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Abstract

The explicit connection is made between the (nonadaptive) control law
design stage of Predictive Adaptive Control and recent techniques of
Linear Quadratic Gaussian control with Loop Transfer Recovery for
robustness enhancement. The inherent controller design robustness of
these methods is examined in terms of the nonadaptive closed loop
properties, that is of the class of open loop perturbations to which
the closed loop system is robust and of the effected input spectrum to
the plant in closed loop. With this latter information, we then pose
the question of to which plant model does the Recursive Least Squares
identification stage converge under this input. The revelation is that in

many circumstances the identified model is precisely that which yields.-

the best satisfaction of the previous robustness criterion for the control
law. In this way we demonstrate the robust interplay of the identifier
and of the controller in this class of adaptive control methods.

1 Introduction

Predictive adaptive control laws have achieved a significant level of
acceptablility and practical success in industrial process control ap-
plications. Their raison d’étre is typically advanced as an heuristic
generalization of minimum variance adaptive control, where the con-
trol, uk, is chosen to minimize the plant output, yx4,, variance from
a reference, wiy1, ie. E(yrq1 — wr+1)?, at each time & [1). This was
generalized firstly to include minimization not Just of the process out-
put variance but of the sum of this variance plus a small quantity of
input variance, £((yh41 — wr41)? + AuZ), at each k [2]. This allowed
extension to handle some nonminimum phase systems. More recently,
this control objective was altered to include minimization of a criterion
involving outputs and inputs further into the future of the system, see
e.g. [3]. Specifically, u to Uk+N,-1 are chosen to minimize,

N, N
J(NL,NoyNu) = E{Y [yrs — wpai]? + 2 Ailurai-]?} (1)
=M i=1

subject to ugyy = 0, i= Nyyoooy N3,

Through the inclusion of more distant future information into the cri-
terion it is felt that better ability to control broader and more dif-
ficult classes of plants is achieved. The identification component of
these adaptive controllers is usually chosen to be a variant of Recur-
sive Least Squares (RLS), with additional devices such as deadzones,
signal normalization and parameter projection.

If the same criterion (1) is minimized at each time instant & with only
the first control uj being applied to the system, then the resultant
control law becomes a receding horizon Linear Quadratic (LQ) law.
Thus for a time-invariant plant, the control law solving this problem
will yield asymptotically a fixed state variable feedback controller, see
[3,4,5]. Further analysis and choice of design variables admits the pos-
sibility of equating this receding horizon LQ problem with an infinite
horizon LQ problem and, thereby, guaranteeing closed loop stability
for the nonadaptive law. This has been discussed by the authors in (5]
using the monotonicity methods of Poubelle (6].
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In order to solve for the control value, ug, for this problem it is neces-
sary to generate predictions of the future values of the plant output ,
Yk+i, and then one may write explicitly a set of linear equations for the
control sequence {ug4i;i=0,..., N, - 1} involving the Hankel matrix
of impulse response parameters of the plant. No notion of plant state
needs to be introduced since this solution is only in terms of output
predictions and desired signal values. The mechanism of generating
these predictions, however, does perform the same réle as does a state
estimator or observer, (7,8). Further, Mohtadi (7] has stated that the
selection of the predictor/observer polynomial, C(z), in practice has a
dramatic influence upon the success of the adaptive controller. Hence
the ‘predictive’ part of the predictive controller is seen as incorporat-
ing the observer associated with the state feedback solution of an LQ
problem. Thus the predictive control strategy is composed of the same
elements as a linear state variable feedback strategy with incomplete
measurements and a quadratic cost, which we denominate (somewhat
too generally) as Linear Quadratic Gaussian (LQG) control.

With the recognition that the predictive control criterion frequently
has a direct interpretation as an equivalent infinite horizon LQG prob-
lem, one is led to ask whether this inherent control strategy might be
robust as a nonadaptive control law. Middleton et al, [9] have ad-
vanced that robust adaptive control should commence as adaptive ro-
bust control and here we have associated with an empirically-derived
adaptive control law a nonadaptive version (LQG) which has been the
subject of considerable recent robustness analysis. Specifically, LQG
Loop Transfer Recovery (LTR) [10] theory has been developed to allow
the recovery in LQG designs of the robustness known to be present
in full state feedback LQ control. We shall interpret the predictive
controller design in terms of the LQG/LTR theory and show how the
réle of particular elements of the design, such as A in (1), is the same
as that of certain other variables in LTR methods.

