not apparent
that it possesses a unique (or indeed any) solution, nor that
such a solution 8* yields a stabilizing closed loop when cou-
pled with the control law p(6*). It is our aim to prescribe
conditions under which stabilizing solutions will exist and
be appropriate limit points for on-line adaptive solutions,
Our methods here will be generalizations of those of Riedle

and Kokotovic {7], [8] and [9] to the case of indirect adaptive
control,

We begin by defining an achieved control cost, J(0), as-
sociated with a 0 value as follows. Compute the control
cost (typically an LQ or tracking objective) associated with
the closed loop operating with the fixed linear controller
parametrized by p(6). This cost is determined with the ac-
tual plant in the loop but with controller based on the model




P(z,0), H(z,0). In terms of control performance we may
then define a best parameter value

0™ = arg rar‘lsig J(6). (24)

In any reasonable problem p(6**) must define a stabilizing
controller since performance J{#) is measured on the actual
plant.

In the case of exact modelling, where the actual plant is
included as part of the model set, and subject to persis-
tently exciting signals in the closed loop (which we assume),
the minimization of J(#) and the minimization of V() will
yield the same model, i.e. §* = §*, With plant/model set
mismatch, however, this need not be the case. One would
hope though that 8%, the stationary point of the adaptation,
should be close to #* and further that p(¢*) should therefore
be close to p(0**) and hence stabilizing,.

Since the existence of 0* satisfying (24) is not at issue and
we wish to investigate the possibility of a 8* lying close to
it we write the true system (1) as

Ye= ¢ 0% + G+ v (25)

where ¢; is a regressor of past inputs and outputs, v, is as in
(1) and ¢{; denotes the unmodelled dynamics. With this de-
scription of the plant relative to control performance we are
very much in a similar framework to Riedle and Kokotovic
[8] who treat direct adaptive control methods.

For the plant operating under adaptive control the signals
¢, and (; in (25) will depend upon the § estimate. We
can define tuned signals ¢,(0**} and (,(0**) whose properties
will determine the local behaviour of the adaptive system.
Denote

m

A

Ellgi(0)]] (26)
AinkE [$:(0)87 (0%)] , (27)

and introduce the following assumptions on the plant.

|

Assumption 1 Let B,(07) = {8 : {0 -0 < r} be a
closed hypersphere centered on 6% and with radius r such
that

1. for all 0 € B,(0™) the closed loop system is stable,

2, there exist positive constants a, 8,6, k such that for all
b € B.(0")

Bleo ) <aBis@ +h, B2 g

- 948)
El %% | <8 (28)
with «, B8, and § small enough that

r2X > 2r[Bmr? 4 Smr 4 Bér +ar(m + k)(m + Br+ 6))
(29)

Assumption 1 has the following implications

Note that r refers to the radius of the ball in parameter
space, A to the signal excitation at the tuned value 6,
m to the tuned regressor magnitude, e and & to the
level of unmodelling in the plant description (25), 8
and § to the smoothness properties of the situation;

the first part assumes that around the “best” system
0% there is a neighbourhood of stabilizing models.
This is a very reasonable assumption if the closed loop

regulator is computed using a robust design method-
ology;

the second part is a constraint on keeping the unmod-
elted dynamics small enough, as well as an assumption
of smoothness of both the regressor and the unmod-
elled dynamics of the closed loop system with respect
to the model parameter ¢; we notice that satisfaction
of the constraint (29) also hinges on the amount of
persistence of excitation of the regressor vector ¢,(6**)
through the parameter };

the two parts of the assumption really determine the
existence of B, and then define the radius of the hyper-
sphere through the combined constraints of closed loop
stability, small unmodelled dynamics and smoothness.

We now make the connection between (29) and the existence
of a potential limit point in B,(¢"*). The proof has been
omitted.

Lemma 1 Let 0% be defined as in (24} and let B.(6")
satisfy Assumption 1. Then there exists a 0%, an inierior
point of B.(0%), defined as follows

(8, p(0),n(9))- (30)

§* = arg min
068, {8+

The point of Lemma 1 is to show that, under conditions of
smoothness and limited unmodelled dynamics, there exists
a closed hypersphere B,(0**) surrounding 8**, the interior of
which contains a stabilizing model 6* that can be obtained

as the solution of an off-line prediction error identification
problem, with the search domain suitably restricted to that
hypersphere. The model 6** can then be seen as a mech-
anism for suitably defining the model ¢* as the solution of
an off-line identification problem. Assumption 1 restricts
the amount of allowable unmodelled dynamics. This causes
the minimum of the prediction error criterion and the opti-
mal control performance to be related. We should note that
assumptions like (1) are very standard in the literature on
robust indirect adaptive control: see e.g. [10].

