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ABSTRACT

We present a summary of recent results obtained with various coauthors
on the solution of the Riccati differential or difference equations.
These include neceésary and sufficiént conditions for monotonicity of
the solution, convergence properties of the solution and sufficient

conditions for stability of the closed loop state transition matrix
function,.




1. INTRODUQEEQE

We present a compendium of recent results on monotonicity, convergence
and stabilizability properties of the solutions of +the Riccati
Difference and Differential Equation (RDE) of optimal filtering. These
results have Dbecen obtained by the author with a number of different
colleagues : R.R. Bitmead, C.E. de Souza, G.C. Goodwin, R.J. Kaye, I.R.
Petersen and M.A. Poubelle : see [1] - [b]. They are obtained under
conditions that are weaker than the classical ones. In particular, our
new necessary and sufficient conditions for monotonicity of the
solution of the RDE require neither detectability nor stabilizability
of the underlying system, whereas the results on convergence and
stability of the closed loop system require detectability only.

We study the following Riccati equation of optimal filtering :

- the discrete-time (DT) RDE

P(E+1) = FP(E)FL - FR()H[HP(£)BT+R]™ ! HP(L)E® + (1)
P(0) = P,;

~ the continuous-time(CT) RDE ;

H

é(t) FP(t) + P(t)FT - P(t)HTRn1HP(t) + Q (2)

P(0)
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L-with H, F, Q, R constant, R > 0 and @ = Q .

Assoaciated with these two RDE's are a discrete-time and a continuous-

time Algebraic Riccati Equation (ARE)

P = FPF' - FPHL[HPH' + R]™ WPFY + @ | (3)

0 = FP + PFi- PHIR 'mp + 0 ' (4)

Also associated with these RDE’s are the discrete-time and continuous-
time Fake Algebraic Riccati Equations (FARE)

- p(t) - Fe(e)F ¢ rocentraece)n” + R mp(e)p! (5)
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= P(t) H'R THP(t) - FP(t) - P(t)FT C (6)
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These FARE s are actually definitions for Q(t).
The Fake Algebraic Riccati Techniques were first introduced in [1] and
have proved very useful in establishing monotonicity and stabilizabili-
ty results for the RDE. We now successfvely present our monotonicity,
’ _convergence and stabilizability results for the RDE.
7). monoTonTeITY RESULTS

In order to prove our major monotonicity result, we first establish two

preliminary lemmas, which are of independent interest.
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»?“/&U Consider two RDE’s (either DT(1) or ST(z)) Wzth the same F, H, R but
A possibly dlfferenL Q matrlces, Q and Q¢ , and possibly different initial
A conditions, P(to) and P (t,). Denote the corresponding solutions P(t)

and P*(t) respectively.
«Af\ﬁ* Then g(to) » P*(to) and 6 > Q* implies'ﬁ(t) P (t) for all t 2
' s P - P"(U
- The proof of lemma 1 was given in dlscrete ~time 1n [1] [?] It uses a
fy‘h4wyf\ rather complicated formula relating P(tl1) P (Eé and Q Q ; this formula
!,f was derived after lengthdmanlpulatlons from related formulae obtained
G by Nishimura [6]. In continuous-time, a much simpler argument,

initially derived in [5], can be used.

Proof of Lemma 1 (Continous-time)

N/A Denote B(t) = B(t)- p*(u Then
(f// P(t) = A(t)P(L) F PoaTe) + e (7)
where
A A(t) = F - p(eynr Ty (8)
~[=la ey = BT B ) + 6-0° (9)

Equation (7) is a time-varying Lyapunov equation.
Let ®(t,7) be the fundamental matrix associated with A(L) then the
solution of (7) is

N o t o~
{ P(t) = IO fb(t,T)W(T)tI)T(t,T)dT + d’(t,O)P(O)@T(t,O) (10)

The result follows immediately.
" Lemma 2 (DT version) : #
4 Consider the RDE (1), If for some tg /P(t y o2 P(t, +1) ”
8 (regp P(t ) € P{ty+1)) then p(t oK) 2 P(t +k+1) }L |
‘/ (rcup P(t +tk) < P(ty+kt1)) for all & o0
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Proof : From Lemma 1, by considering P(t,) = P(t,),

% *
P (t,) = P(t,+1) and Q Q0 = 0@ (and vice-versa).

Lemma 2 {(CT version)
Consider the RDE (2). If for some t, .

/ A’ / tI%t ) < O (regp P(L ) a 0) then P(t) 0 (resp. P(t) 0) for all
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t 2 tg.

Proof : Differentiating the RDE (2) yields

Bty = po)aT(e) + ace)Bre) (11)
where

At) = F - P(L)HR 0 (12)
Thus ﬁ(t) satisfies the Lyapunov equation (11) whose solution is
(L) = @(t, ty)P(ty)d (t,t,) (13)

where ®(t,7) is the fundamental matrix associated with A(t). The result
follows from (13).

" We can now establish our main monotonicity result.

Theorem 1 :

The solution {P(t)} of the RDE (1) or (2) is nmonotonically non-
increasing (resp. monotonically nondecreasing) if and only if Q(0) 3 Q
(resp. Q(0) < Q).