‘The robustness of LQG/LTR control systems is measured by the abil-
ity to maintain closed loop stability in the face of multiplicative per-
turbations to the open loop nominal plant. That is to say, should the
actual open loop plant differ from the nominal plant used for the con-
troller design, then LQG/LTR control preserves closed loop stability
provided the multiplicative perturbation to the nominal plant satisfies
certain frequency domain constraints. We shall interpret the multi-
plicative error between the plant and its nominal model as being the
relative error of the frequency response of the open loop system,

In adaptive control systems, one is concerned not Jjust with controller
design and its robustness to externally imposed modelling errors, but
also with on-line plant identification where two facets of the same issue |
arise: ‘What is the effect of the control law upon the model identified
in closed loop?’ and/or ‘To what extent is the identifier capable of
providing a model compatible with the controller robustnesss?’. We
shall apply the Return Difference Equalities (EDR) of optimal filtering
and control, i.e. LQG, to derive the spectrum of the input signal I
applied to the plant in closed loop. With LTR control methods this \
spectrum has a particularly simple form. When this input spectrum |
data is now used with Ljung’s theory of frequency domain evaluation
of least squares identification criteria, we gain a view on the implied
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weighting of the model fit achieved through the coupled use of RLS
and LQG control. The surprise here is that the model fit achieved via
the use of this control law dovetails precisely acccording to a relative
error criterion. That is, the identified model frequency response wiil
‘have smallest error from the actual plant frequency response exactly in
‘accordance with the requirements of the LQG/LTR robustness result,
SIn this way, the adaptation helps to tune the model to fit the controller
robustness, thereby improving closed loop robustness overall. This will
be compared to H,, (or worst case) methods to show that this robust
interplay between controller and identifier has the potential to achieve
considerably better control,

It is our view that this work represents the first study in which the
robustness theory of LQ control has been utilized in an adaptive con-
trol procedure incorporating the features of both the controller and
the identifier components. It describes the coupled behaviour of these
two elements and begins with an empirically verified but heuristicaily
derived practical algorithm and- makes full body contact with modern
robustness and identification theories, This yields both an understand-
ing of why the practical algorithms have been found to perform well
and also of how they might be modified to include recent advances in
sophisticated controller and identifier design.

The structure of the paper is as follows. Section 2 is devoted to an
exploration of the connection between the nonadaptive predictive con-
trol law and LQG methodology. Section 3 treats LQG robustness and
LTR design. Section 4 concerns the interpretation of predictive con-
trol as LQG/LTR and Section 5 deals with the interplay between the
controlled closed loop and the identifier. Section 6 concludes.

2 Predictive Control and LQG
2.1 The Control Law
Let the open loop plant have a state variable description as follows,
Thpt Fap + Guy )]
v = Ha, ¥

and let the control law be obtained by minimization of the standard
finite horizon LQ criterion,

It

N

J(N}y=E {2 [z,{_‘_jQJ:k.pj + u{HRquJ } (4)
=1 -

We make the following observations concerning this control law;

* a reference signal, wi, may be introduced into the criterion (4)

to yield a tracking problem [13]. This solution will have the same

stability properties as the regulation problem but will include a

reference signal precompensator,

comparing the criteria (1) and (4) with wy, = 0, it is readily seen
that they are equivalent provided N = N2 and the weighting
matrices associated with the state and with the control are, re-
spectively, @ = HTH and R = Al, ignoring the differences in
horizons N, and N,. Incorporating these horizons and Ny re
quires the introduction of some zero Q values and some infinite
R’s for certain time indices (5],

the solution of this standard finite horizon LQ problem may be
stated in terms of a time-varying linear state variable feedback
law,

UriNj = =(GT Pyt G + Rie) G B Py, (5)

Here 2 is a state estimate produced by an observer, F; is the
solution of the Riccati difference equation.

