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ABSTRACT

In this paper, a first step is taken to avoid ill—conditioning
in adaptive estimation and pole assignment schemes for the case
when there is a signal model overparametrization. Such a situation
can occur in practice when an unknown model order is guessed
too high so as to be on the "safe" side. The methods proposed in
the paper are relatively simple compared to on-—line order
determination, being based on introducing suitable excitation in the
“regression”  vectors of the parameter costimation algorithms to
ensure parameter convergence. For the case when the models are
nonunique in  that pole—zero cancellations can occur, the
algorithms  seek 10 estimate the unique model where the
cancellations occur at the origin. Applying estimates of this
(unique) mode! turns out to avoid ill—conditioning in central
tendency adaptive pole assignment. For the case of one pole—zero
cancellation the convergence theory of the algorithm is complete.
For the wmore general case, algorithms are readily devised which
appear to work weil but for which a complete theory is not
available.

L_INTRODUCTION

In the practice of adaptive estimation and control there is a
tendency to overparametrize signal models (plants) to be on the
"safe" side. However, for overparametrized models, there is a
danger of ill—conditioning of both the adaptive estimation and the
adaptive control algorithms applied to such plants. Of course,
there is the twin danger of underparametrization, particularly in
the absence of appropriate preprocessing of signals. The effects of
underparametrization could be catastrophic and since this is widely
known, overparametrization emerges as a common problem. This
paper shows that (after appropriate preprocessing}, certain
ill—conditioning  associated  with  overparametrization can be
avoided, without the need to perform on—line order determination
with its associated significant increase in computational complexity.

For overparametrized signal models, there can be a lack of
excitation in regression vectors employed in parameter estimation,
and consequent ill—conditioning in the aigorithms.  Also,
insufficient excitation can lead to identification of nonuniquely
parametrized models which include pole—zero cancellations in the
complex z—plane. When recursive estimates of the parameters of
such nonuniquely parametrized models are applied for adaptive
control, then ill—conditioning leading to excessive controls can
easily rise, particularly in adaptive pole assignment schemes.

Adaptive pole assignment schemes are perhaps the simpfest
schemes for adaptively stabilizing linear plants which are possibly
nonminimum phase [1]. Also, they are the most natural form of
adaptive scheme to use in some applications where it is required
that the adaptive scheme behave as closely as possible to a
nominal optimal design. However, a severe limitation for their
application in practice has been their failure when the signal
models are overparametrized. Adaptive pole assignment requires
the solution of a linear algebraic equation which becomes
ill~conditioned when estimates of the plant have near pole—zero
cancellation. Such is inevitable when the signal model s
overparametrized, Some authors have proposed methods to cope
with this difficulty using on—line estimation of plant order in
some sense [2]. Such an approach increases the complexity of the
adaptive scheme considerably.

The first contribution of this paper, in Section 2, is to
introduce excitation signals into the regression vectors for recursive
(least squares based) parameter estimation in such a manner as to
avoid ili—conditioning even when the model is overparametrized,
For the special case when there is a potential nonuniqueness in
Ehe: signal model due to a pole—zero cancellation on the real axis,
1t is shown how the excitation can be designed so that the
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parameter estimates converge to those of a unique signal model, if
one exists, otherwise to a model with a pole—zero cancellation at
the origin. The introduced excitation does not excite the plant as
in the case of added persistence of excitation signals, The
estimation result of Section 2 is useful when applied in
conjunction with the second contribution of the paper, in Section
3, which shows that when the parameter estimates converge so
that the identified plant has a pole—~zero cancellation at the
origin, the associated central tendency adaptive pole assignment
controller converges without ill~conditioning.

Section 4 gives a novel property of Sylvester matrices
required in the proof of the theory of Section 3, and Section §
gives an illustrative simulation study. Conclusions are drawn in
Section 6.

2. ALGORITHMS AND RESULTS — WHITE NOISE CASE

Signat Model.

Consider the following single—input, single—output (SISO},
input—output (stochastic) signal model class (plant}, in terms of
the unit delay operator g~ ', input uy, output yy and white noise
disturbances wy.