4.2 Slow Adaptation and Convergence

Having defined 6%, our analysis will proceed by demonstrat-
ing that, with a suitably restricted search domain and a
sufficiently small adaptation gain, the solution of our recur-
sive prediction error algorithm, used in an adaptive closed
loop, will converge to a neighbourhood of stabilizing models
around #*. Under suitable conditions similar to those of As-
sumption 1, the solution of the parameter-update equation
can be shown by integral manifold arguments to converge,
from a suitable region of initial conditions, to a limiting so-
lution, which itself is close to ;. The application of integral
manifold theory to the analysis of adaptive control systems
is due to Riedle and Xokotovic [7}, {8] and we shall refer to
their work for proofs and details.

The full set of dynamical equations of the adaptive closed
loop system can be written in compact form as follows:

EH-i = A(0¢)E¢+B(8‘)n,,
01 = 0 +7f:(0,E),

ZeR, (31)
0 e RY, (32)

where Z includes the states of the plant model, of the reg-
ulator and of the filters, n, denotes a vector made up of all
the external signals (i.e. reference signals and noises}), while
the parameter update equation (32} is just another expres-
sion for the recursive least squares equation with a constant
gain v. Examples of adaptive control algorithms rewritten




in this global form can be found in [8], [9] and elsewhere.

With 0* defined as in the previous section, we now make the
following assumption.

Assumption 2 1. There exists a compact set @ con-
taining 0* and constants X € (0,1) and Ky > 1 such
that V0 € © and Vi > 0

[AB)] < KX (33)

2. There exist constants ¢, ¢; and ¢y such that the frozen
parameler response

w(68) = 32 A0 BO)nesos (34)

j=0

and its sensilivity %‘;’-(9) satisfy

@) <e, 130 < e
%(0) — 24(6*)] < 20 — 0%} (35)

for allt € Z and all 0,0* € O.

3. The function £,(0,Z) in (32) is bounded, Lipschitz in
8 and = uniformly with respect to t, 0 € © and = in
compact sets.

The integral manifold theory of Riedle and Kokotovic is
based on a time-scale separation between the dynamical
equations for = and for §. The idea is that, if the gain - is
small enough, the solution of the parameter update law can
be approximated by the solution of an “averaged” equation,

ﬁH—l = 51 + ’Yf(gz)v (36)

where f is obtained by averaging f over ¢ with § fixed.
Asymptotically stable solutions of (36) can in furn be re-
lated to solutions of the ODE equation,

db s
= = fo). (37)

We then have the following important stability result, which
we paraphrase in words, leaving out the precise values of
the bounds: see [T}, (8] for details and exact values of the
bounds.

Theorem 2 Suppose that 0* is a local minimum,

0" =arg, min  V(0,7(6),(9))- (38)
of V(8) with By(0*) & {0 € R: {6 —0*| < K| such that

the filtered regression vector #! is persistently eaciting V0 €
B(K,0). If V(0*) is small enough, then

1. the ODE (37) has an asymplotically stable equilibrium
point 6° such that

|0° — 0*| < BV{6*)for some finite b; (39)

2. given x > 0, there ewists a sufficiently small v*(x)
such that, for 4 € (0,7*) the equation (32) possesses a
bounded uniformly asymptotically stable solution 8:(y)
which is close 6°,

lim I8,(7) = 0°] = 0; (40)

3. every solution 0,(7) of (32) with (v} € Br_(6*),
satisfies, for y € (0,4%),

O(7) € Br(0*),  Jim j0(y) = 0u(v)} = 0. (41)

The constant b in the first part of the theorem is propozr-
tional to the maximum value, over all the models in the
hypersphere By (6*), of the average value of the Euclidean
norm of the regressors, and is inversely proportional to the
average amount of excitation in the filtered regressors Wi 9.

The main conclusion to be drawn from this result is that the
solution of the recursive parameter adaptation algorithm,
implemented in an adaptive loop, will converge close to the
solution §* of the off-line problem provided the following
conditions hold.