Piy1 = FYPF - FTP,G(GT PG + R)TGTRF+Q;  (6)

the control law (5), in the receding horizon control situation, only
results in ur being applied from this entire finite time solution,
A new finite horizon problem is soived for Ur+1 with the same
horizon, Thus a stationary control law arises with a gain only
dependent upon Py_;. This is the principle behind receding

horizon LQ control {12},

the asymptotic stability of the closed foop with a receding hori-
zon LQ control law is not guaranteed, since the finite horizon
subproblems do not have any cornection to infinite horizon prop-
ertiea such as stability. The asymptotic stability is assured for
the closed loop of an infinite horizon LQ problem with [F,Q\7)
stabilizable,

using monotonicity arguments, it is possible to modify slightly
the predictive contro] criterion 5o that the resultant closed loop
is asymptotically stable, see {5]. This modification proceeds by
showing that the receding horizon solution, with a given Q and
R, can be made to be the solution of an infinite herizon probiem
with a larger Q and the same &, An infinite time time-invariant
LQ problem has a solution,

P FTPF - FTPG(GT PG + R)7'GTPF 4+ q.
s —(GTPG + R)'GT P,

M
(®

2.2 The State Estimator

The linear state variable control laws above are ali implemented using
state estimates, &y, since full state information is not available. We

.make the following remarks concerning the generation of these state

estimates;

¢ because the plant is assumed strictly proper it is possible to pro-
duce state estimates using an observer with a direct feedthrough
term without encountering algebraic loop problems. Such an
observer has the form,

Erpa=(F~-MHF)é, + (G~ MHG) ug + Mypyq (]
where the eigenvalues of # — MHF may be arbitrarily placed by
choice of M provided [F\HF) is an observable pair.

¢ if we presume that output measurements are corrupted by noise,
as is the state, then an alternative derivation of an observer may
be carried out based upon optimal state estimation, Kalman
Filtering (KF) {14]. Then the filter gain, M, is designed via
the solution of the filtering algebraic Riccati equation as follows,
with process noise covariance Qo and independent measurement
noise covariance R,

M SHT(HESHT + R,)™! (10)
E = FLFT - FEHT(HEHT 4 R \HSFT + Q.. (A1)

I

it is possible to extend the KF to deal with coloured measurement
noise and with correlated process and measurement noise [22].

note the structural similarity (duality actually) between the LQ
control solution and the KF solution. At least this is true inas-
much as Riccati difference equations of similar form are used.
‘The actual duality exists between the LQ control of a plant with
delay and the Kalman one-step-ahead predictor for the same
plant.

the observer/KF with direct feedthrough is not dual to the LQ
controller for a plant with delay.

.

by careful choice of the state coordinate basis, it is possible to for-
mulate state estimates directly as future plant output predictions
{8]. In this formulation, the observer characteristic polynomial
is identified with the predictor polynomial. Thus the predictor
component of predictive control may be incorporated within the
structure of an observer,

2.3 Summary

The nonadaptive predictive control law (perhaps with some slight mod-




G(z)= -K
x{I+(I = MEYP +GE)(zl - (1 - MHE)F +GK)]™)
xMH(z1 ~ F)-'G, (22)
For the KF, or output preserving problemn,
® with no state feedback
G(z)= —~H{zI - F)"'M (23)

e with an observer Possessing no direct feedthrough term
G(z) = ~H(2I - FY\GK(z] - F + MH - GK)™'M, (24)
® with an observer possessing a direct feedthrough term
G(z) = ~H(zI -~ FY"'GK
x {1+ (I = MEYF +GK)f2I ~ (I~ MH)F +GK)}

xM. (25)
This alteration from the ideal G(z) has the potential effect that all
robustnese of the closed loop may be lost, since we no longer have an
automatic lower bound upon |1 4 G(e)]. It may well be the case that
the new closed loop is actually more robust than the ideal. What is at
issue is that the ‘guaranteed’ margin implied by the Return Difference
Equalities is lost.

—

3.4 Loop Transfer Recovery

Loop Transfer Recovery (LTR) refers to a design methodology whereby
the robustness guarantee of LQ and KF can be recovered for certain
plants operating under LQG. The better known theory for LTR is in
continuous time, see {10,19], where the KF and LQ are dual. The
design methodology runs as follows;

L. perform an LQ design according to normal rules.

2, design an observer by using the Kalman Filter with covariance
matrices ¢, = GGT and R, = oI, with the positive real param-
eter p — 0,

3. if the open loop plant, P(s) = H(sI-F)'G, is minimum phase,
Le. it possesses no zeros which are in the right half complex
plane, then Gga(s) — Grg () as p— 0 for all s. If the P(s)is
nonminimum phase then this convergence does not occur, Here
Grqa(s) refers to the continuous time equivalent of (21) or (22)
(There is no distinction between these two in continuous time.)
while GLg(s) is the equivalent of (20).