AlQT yx = B@7 Dug + wy
A(QTY) = 1+a,q7 " +.,
BlgT") = b,g7 ' +..+bypq ™ (2.1)

This can be rewritten as

+anq~ ",

v = 0Txp + w , 0T = fa, a,...a5 b, b,..byl

#T = [=yk—1 «.=Y¥k—n Uk~1 --Uk—m] (2.1)*
The conditions on wy are more precisely

The sequence {wy} is independent of uy with E{wy (Fp_1}

= 0, Efwg? IFx—1] ¢ 0yw? < o where Fy denotes the
o—algebra generated by wy, wp, ... wy. 2.2)

Recursive Least Squares (RLS) Estimation

Consider that ¢ is estimated recursively minimising a least squares
criterion:
3 =.l[lv(( - 0"= )% 0 -3 B (0 - 5
k=2 i 0’ ®o 0]
via an RLS scheme as
Oy
isk

1]

PidBy—10k—1 +xiyi] » Bx = Bp_q+%% T

Pyt~ Py— 1 X005 TPy — 1 (12 TPy g i) =1 = By =
. 2.3)
for some initial conditions 80, Bg > 0.

Convergence Properties Review To achieve a simple analysis
making connection with Kalman filter theory as in [3], let us

assume

{wg} is normally distributed, and the a priori probability
density associated with 9 is_
N[6g,Pg] for some Pg = By™' > 0. (2.4)

This assumption is not needed for a_more general theory based on
stochastic _Lyapunov  functions ekTBkak in [4,5]. where
8y = ¢ —0g, but then the results are not quite as tidy.

For the model (2.1) (2.2), and RLS_scheme (2.3) under
(2.4), Kalman filter theory tells us that with b = 8 — Oy

0Py = E[8 0T 1Fgoy], O = E[0IFy_{] (2.5)
Moreover, from [3] there is almost sure convergence as

tim Py = PLS, lim 9, = oI5 as. (2.6)

k 5w k 5 o




for vandom variables I?LS, LS, With xj sufficiently exciting in
that PLS = 0, then [3] tells us that 915 = ¢. Also if 015 = g,
then 9.0, T > 0 as k > o and consequently under (2.5), Py - 0
as k o «. Thus the following strong connection between sufficiency
of excitation of Xy and parameter convergence.

Lemma 2.1

For the RLS scheme (2.3) applied to the signal model (2.1)

(2.2) under (2.4), then

lim P = 0 &= lim 0y = 0 (2.7)
kK 9 o k »

Proof: As above based on results in {3].

On__Sufficient Excitation In this subsection three specific

excitation scemarios are studied using known results from {[4,5,6].
These relate excitation of signal model inputs to outputs or states
for reachable open-—loop time—invariant plants, with or without
(possibly time—varying) feedback. The first two cases are a review
of known results for the «case when there is no
overparametrization, while the third case deals with the case of
overparametrized models.

Case (i); The simplest case to study is the nonoverparametrized
case when

qUA(q™ "), qMB(q T *) are coprime, (2.8)

and uy is suitably exciting in that

k
lim (X GkﬁkT Yyt =0, ﬁkT = [ug.1 Yk-2 -+ Uk_p-m]
koo 1 (2.9)

This latter condition is achieved when uy includes at least D+my,
distinct sinusoids decaying no faster than 1/k, as when uy is white
or filtered white noise with a variance decaying no faster that 1k,

Under (2.8), the model (2.1) is uniquely parametrized, Xy is
reachable from uy alone, and excitation of the inputs as in (2.9)
implies excitation of the states Xy {4,5]. Thus (2.8),(2.9) ensure
that Py > 0 as k » », and in turn 8y » & as k > o For this
case then, wy need not be sufficiently exciting in any sense.
Case (ii): Another simple case to study is when (2.8) does not
necessarily hold, but wy as well as uy are suitably exciting in that
(2.9) is satisfied and

@«

( Z E[wg2iFg3) )7 =0 (2.10)
1

Under (2.9),(2.10), the modef (2.1) is uniquely parametrized,
Xy is reachable from uy, wy, and is sufficiently exciting to
guarantee that Py 5 0 as k » = [4,5] and in turn that 8y - ¢ as
k < o For this case then, the convergence as such is independent
of whether or not the coprimeness condition (2.8) is satisfied.
Case (iii}: The possibly overparametrized signal model situation of
particular interest in this paper, is when (2.8) possibly fails and
there is no a priori guarantee of sufficient excitation of wy as in
(2.10), In this case the model (2.1) may not be uniquely
parametrized, having one or more pole—zero cancellations in the
z~plane. Also, X; may not be sufficiently exciting to ensure that
Py - 0 as k » ». Convergence can take place to a signal model
with pole—zero cancellation anywhere in the complex z—plane.
We seek to avoid such a situation and propose an RLS algorithm
with additional excitation in the regression vector. It is derived
using an alternative signal model formulation.