1. The plant-model mismatch must be small enough; this
is embodied in the condition that V(6*) must be small
enough.

2. The filtered regressors must be persistently exciting.

3. The initial condition of the parameter update algo-
rithm must be sufficiently close to the “optimal” value
0.

4. 'The models must be sufficiently smooth functions of 8
around §*

5. The gain of the parameter update algorithm must be
sufficently small.

Further, since under similar assumuptions §* is close to the
performance criterion minimizing 6**, we will have 6 con-
verging to the neighbourhood of 6**.

5. The Interplay

Our presentation so far has focussed on two main themes;
conditions for the robustness of linear control laws in terms
of model accuracy, and conditions for local convergence of

identification methods operating in adaptive closed loop.
Assessing these issues at this point we see directly that (9)
implicates model fit in the robust stability criterion and that
Assumption 2 necessitates the choice of a low sensitivity con-
trol law in ensuring the viability of teh indirect parameter
adaptation.

The natural question to pose at this juncture is whether
these requirements for good adaptive control are potentially
simultaneously satisfiable, or whether they represent a mu-
tually confounding specification of desires. The answer is,
of course, that the concurrent accommodation of both con-
ditions is possible. Indeed, the thesis of deliberate selection
of an insensitive control law or detuning in adaptive con-
trol is very familiar, Here, however, we shall indicate by an
example that it is possible to propose a control law whose
specific robusiness requirements dovetail with its effect upon
the closed loop identified model., This example is explored
very much more fully in [11].

Operating under the conditions that the reference signal,
r(, dominates the measurement noise, v;, we may approxi-
mate the closed loop frequency domain identification crite-
rion (21) by

Vo) = [T IAPE,OPIW(E, )P0, w)  (42)




ju 2
D,
|H(e, 0)2
Returning to the robustness criterion (9)
[AP(e, 0)
|P(e™)?
we see that one desirable objective of the control design
might be to attempt to achieve
e
[H?
In this fashion the (L?) identification objective (42) and the
(L*) robustness criterion (44) are made as compatible as is
possible. The central difficulty in achieving this, of course,
is that a priori P(z} is not known nor indeed need a good

approximation for P(z ) be known. However, the selection
of;

< min (l]. + p(eju,o)oz(ejw’ P)|2) 1) 3 (43)

W20, | PR+ PGy = 1. (44)

white reference model during adaptation produces @, =
L

an almost minimum variance tracking control causes
[Wi(e)| ~ |£(e,0)]-

This control law is singular LQG and, if implemented

via Kalman Filter design based on #{(z, ) followed by

singular LQ control design, yields a controller of Loop

Transfer Recovery type which, for a fixed «, keeps
L+ P(e, 0)Ca(e,p)] > c.

D(z,n) = H(z,0) or, if a useful a priori estimate of the
final return difference is available, D = H{l 4 PC,|™".

The point made in [11] is that this prescription of an adap-
tive controller as the interconnection of such a control law
and a least squares recursive parameter estimator is very
close to Generalized Predictive Control of Clarke, Mohtadi
and Tuffs [12]. This latter adaptive control law and its rel-
atives have been the focus of many successful practical ap-
plications. The work of this paper helps to make better
connection between the specification of these practical laws
and more standard linear controller design problems.

We conclude our treatment of this problem by reiterating
the salient points.

In adaptive control there is a natural interplay between
the parameter estimator local convergence properties
and the robustness of the control law schema;

the identifier requires local smoothness of the con-
troller behaviour.

the controller requires the robustness to cope with
parameter variations due to the identifier.

- The selection of the control law impinges upon the
robust stability conditions in two ways; it determines
the magnitude of the return difference, 1 + P(2)C(2),
frequency response, through the effect on the closed
loop input spectrum it affects the frequency weighting
of the model fit to the plant.

Subject to local smoothness properties of the closed
loop behaviour and to the absolute model fitting capa-
bility, the on-line parameter identifier in indirect adap-
tive control can converge to a neighbourhood of the
best value measured according to off-line nonadaptive
control, These results hinge critically upon the per-
sistence of excitation of the signals in the closed loop
which, in turn, derives from the richness of the refer-
ence signal.

- An example of adaptive LQG control incorporating
Least Squares parameter estimation, singular optimal
control, Kalman Filtering and error filtering which

demonstrated the feature of the robustness criterion
and the implicit model fitting objective being coinci-
dent. That this controller is strongly related to emer-
gent practically successful adaptive controllers but is
more strongly theoretically supported, suggests to us
that these interplays between control law selection and
closed loop identification embody the connection be-
tween explanations of classes of applied adaptive con-
trol algorithms and generation of new procedures based
on more classical control theories.
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