An alternative design procedure is the dual of the above;

1. perform a KF design according to normal ruies.

2. design a state variable feedback via LQ with weighting matrices
Q=HTH and R= A\ — 0,

3. if P(s) is minimum phase then Groa(s) — Grr(s) as A — 0 for
all 5. Here Grqa(s) refets to the continuous time equivalent of
(24) or (25) while Gxr(s) is the equivalent of {23),

Several points are in order here;

® The principle of these LTR methods is that by performing a
singular optimal filtering (control) design in the LQG controller,
the extra dynamics appearing in Grgg(s) are forced to cancel
with the (stable) open loop plant zeros, thereby yielding the
required LQ or KF G(s), which, by our previous arguments,
possesses an inherent degree of robustness,

* Since the open loop plant and the controller/observer system
are both strictly proper in continuous time, the convergence of
return differences above involves the appearance of successively
larger gain matrices M or i as p=0Gor A0,

While the method guarantees nothing for nonminimum phase
plants, there abound claims that the methodology performs well
with many such systems. The question is then what value of por
A is a suitable stopping point. Recall the nominal design is LQG
and this is simply a robustness enhancement measure. That is,
the LQG contraller design guarantees stability for the nominal
plant and our aim here is to modify this design procedure in such
a fashion as to guarantee a measure of robustness along with the
nominal stability but withous departing from the LQG design
methodology,

*

The robustness recovered by this procedure is that of LQ or KF
which is not necessarily worse nor better than that of the LQG
design,

The robustness is achieved at the expense of performance, since
the nominal behaviour is detuned from the natural LQG settings,
3 Rv Qm Ro

It is generally agreed, amongst the cogniscienti, that the latter
(XF followed by singular optimat control) method is preferable
to the LQ-first approach. This is because the KF-frst method
preserves the plant output signal in the «scovery and this is usy-
ally more closely related to control objectives than preservation
of the control input properties,

In discrete time, the situation is similar but deceptively different, as
has been investigated by Maciejowski (18] with the following remarks
being pertinent.

Remark 1 In discrete time there is a distinction between the Kalman
Filter (KF) and the Kalman one-step-ahead predictor (KP). This dis-
tinction does nof exist in conltnuous-time,

s The Kalman Filter invoives no delay. The state estimate, Thik,
of the siate at lime k given input-oulput data up to and including
time k is produced. The Kalman predictor yields EfTTIRS

® The KF therefore possesses a direct feedithrough term.

® If the open loop plant is strictly proper then the KF may be used
to implement an LQG feedback law without the appearance of
algebraic loops.

® The Kalman predictor is dual to the LQ control of a plant with
delay, The KF is Dot dual to this LQ problem!

Remark 2 I7TR is only possible in discrele time ustng the irue Kalman
Filter followed by singular optimal control design,

o The issue of correct relative degree in Grqg(z) and the appear-
ance of large M or K in the singular design stage conflicls with
stability requirements for discrete time sysiems, To be more pre-
cise; from root locus arguments one may see that large feedback
gains in the overall controller will necessarily lead to closed loop
poles exiting the (compact) stability domain,

o The nonduality of discrete time LQ and KF for a strictly proper
plant causes the discrepancy befween design approaches. I can
be shown that if one restricts oneself to Kalman predictors {and
not KF), then the complete equivalent of the continuous theory
emerges with the robustness recovered being just that achievable
by a controtler possessing a delay {20]. Because of the extra delay
in the loop vis-G-vis KF based controllers, these Kalman predictor
based controllers are inherently less robust,




ification for guaranteed stability) falls under the ambit of stationary
infinite horizon LQ control implemented with the use of an observer,
With only a slight abuse of notation we shall denominate this Linear
Quadratic Gaussian (LQG) control in the sequel,

3 LQG Robustness and LTR

There has been considerable activity for an extended period on issues
associated with the robustness of feedback control systems, Here we
shall state a subset of results which pertain to the robustness of LQG
control, “The path we follow will be close to a single-input/single-
output, discrete-time version of Lehtomaki et al, {15], Doyle {16},
Stein and Athans {10), and Kwakernaak {17] and shall culminate with
the work of Maciejowski {18]. Extensions to multivariable systems are
direct from the referred works but would hinder clarity here.

3.1 Closed Loop Robustness

Here we shall consider criteria for the preservation of stability when
a given feedback controller, C(z), designed on the basis of a nominal
plant, P(z), is connected in a unity feedback closed loop with an actual
plant, P(z), which may differ from P(z).