Alternative Signal Model Formulation
Consider {2.1) re—organized as

Yo = 0Txp + (wp — 6Tv) , x = Xp + v (2.11)

where vy is an excitation term to ensure that x; is suitably
exciting. Notice that vy has no influence on yy, ug. Its selection
in the next subsection is in accordance with a parameter
estimation error measure, so that when parameter estimates are
converging to their true values, vy converges to zero.

RLS Estimation with Regression Vector Excitation

Consider that ¢ is estimated recursively minimising a least squares
criterion:

k
1
I = 503 (yg = 0Tx)2 + (o - 69)TBo(8 - 6p))
=1 (2.12)
via an RLS scheme as
0 = PBy_10x—1+xgyy] » By = Byy+xpxt
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P = Py—p = P TP p(1 + x TR x) 7
= By (2.13)
for some initial conditions 8y, By > 0.

Regression Vector Excitation_ Selection
Consider the signal model (2.1) formufated as (2.11), Let us

assume that either there is no overparametrization in that (2.8)
holds, or that there is the possibility of overparametrization which
includes one pole—zero cancellation, leading to a nonuniquely
parametrized model. In the latter case, we consider a unique
parametrization with the properties (meaningful only when n>1,
m>1)
a, = by = 0, qRTTA(QTY), qM T 'B(qT ") are coprime
(2.14)

For such a situation, we propose a v selection as follows,

The sequence {vy} is selected as an independent (Gaussian)
zero mean white noise excitation term such that its
covariance L? = D k™ "tr(Pg_q) for D = diag[0 0 ... 0 d2
0 ..0 d24m] where di > 0, dZ4, > 0. Denote the
nonzero elements as 0% g, 0%4m k (2.13)

The Gaussian assumption on vp is to keep the analysis simple,
and is not a necessary condition. In practice a2 more efficient
excitation would be where elements had values in a bounded
domain, Also, results are readily derived for the case when vi s
deterministic but containing a sufficient number of frequency
components.
The following results are now a consequence of a

straightforward application of results from [4,5].

Lemma 2.2

Consider the linear signal model (2.1) (2.2) formulated as

(2.11) with the vi selection of (2.15). (i) Then under (2.8),

Xk is the output of a linear time invariant system reachable

from uy. Moreover, with uy selected so that for some o > ¢

k

Pim  In k1*@ (2 g ;T )1 = 0, (2.16)
k 5 o 1

then .

lim In kI P =0, 1im In kl*@ Py = 0 a.s
kK » o k o (2.17)

(ii) Also under (2.14), xy is the output of a linear time
invariant system reachable from uy and the elements vy .,
Vn+m,k Of vg. Then under (2.14) the excitation conditions
on up of (2.4) and v, namely,

k k
lim (L a?q ()7 = lim (X 0%p4p )7 = 0 (2.18)
kseo 1 ko 1
translate to excitation of xp as
lim Pp = 0 as, (2.19)
k5
Proof:

(i) Under the coprimeness condition (2.8), then from [5] it is
immediate that xp is the output of a linear time—invariant system
driven by uyp vy, wy and is reachable from uy alone. Now should
up be acting alone, then Lemma (3.2) of [4] applies to give that
for all k, and some K > 0

k+m+n k
Loxpgl 5 K E T
1 1

from which (for some o > 0)

K k
Hm (ZaaT )" =0, = lim (I x;x;H)7" =0
koo 1 k300 1

k
Hm In k' (2 G 5T )t =0 = 1im In klta p =0
kK » o 1 kno

Applying the resuits of Lemma (3.3) and its Remark 1 of {4],
now tells us that when bounded variance white noise inputs Vi Wk
(independent of ug) are also applied, the same implications hold,
so that (2.16) implies (2.17a) as claimed. The result {2.17b) holds
likewise,

(ii) Under (2.14), the elements yg.y ... Yk—n—f , Ug—y ...
Ue—m—1 Of Xy are reachable from uy alone [5], and the
remaining elements (yg—p + vu k), (Ugepy + Va+mk of X




are reachable from the nonzero elements of vy, namely vy and
Vn+m,k Thus xi is reachable from v, vy under (2.14). Applying
again the Lemma (3.3) and its Remark 1 of [4] gives directly that
(2.4), (2.18) together imply (2.19).

AAA
Main_Results of Section
Theorem 2.1
Consider the signal model (2.1) (2.2) which is possibly

overparametrized in that either (2.8) or (2.14) holds. Consider
an RLS scheme (2.13) based on the alternative model
formulation (2.11) with v selected as in (2.15) and (2.4)
holding. Consider also that uy is sufficiently exciting in that
(2.16) holds. Then there is parameter convergence as

fim O = 0  as. (2.20)

kv e

where 9 is the unique parameter associated with (2.1) under

(2.8) or (2.14). Moreover (2.19) also holds.

Proof:

Part (i) In the case that (2.14) is satisfied, so that
ap = by = 0, then 0Ty = 0. Now Lemma (2.1) applies with
xg replacing Xy, so that (2.20) holds if and only if (2.19) holds.
Assume that (2.19) does not hold, then since Py ¢ Py—p for ail
k, tr(Py) converges to a nonzero element and from (2.15) the
variances of v, decay at a rate k™ '. Thus (2.18) holds, and in
turn (2.19) holds under Lemma 2.2. This contradicts the
assumption, so that (2.19) and (2.20) hold.

Part (ii) In the case that (2.8) is satisfied, Lemma 2.2 tells
us that (2.16) implies (2.17). As a consequence from (2.15) then
k k
tim L o2y g <o, lim Lolnimk <@
K>l kae 1
In turn we claim that
k
lim  Z(0Tvp)?2 < o a.s. (2.21)
kool
This follows, since as is readily established under (2.15)
k k

i;("zk,n - “zn.k) » "1-(Vzn+m.k - Uzn+m,k)

are martingales bounded in L, and converge almost surely. Under
(2.2t) and (2.17b) we now claim

_ k
lim Py £ wi(viTe) =0  a.s. (2.22)
k»w 1

To see this observe that

k
E[Mg 1Fg_1) = Mg 1, Mg - § wilv;Te)

kK k
E(Mg?] = E(T I 6Tvy EfwywjiFqin 1-1,§-11 vjT0)
{=1 j=1

k
< E[E2(8Tvy)2)a2y,
1

Thus My is a martingale on Fi_q, bounded in L, under (2.21)
and so converges almost surely, so that (2.17b) imptlies (2.22).

Now under (2.17b) Lemma (2.1) can be applied to yield the
following

- kL - k_
lim Py £ xjwy = 0, Uim Py I xp(v;T6) = 0
ko>wo 1 kKs o 1
The former results follows from (2.7) and the relationships

- _ k_ . ko
% - Py ?13 xjyy O - 'Pk(§ xjwy - Bo)

The second result follows from the first since (v;T0) has the same
essential properties as w; in (2.2) (2.4).

The results (2.22),(2.23) lead in
convergence results

turn to the following
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kK _ _ _ -
PyBy = Py Z(xixiT + X1V{T + lelT + VlViT) -1 a.s
1

as k » @
. Kk
0k"’kfxm

k -
= (PyBy)~'Py %(xixi'rﬂ + BTviXiTU

+ Xpwy + 0Tviwy) = 6 as. as ko o
i i%i

so that (2.20) holds as claimed. AAA

Remarks:

1. The specific vy sclection of the theorem is for the case when
there is one possible pole—zero cancellation in the model. This is
clearly one of the most important cases since in selecting a model
order there is a tendency when in doubt to merely increase a
likely order by one for safety.

2, H a bank of estimators is employed conditioned on different
model orders, then the results above tell us that only odd (or
even) orders need to be covered. Such a saving is a factor of
two,

3.  Rather than work with banks of estimators as in Remark 2
above, an ad hoc approach is to relax (2.15) and have vg .
Vg, g Vk,n €ach independent and suitably exciting with the
variance of vy ; increasing with i Such would force pole—zero
cancellations to occur near the origin, but would lead to biased
estimates. We do not study this technigue.