Denote the actual plant, £(z), as being a multiple of the nominal P(z),
P(z) = L(:)P(2), (12)

where the multiplicative perturbation is L(2) and pole-zero cancella-

tions may occur in (12). Denote the nominal and actual controller/plant ™ -

cascades by P(z)C(z) = G(2) and B(z)C(2) = G(z) = L(z)G(z). Let
the corresponding open and closed loop characteristic polynomials be
ot(2), $ot(2), dci(z) and $ey(z). Then we have the following result,

Theorem 1 The closed loop characteristic polynomial Jc:(z) has no
zeros outside the unst circle if,

» ¢oi(z) and (;ol(Z) have the same number of zeros outside the unit
circle,

* doi(z) and éof(z) have the same unit circle zero8,
¢ $a(z) has no zeros outside or on the unil circle,

o the multiplicative plant perturbation, L(z), and the nominal re-
turn difference, 1 + G(z), satisfy

IL7Yz) ~ 1} < min (1, ]1 + G(2)[] af each z € Q, (19

where  is a contour consisting of the unit circle indented around
unit circle zeros of dot(z).

This is a discrete-time version of a statement of Lehtomaki et al. [15],
although it is a classical gain margin result in the single-input/single-
output case.

This theorem links the closed loop robustness to multiplicative pertur-
bation L(z) (recall the nominal value of L{z) is 1) with the value of the
frequency response of the return difference, {1 + G(2)], of the nominal
controlled system. To gain a further appreciation of the statement,
consider the following expression of the final inequality,

[GLE)(6() - G()L(2)]
G 1(=)(G() - (=)
P (3)[P(2) - B(2).

L2y -1

(14)

If the norninal controller is designed to yield & nonzero magnitude of
the frequency response of the return difterence, then the feedback 8Ys-
tem stability will be robust to a certain level of relative error between
the nominal and actual plants,

3.2 LQ and KF Robustness

If we denote the feedback gain in the LQ solution (5) by K and re-

igard the signal z; = -K3; a5 a fictitious output in a unity feed-

jback representation of the LQ plant then one has for the cascaded
lant/controller transfor function, G(z) of the previous section,

" 6() = —K(21 ~ F)-¢. (15)

We may now state the discrete Return Difference Equality of optimal
control. This is a relationship satisfied by the solution of an infinite
horizon time-invariant LQ problem, i.e. by matrix P of the algebraic
Riccati equation and the corresponding gain vector K of the state
variable feedback. It follows simply from the algebraic Riccati equation
‘that,

R4+GT (' = FYTQl - Py =
I -K@GE-F)'6T (6T PG + R)I - K(2I - F)1G](16)

We consider this equality for z on the unit circle and note that the left
hand side is a spectrum which consists of a strictly positive constant
part, R, and a strictly proper nonnegative part. Thus from (16) we
have directly that

- K(zI~ F)7G) > >0  forallzeq.

R
GTPG+ R an
Referring now to Theorem 1 and (18), we see that LQ full state feed-
back possesses a natural robustness to multiplicative perturbation of
the plant system, because 7 + G(z) = I - K (zI - F)-1g,

For the Kalman Filter, there exists the dual Return Difference Equal-
ity,

Ro + H(zI~F)'Qu(s71 - F)yTHT = (18)
= H(zI - F)" MIHZHT + R)I ~ H(z""1 - Py '\M)T,

where R, is the measurement noise covariance matrix and Qo is the
process noise covariance matrix.
By direct analogy to the LQ case, we have that

. 5 R,
I~ HEzI-F) M) > ST TR, (19)
‘Thus the Kalman Filter possesses an inherent degree of robustness
to multiplicative mismodelling of the plant, so that stability of the
filter (in terms of the behaviour of the deviation between predicted or
filtered plant outputs and actual plant output) is preserved in the face
of certain L(z) # I modifications to the design plant.

forall z € Q.

3.3 Guaranteed LQ Margins with Observers

“There are none!” [16],

That is, it is possible to find examples of the complete loss of the |

‘above robustness to multiplicative perturbation when either the LQ
.controller is implemented using an observer, LQG, or the Kalman Fil-
‘ter is used when the plant is operating under state-estimate feedback.
This phenomenon was probably first reported by Kwakernaak.