4, The algorithms and resuits of this section have been analysed
for the simplest of stochastic signal models, namely, when
(yx™ 0Txk) is white, For more general autoregressive moving
average exogonous input {ARMAX) models, extended least squares
(ELS) based algorithms can be employed. We claim that the
technique of introducing v, also can be made to extended the
capability of ELS based schemes. In particular, for those which
are globally convergent under the coprimeness condition (2.9), [7]
with the modifications they are globally convergent also when
there is a possible overparametrization as when (2.14) holds.
Essentially the same theoretical approach applies but the technical
details are more tedious, so are not explored here.

3. ADAPTIVE POLE ASSIGNMENT
Pofe Assignment Let us seek an adaptive pole assignment
scheme associated with the signal model (2.1} so that there is
asymptotic convergence to

H@™ Nyg = KB(q™ "Jry (3.1)

where H(g™ ') = 1+h,q7 " +..+ hpep q707™ s specified
by the desired closed loop poles, K is a constant, and ry is a
reference input. This can be achieved by the following controller

{2].

H(Q™ ME(Q™ Yug = —H(g™ JF(q™ Jyx + Kry (3.2)
where E(qT7) = 1 + e, g7 '+.+eng™™ , FqT") =
f,q7 ' +...+frq™ P are given from the solution of the Bezout
equation.

AlqTHE(qT ') + B(qTDF(qT ) = 1, or S(nm)p = of3.3)
where

10 0 0 011
a, 1 0 b, .
a, . b,
S(n,m) = faj 1 by . ntm (3.4)
0 0 b,
0 . . 0 az0 . . 0 byl
“ m 2 e n -
It is known that solutions of (3.3) exist if and only if

rank[S o} = rank{S]. Also from {8]

S(n,m) is nonsingular = qRA{(qT '}, qMB(q~ ') are coprime
(3.5)




In certainty equivalence adaptive pole—assignment, the
estimates 0y are used in lieu of ¢ in (3.4) to compute on—line
estimates gy of the controller parameters, so that in obvious
notation

8§, CE(n,m)xCE _ #CE (3.6)

When gPA(q”'), qMA(qT')} are coprime then Si(nm) s
nonsingular and the solution of (3.6) exists, Otherwise it may not.
lit—conditioning in Sy~ '(n,m) can cause excessive values for ypy.
One modification to avoid large ¢y is to select @g = Pk~1
during ill—conditioning, but for unknown plants, it is not e priori
clear how to quantify ill—conditioning to achieve a useful adaptive
controller.

Central Tendency Adaptive Control In central tendency adaptive
pole assignment [9), ill—conditioning in calculating the controller
parameters is avoided without requiring prior information
concerning the plant or controller. Suppose there is a Gaussian a
posteriori probability density for the model parameters 0 as
N[y,0x 2Pk where Gy 2 is an estimate of ¢2, then there is an
associated nongaussian probability density for the pole assignment
controller parameters p. A central tendency selection Pk is one
which maximizes this density, or at least avoids the tails of this
density, Practical implementations arg Eiven in {9]. Associated with
aCT is some parameter estimate fy T which is not in general
3. Thus, in obvious notation

§kCT(n’m);;,kC1‘ = 4CT 3.7

The estimate akCT has the property [9] that it is "closel! to 0y
but “far® from hypersurfaces for which gqMA{q™ "), qMBKq™ ")
are not coprime. As a consequence, the following property is
claimed for central tendency adaptive pole assignment.

The selections 0,.CT 5 4 are such that {5;:CT(n,m)] =1 exists
for all k, and if @ belongs to the hypersurface (in @—space)
defined by qPA(q™ '), ¢MB{q~ ') not coprime, then as k - o,
0y is contained in a cone centred at # which excludes the
tangent hyperplane at 0. (3.8)

Remarks:
1. To give a geometric interpretation of (3.8), consider Figures
3.1, 3.2, The heavy arc is the pole zero cancellation singular
region for @ estimates in ©—spgce. The light shaded area is a
zone of ill—conditioning control surrounding the singular arc. The
double shaded area cones are the conic regions of possible central
tendency controf estimates gkC’I' of (3.8). Figure 3.1 depicts the
situation when the solution (2.14) is at the conic intersection and
the cones avoid the ill—conditioned regions. Figure 3.2 depicts a
solution not satisfying (2.14) when the central tendency estimates
0kCT become ili—conditioned when converging.
2. The property (3.8) can be viewed as a corollary of resuits
rigorously proved in [9], although specific reference has not been
made to (3.8) in [9]. The property is readily believable, but since
it is not rigorousiy proved as such in [9] and is beyond the scope
of this paper, we here add the "gqualification" to central tendency
control that (3.8) be satisfied.