[’I‘he issue is that the plant/controiler cascade, G(z) above, is replaced
:as follows for the LQ (s0-called inpus preserving) problem,
» with direct state feedback, #; = z;
G(z) = -K(zI - F)"'@, (20}
» with an observer possessing no direct feedthrough term
G#)=-K(I-F+MH - GKY'MH(2I - F)'G, (1)

e with an observer possessing a direct feedthrough term

ﬁ



Remark 3 The LTR refurn difference converges to the KF return
difference as the LQ controi weighting A — 0 if and only if the open
loop plant P(2) is minimum phase and minimum delay, i.e. no zeros
outside the unit circle and det HG #0, ie g unit delay.

To summarize, the discrete time LQG/LTR design follows;
1. Perform a Kalman Filter (with direct feedthrough) design for the
open loop plant.

2. Conduct a singular optimal control design for the LQ feedback
with weighting matrices Q = H7H and R= Al

bad

If the open loop plant is minimum phase and minimum delay,
then Groa(z) — Gip(z) as A — 0 for all 2, Otherwise one
must cease the design at a nonzero value of A — the empirical
claim being that this works well for many systems, The limiting
feature of these (singular) optimal control laws with nonmini-
mum phase/delay systems is that the control signal magnitude
becomes unmanageably large as A — .

4 Predictive Control as LQG/ILTR

Our claim in this brief section is that Predictive Control, (PC), as
a nonadaptive control law, implements ipso facto an LQG/LTR de-
sign. Specifically, we have shown the control objective of Generalized
Predicitive Control (1) to be explicitly a receding horizon LQ criterion__
which, if asymptotic stability modifications are made, is identical fo
an infinite horizon LQ criterion with weighting matrices Q > HTxH
and R = Al,

The positive value A is selected as a somewhat arbitrary control in-
put weighting designed to perturb the minimum variance criterion to
prevent possibly unbounded control actions resulting with nonmini-
mum phase systems. Our thesis here (as indicated by our notation} is
that A is a small correction to our desired controller criterion selected
to achieve closed loop robustness to our design. That is the )s in
Predictive Control and in LQG/LTR are the same.

To complete our presciption of Predictive Control as LQG/LTR, we
note that the ‘missing link’ in the PC design is the specification of the
predictor polynomials — () in the terms of Mohtadi (7]. A major
feature of PC is that the choice of C(z) is recognized as crucial for suc-
cess and is often presumed to have been fixed before the control design
stage and tuning is begun. Given the identity between these predictors
and observers already enunciated in the Introduction and (3,7,8], we
now are in a position to associate with each fraction of the PC design
an equivalent from discrete time LQG/LTR. Mohtadi [7] advocates
the use of C(z) which reflect the plant and measurement noise models
and which implement delay-free predictions of the plant output. The
connection to Kalman Filtering theory is clear and indeed suggests
how this component of PC should be designed. By careful choice of
KF weighting matrices it is possible to maintain the coordinate-free
state variable controller design [21].

5 Adaptation and Robustness

The major application of Predictive Control laws is in the area of
adaptive process control. That is the nonadaptive control law design
is coupled with an on-line Recursive Least Squares (RLS) parameter
estimator. The questions here then concern the interplay between the
adaptation and the controller robustness achieved via the LQG/LTR
connection. In this context the estimated model plays the rdle of the
nominal plant, P(z), while the actual plant is the perturbed P(z). We
first consider how the control signal, ug, affects the selection of the
nominal plant transfer function, P(z), and then move on to consider
the features of the control in the Predictive Controller or LQG/LTR.

According to the recent theory of Ljung [11], the minimization of a
Least Squares prediction etror criterion between asymptotically large,

stationary data sets of plant input and output can, via Parseval’s iden-
tity, be interpreted in terms of a frequency response deviation mini-
mization. Specificaily, we presume a plant structure

Yk = P(2)u + vy, (26)

where v, is the measurement noise, and we presume a model structure

Bk = Pz, 0)ui + H(z, )&, (27)
where & is the prediction error of the model (27) and P(z,6) and
H(z,6) are parametrized transfer functions. The Least Squares solu-
tion is sought as follows

gréigE [H"‘(z,ﬂ)(yk - P(z,ﬂ)uk)}z. (28)

This may equally well be regarded as a frequency domain minimization
A" s, s i 2 dw
JWY . pleiw
i [ [[Be - e ) Buufer + o] e o (29