Then two cases are studied now.

Case {i) Known Model We now claim the following

Theorem 3.1

Consider the signal model (2.1) for the case when it is not
overparametrized, so that qRA(QT "), q™B(qT.') are

coprime. Consider also RLS parameter estimates 0y from
(2.13), and associated certainty equivalence {or central
tendency] pole assignment with controller parameters oy

{or 2 “1] and Sylvester matrices SkCE(n,m) [or SRCT(n,m)].
Consider also that r is sufficiently exciting so that
Gx*Py » 0 as k - o and there is parameter convergences
with 9 > 6 as k - «. Then

tim [SCE(n,m)) ! S™ Y(n,m), or

koo

i

lim [§kcr(n.m)]“‘ = ST Yn,m)

| 2

lim ;:kCE = @, or lim ;kCI' = 3.9)
k-

Proof: This is immediate from the coprimeness assumption and
the property (3.5). Notice that there is no need of assumption

D)

Case (ii) Overparametrization
Theorem 3.2

Consider the signal model (2.1) with n>1, m>1, and (2.14)
holding, Consider also RLS parameter estimates 3y of (2.13)
and associated central tencency adaptive pole assignment
controfler parameters ;;,kC’I‘ given from (3.7) with (3.8)

We now claim the following

satisfied, Then under RLS convergence of HCT to 0 as
k 9 o

lim det §,CT(n,m) = 0, lim €T w & (3.10)
k> w ko

where <p' is a unique solution of S(n,m)go' = o with zero

elements as
o = (€] e*ge ey 0 % 5 g 0T (3.11)

Proof: The proof is given in the Appendix, based on Sylvester
matrix property studied in Section 4.

Remarks:
1. It might be thought that the results can be more directly
proved from properties of Diophantine equations, Although certain
progress can be made along these lines, and indeed the results
can be stated in such terms, it does not appear straightforward to
complete any proof without resort to Sylvester matrix properties as
in Section 4.
2. This theorem result is dependent on the nonstandard nature of
the RLS algorithm with its internal perturbations vi. In the
presence of overparametrization, standard RLS estimation (when vy
= 0) will almost surely not converge to the unique limits solution
(2.14). This means that there is inevitable ill—conditioning. This
situation applies even when a central tendency adaptive control faw
is implemented, as depicted in Figure 3.2
3. The above theorem result is also facilitated by the central
tendency property (3.8) of the adaptive controller. In the presence
of overparametrization, even when the modified RLS algorithm of
the paper is implemented without (3.8) satisfied, there is a
nonzero probability of ill—conditioning as suggested from Figure
3.1, at least during transients.
4. The theorem is developed in conjunction with the RLS
estimation (2.4) which copes with possible overparametrization, by
the ay, by. Should some RLS based scheme cope with higher
orders of overparametrization, the results of this theorem would
still hold. The details of a more general proof are straightforward
and are omitted here.
5. The result of the theorem also apply to the situation when
(3.3) is replaced by

A(qTWE(@™") + B(@T)F(q™') = H(q™") (3.12)
with H(q™ ') having degree no greater than n+m-=2, This is the
usual situation when A{q~ ') is of degree n—1, and B{(q™ ") is of
degree m—1. The proof details are a mild variation on that given
here when (3.3) applies. The restriction on H{q™ ') implies that
the associated o« in the algebraic form of (3.12) corresponding to
(3.3.b) has its last two entries zero.
6. The above result covers the cases when the plant has a delay
of unity or greater. In these cases B{q™ ') specializes as having a
factor ¢~ N where N 3 1,

4. A PROPERTY OF SYLVESTER MATRICES
First recall (3.4) which associates with ¢ = [a,...a,
b,...bm]T a Sylvester matrix S{(n,m). Let us denote the adjoint of
S(n,m) as M(n,m} and determinant as D{(n,m). Now consider a
(linear) trajectory in @—space parametrized in terms of a scalar
variable £, as

8(£) = [ay..aq—, (af) by..bp—, (BT , 1ar + 161 = 1
(4.1)