From (29} we see the réle played in the selection of plant model,
P(2,8), by the input spectrum as well as the parts played by the
noise spectrum and the class of noise models, For our (illustrative)
purposes here we shall assume in what follows that we are operating
with small noise, ®yy(w) < @yy(w), and that we have chosen no noise
model, #(z,8) = |. Further, we shall assume tha the on-line use of
RLS with prediction error updates yields the true Least Squares pre-
diction error minimizing value of 4. Then the simplified identification
criterion associated with the adaptation of the controller is

o f_ 1 [P(e) = (e, 0)[" @) s (30)

We next pose the question of what is the nature of ®uu(z) for PC or
LQG/LTR. Recall that our control law is given by

U = =K & 4wy,

(31)

where wy, is the reference signal and the state variable feedback gain,
K, is given by the solution of a singular optimal predictive control
problem, ie. R = X\ — 0 and Q = HTH fixed. The closed loop
transfer function between the external reference signal, ws, and the
control signal, ug, is precisely the inverse of the (input preserving or
LQ) return difference. For the nominal plant, the observer dynamics
cancel from this transfer function to yield the closed loop relation

g = (I = K(z] = F)=1G) tyy, 32)

To ascertain the spectrum of u we need to analyse this return differ-
ence with Q = HTH and R= ) — 0, and for this we turn back to the
return difference equality (16) with this substitusion for Q and R,

MG = Py T (o - )@=
=K1~ )76 (GT PG + AT - K(z1 - F)™'G1(33)

Now notice that the left hand side of (33) consists of A+ PT(z~1) P(z)
with A small, and the right hand side is a constant multiple of the
return difference with its conjugate transpose. Combining this with
(32) we see that the LQG/LTR controt law produces a closed loop
control spectrum,

Puulw)
(I = K(e™I = F)1G) '@ (w){] - K(e™v] - Fy-igy-t
(T = F) G @y (w)H(e 5T - F)-1G)
P Bu(w) P M),

|

(39)

where ~ means ‘is approximately proportional to’. This expression
for the nominal closed loop control spectrum stems directly from the
sinrgular optimal control elernent of its genesis,




The control spectrum from (34) may now be substituted into the iden~
tification criterion (30) to yield the equivalent adaptive predictive con-
trol identification criterion;

. L

wsf,

That is to say, using (14), the adaptation criterion is identical to the
modelling criterion

P(ei) - P, 0)|*

) Puw(w) dw.

(35)

min /_ " |5 ) ~ 1]} ) o

To draw these many threads together at this stage, we have shown the
following;

e The LQG/LTR control law is implicit in the statement of Pre-
dictive Control.

s This control law is naturally robust to unmodelled muitiplicative
plant perturbations, L(z).

The closed loop stability is maintained provided (13) is satisfied,
that is, [L™Y(2) — I} < |1 + G(2)} for all z € Q.

The LQG/LTR control law engenders a closed loop control spec-
trum which causes the .adaptatiion component to minimize a
weighted integral of [L(e/”) = 1]” Byu(w).

The adaptation and control stages may thus be seen to be mutu-
ally supporting in terms of their effects vis-a-vis the closed loop
robustness requirements.

The natural robustness of LQ/KJ is really only established using
the return difference equalities and their overbounds. Similarly,
the model fit only refers to the attempts to overbound the mul-
tiplicative error,

One may use the above results to indicate how the reference
signal should be chosen to achieve maximal robustness and also
how one might choose identification prefilters better to enhance
robustness, if extra information is available. By careful choice
of wy and prefilters, one may encourage the modelling to fit
best precisely at those frequencies where {1 + G(z)] is small, In
“this way, designs exceeding straight Ho, (worst case) robustness
design can be achieved,

o With the establishment of Predictive Control within this frame-
work, it becomes feasible to contemplate how more sophisticated
{and more sophistical) control design methods might be incor-
porated into adaptive control.

6 Conclusion

We have followed through a tale of detective work isolating the con-
nections between an existing popular adaptive control scheme and the
recent theory of robustness of LQG systems to show that this con-
trol law embodies the elements of LQG/LTR design together with
an interrelating adaptation phase whose objective is interpretable in
terms of best fitting the control robustness criterion, In this fash-
ion we have shown how adaptation and robustness may be mutually
supportive and, further, have demonstrated both why this adaptive
control method has been found to work well in many circumstances
and how it might be modified better to take into account further plant
knowledge and more sophisticated design.