Also denote the Sylvester matrix associated with 4(¢) as
SE(an,bm), its adjoint matrix as Ms(an,bm) and determinant as
D¢(ap.by). Then we claim the following:

Lemma 4.1  Consider
S{"(an,bm) = DE_ '(an-bm)Mz(an-bm) for the case that

D(n—-1,m-1) # 0, (4.2)
Then the following limits exist as £ - 0 for all j < n+m—1

abp 1 — ap—1b # 0
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lim DF "(an,bm)Mg(an.bm)li j

E -0
[S"\(n-l,m-l)]i.j for { <m (4.3a)
- {S"(n-l,m-l)]i_,’j m< i< mn (4.3b)
0 for | = mor i = mkn (4.3¢)

Proof: We consider in turn expressions for Ds(an'bm) and
ME(an,bm) in terms of order § and higher order terms denoted
O(t?). Simple manipulations give an expression for Dg(an,bm) ’s'n
terms of the elements of the last row of 35(3n~bm) and their
minors, with the minors likewise expanded, as

Dz(an,bm) = (-I)I‘E(abm_l-an._lb)D(n—l,m—l) + O()E B

(4.4

Noting that {ME(an'bm)]i,j is a (signed) determinant of a

submatrix of Sg(ap.by), then again simple manipulations give an

expression in ferms of the elements of the last row of the
submatrix of Sg(ay,by) and minors of this submatrix as
(Mg(an,om)li,j = (=1Map)Mz(agm—1)i j
+ (b))[Mg(anby)lj + O,
for i < m, j < n+m—1I (4.5)
Here Mg(ag,m—1) denotes the adjoint matrix of the lower
dimensioned Sylvester matrix St(an.m—l) which associa&cgrwith t'he
vector [ln+m—1 010(§) = [a)..ap—, (af) b,..bp—,}'. Using
derivations similar to those giving (4.5), then
[Mg(aqm=1) j = byp—1(Mn=1.m~1ljj + o(%)
= by D(n—1,m=1)[S™ (n=1,m=D;
it O(f) fori < m, j < n+tm—1 (4.6)

where S$™'(n—1,m—1) exists under the assumption {4.2). The
dual form of (4.6) is

(Mg(n—1,bg)k;
= (1)1~ tag_D(n—1,m-1[S ™ n=1.m=1} j + O

fori < m, j < p+m=1 4.7)
Substitution of (4.6) (4.7) into (4.5) yields
[Mg(anbmlli,j = {(—1)Yaby 1 ~ap~1b}D(n—1,
m-1)[S™ (n-1,m—1)}; j +O(E?)
fori < m, j< ntm=1 (4.8)

Dividing (4.8) by DE(ambm) from (4.4) and taking limits as
£ 5 0 under the assumption (4.2) leads to the result (4.3a). The
result (4.3b) can be established along similar lines.

Similar arguments to the derivation of (4.5) (4.6) leads to

[Mg(ap.by)lm,j = (BEMe(n=1,b)i;m j + o(t? ,
for j < n+m=1 (4.9)
(Mg(n—1,by)lm j = (0§)O(8) , for j < n+m=1  (4.10)

where O(g) denotes a quantity that is bounded in term of 6.
From (4.9) (4.10),

{M£(an-bm)]m,j = O(t?) , for j < n+m—1 (4.11)
Similarly, we have
Mg(anb)ln+m,) = O for j < n+m-=1 (412)

Then dividing (4.11) and (4.12) by Dg(ayby) from (4.4) and
taking limits as § > O under the assumption (4.2), we have {(4.3c)
as claimed. aal

Remarks:

1. This result can be generalized to the case other aj, bj converge
to zero using the same technique as above. Details are omitted.