The pleasing feature of this work is that full contact is established
between practical adaptive control and sophisticated control design
theories. This should reinforce both camps.

(36)-

—

Acknowledgements

The results presented in this paper have been obtained within the
framework of the Belgian Program on Concerted Research Actions
and on Interuniversity Attraction Poles initiated by the Belgian State,
Prime Minister’s Office, Science Policy Programming. The scientific
responsibility rests with the authors.

References
(1} K.J. Astrdm and B, Wittenmark, “On self-tuning regulators”,
Automatica, vol 9, pp_185~199, 1973.
[2] D.W. Clarke and P.J. Gawthrop, “Self-tuning control” ,Proc IEEE,vol
123, pp 633-640,1979.
{8] D.W. Clarke and C. Mohtadi and P'S. Tuffs, “Generalized Predictive
Control Parts I and I1”, Automatica, vol 23, pp 137-160, 1987.
{4] C. Mohtadi and D.W. Clarke, “Generalized Predictive Control, LQ
or Pole-Placement: A Unified Approach”, Proc 25¢h IEEE Conf. on
Decision and Control, Athene, pp1536-1541, 1086,
{5] R.R. Bitmead, M.R. Gevers and V. Wertz, “Optimal Control Re-
design of Generalized Predictive Control”, Proc. IFAC Symp. on Adap-
tive Control and Signal Processing, Glasgow, 1989.
[6] M.A. Poubelle and R.R. Bitmead and M. Gevers, “Fake Algebraic
Riccati Techniques and Stability”, IEEE Trans Auto Control, vol AC-
33, pp 379-381, 1988. '
[7] C. Mohtadi,“On the role of prefiltering in parameter estimation and
Control”, Proc IFAC Workshop on Adaptive Process Control, Banff,
pp 261282, 1988.

I8] K.J. Asttdm and B, Wittenmark, Computer Controlled Systems,

Prentice-Hall, Englewood Cliffs NJ , 1984,

[9] R.H. Middleton, G.C. Goodwin, D.Q. Mayne and D.J. Hill, “Design
Issues in Adaptive Control ", IEEE Trans Automatic Control, 1988,
[10] G.Stein and M. Athans, “The LQG/LTR. procedure for multivari-
able feedback control design”, IEEE Trans Auto Control, vol AC-32,
pp 105-114, 1987. B o
(11} L. Ljung, System Identification:Theory for the user, Prentice-Hall,
1987,

{12] A.E. Bryson and Y.C. Ho, Applied Optimal Control, Blaisdell,
Waltham MA, 1969.

[13] H. Kwakernaak and R. Sivan, Linear Optimal Control, Wiley, New
York, 1972,

[14] B.D.O. Anderson_and J3.B. Moore, Optimal Filtering, Prentice-
Hall, Englewood Cliffs NJ, 1979.

(18] N.A. Lehtomaki, N.R. Sandell Jr and M. Athans, “Robustness
results in Linear-Quadratic Gaussian based multivariable control de-
signs”, IEEE Trans Automatic Control, vol AC-26, pp 75-93, 1981,
[16] J.C. Doyle, “Guaranteed margins for LQG regulators”, IEEE
Trans Automatic Control, vol AC~23, pp 756-757, 1978.

{17] H. Kwakernaak, “Optimal low sensitivity linear feedback systerns”,
Automatica, vol 5, pp. 279286, 1969.

{18} 3.M. Maciejowski, “Asymptotic recovery for discrete-time systemns”,
IEEE Trans Automatic Control, vol AC-30, pp 602-605, 1985.

[19] 3.C. Doyle and G. Stein, “Multivariable feedback design: concepts
for a classical/modern synthesis”, IEEE Trans Automatic Clontrol, vol
AC-26, pp 4-16, 1981,

{20] T, Ishihara and H. Takeda, “Loop Transfer recovery techniques for
discrete-time optimal regulators using prediction estimators,” IEEE
Trans Automatic Control, vol AC-31, pp 1149-1151, 1986.

(21] R.R. Bitmead, M.R.Gevers and V. Wertz, The Thinking Man’s
GPC, Snodfart Press, 1989,

(22] R.H. Kwong, “On the LQG problem with correlated noise and
its relation to minirmum variance control”, Proc. 26th IEEE Conf. on
Decision and Control, Los Angeles USA, pp 763-767, 1987,