2. The above result can be expressed in terms of an (n+m) by
(n+m—2) matrix.

5%(0.6)),; = DF anbmMg(an.bmlij
Thus under (4.2)

(4.13)
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[m-l 0 1
st(6,0) & lim st(8,8) = | O 0| s~'(n-1,m-1)
a0 0 Tn-1 (4.14)
0

0

Moreover, simple manipulations yield

In-1 0 S${n-1,m-1) T
S(n,m) 0 04 = [ n+m

V] Ino1 ] 0

] 0

1
so that
In+m_2 t
$(n,m)s*(0,0) - n+m (4.15)
0 I
Corollary 4.2
Consider that A{q™',}), B(q~'f) are the polynomials
associated with the o0(f) as in (4.1). Consider aiso that
E(q™',%), F(q~ ',£) are the solution to
AlqT,E)E(QT .E) + B(qTLHF(QTLE) = 1 (4.16)

with the degree of E(q~ ') being m, and the degree of
E(q™',§) being n. Then under the same conditions as in
Lemma 4.1, then the last coefficients of E(q™ £}, F(q™ ',£)
converge as

lim ep(t) =~ 0,
E-0 tE~0

Proof: It is straightforward from the result of Lemma 4.1, and
in particular from (4.14). However, to prove it by just using the
properties of polynomial equations appears too formidable without
resort to the result on the Sylvester matrix described in Lemma
4.1,

tim Fa(§) =« 0 (4.17)

Lemma 4.3
Consider the Bezout equation (3.3) under (2.14) with m > 1.
Then a unique solution ¢ of (3.7) exists as
o = S80I 4m~2 Ola (4.18)
with the property that o' has nth and (n+m)th elements
which are zero.
Proof: Under (2.14), of course S™ i(n,m) does not exist, but
(4.2) holds for a suitable selection of a,b. Also, the last two

elements of o are zero, Now Lemma 4.1 holds under (4.2) so
that (4.14),(4.15) apply. Thus with " uniquely defined from

(4.18)
] [ B 4
0 0

$(n,mp* = [ Insm-2 0
and (3.3) is satisfied. Application of (4.14) under (4.16) gives
guarantees that the nth and (n+m)th elements of v" are zero,
AAA

5. SIMULATIONS
Presented at Conference,

6. CONCLUSIONS

Nonstandard adaptive estimation and control techniques have
been proposed to avoid ili—conditioning which can arise when
standard techniques are applied to signal models with
overparametrization. The techniques avoid ill—conditioning and
yield asymptotic optimality in the case when there is possibly one
pole/zero cancellation in the assumed signal model. It seems
reasonable to apply such techniques in conjunction with on-—line
model order estimation techniques since from finite data these
possibly lead to overestimation of the order. The techniques have
been studied for the case when exact pole zero cancellation
occurs, but is known from simulations to avoid ill—conditioning
when there are stable near pole zero cancellations. The resuits of
the paper are a starting point from which to cope with higher
order pole—zero cancellations.
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APPENDIX
Consider first the following lemma,
Lemma A.1

Under (2.13), (2.14),(3.8) [the conditions of Theorem 3.2]

tim SH(§CT.5) = SH(o,0) (A
Koo
Proof: With (3.8) satisfied and (2.13)
lim 8 T = 4
ke
so that when {2.14) holds
lim a,4CT = tim agty = 0
k » o k9o
lim by CT = lim byf = 0
k » o koo
Since 1agl + b1 = 1, recalling (4.1), then
tim £ = 0 (A2)
K oo

Now, under (3.8), {2.13), (2.14), we have
lim SHOET 5 ) = st (0T .0)

fg =2 O
| P .
-10 0 | [ ET(n-1,m-1)}"%
Y In-1
0 0 {A.3)
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Also under (3.8), (2.13), (2.14)

im $*(0CT,00 = $*(6,0) (A.4)
k - w
From continuity and (A.2), (A1) is established.
AAA

Remark  Without (3.8) satisfied, it can not be guaranteed that
SH(0CT,ty) exists for all k. Also, with $¥(Dy,fy) large then gy
is large, and ill-—conditioning is said to occur.

Proof of Theorem 3.2

Consider the central tendency adaptive control with (3.8) satisfied
and define for all k

BiCTnm) ™ = [$*(3ET,8) *] (AS)

where * denotes terms not of interest. Thus for the signal model
with m > 1, or in other words the last two entries of & CT zero

ACT = [ CTmm) e T
= BCTm) ™ Upem—2 0Tnem—2 0lenCT
= S*HOCT,Olg+m—2 0o CT (A6)
Now applying (A.1}) when taking limits as k »
Hn 5T = tim S*8ET, 10 (1 nemoz 0)8CT
Ko w ko
w $H(0,0) (Th4p-2 0l
Ihe desired resufts (3.10) (3.11) follow from application of Lemma
3.
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