Proof : We prove the nonincreasing result.

a) Discrete-time : It follows from (1) and (5) that

Q(t) =0 + P(L) - P(t+1) : (14)
Setting t = t, = 0, the result follows from Lemma 2.

b) Continuous-time : It follows similarly from (2) and (6) that
Q(t) = @ - P(t)

The result follows again from Lemma 2.

Comment 1

Note that the statement is identical for the continuous-time and the
discrete-time RDE.

Comment 2

The result does not require detectability of [H,F] or stabilizability
of [F,0'?].
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3. CONVERGENCE RESULTS

we first recall the following definition [77.

pefinition 1

. . , + .
A real nonnegative definite solution P of the DT (resp. CT) ARE 1s
called strong if the corresponding closed-loop state-transition matrix

it - tul e i) e (resp. FY o= r-pTuTR M)

has all its eigenvalues inside or on the unit circle (resp. in the

closed left half plane). It is called stabilizing if the eigenvalues
are strictly inside the unit circle (resp. in the open left half

plane).

The following convergence result combines elements from Theorems 1 and
3 of [3] and Theorem 3.2 and 4.2 of [4].

Theorem 2

Consider the RDE (1) in DT, or (2) in CT, with [H,F] detectable and the

associatedgﬁ’ARE's. Then

1) the ARE (3) in DT, or (4) in CT, has a unique strong solution P+;

2) if D, > P¥, then lim P(t) = P';
t- e

3) if in addition [F, Q1/2] has no unreachable mode on |z| = 1 (resp.

on the jw-axis), then P+ is stabilizing.

Proof : the proofs are rather lengthy and are given in [3] and [4].

4., STABILIZABILITY RESULTS

We now present results for the following problem : under what
conditions (on H, F, Q, R, P,) are the closed loop state transition
matrices F(t) exponentially asymptotically stable for all t 2 0, i.e.

-~ in discrete-time

D FENT <1, &

T

1, ..., n, for all ¢ » 0, with {16)
A(t) = F - TP(&)UC[HR(t)H. + R] ' W

- in continuocus~time

Re N (F(£)) <0, k=1, ..., n, for all t » 0, with (17)
A(t) = F - p(t)a R 'n
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The reason for looking at this problem is that conditions (16) (resp.
(17)) will quarantee the asymptotic stability of the linear time-

invariant "frozen" closed loop system :

x{re1) = Alt) x (1), 7=0,1,2,... (18)
respectively ‘
x(7) = A(t) x (1) , 7120 (19)

for any fixed t € (0,) (hence the name "frozen"). This problem has

applications in sighal processing where the observer gain of a filter
can be chosen as the gain of a Kalman filter frozen after a few
iterations (see e.g. [8]). It also has applications in adaptive LQG
control where one may want to apply finite horizon LQG control laws.
The finite horizon is a design parameter and a meaningful question is
to ask whether stability of the ‘closed loop system for some finite

horizon will guarantee stability for all larger horizons,

The main tool for establishing asymptotic stability of the closed loop
state-transition matrices F(t) will be the FARE's. Indeed, if Q(t) > O,
then the FARE s (5) and (6) become legitimate ARE’s for P(t). We can

then use Theorem 2 to establish the following result.

Theorem 3 :

Assume that :

1) [H,F] is detectable
2) Q{t) » 0 and [F,Q(t)

(resp. on the jw-axis).

1/2] has no unreachable mode on |z] = 1

Then A(t) is asymptotically stable.

Proof : If Q(t) » O, then P(t) satisfies the FARE (5) in DT, or (6) in
CT. The result then follows from parts 1) and 3) of Theorem 2, applied
to theses FARE’s.

Theorem 3 tells us that, for each t for which condition 2 on 46(t) is
satisfied, the closed-loop transition matrix A(t) is asymptotically
stable. A more interesting question is to find conditions on H,T,R,Q
and Py that will produce a sequence Q(t) that satisfies condition 2) of
Theorem 3. We have the following result.
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Consider +the RDE (1) in DT, or (2) in CT, with the following
assumptions '

1}y [H,F] is detectable

2) [F,000)"/?
3) P, is such that 6}0) zQ )

Then the solution P(t) of the RDE (1) (resp.(2)) is stabilizing for

] is stabilizable

each t 2 0, i.e. the conditions (16) (resp. (17)) are satisfied.

The proof of Theorem 4 is rather complicated and will not be given
here. A discrete version can be found in [1], a continuous version in
[2]. Both proofs use the FARE technique, but the CT version uses a dual

optimal control argument which was not used in the DT version.

Comment 3

Condition 3) of Theorem 4 implies in particular that P, 2 P+, where P+
is the solution of the ARE. The conditions of the Theorem then insure
that the sequence (or function) P(t) is monotonically nonincreasing and
convergent to P+. In finite horizon optimal control problems, P, (which
is the weighting on the final state in the cost function) is typically
smaller than P+. In such case, another result is needed to guarantee
that if A(t) is asymptoticaliy stable for some t = t,, it remains
asymptotically stable for all + » t,. The following continuous-time

result is proved in [h].

Theorem 5

Assune that

1) [H,F] is detectable

2) P(ty) = P, is such that
al Qt,)

Z
axis Q\

0 and [F,61/2(0)] has no unreachable modes on the ju-
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b/ [0-0(t,)] A (t,) + A(t,)[0-0(t,)] € O (20)
Then A(t) is asymptotically stable for all t > t,.

Proof : Differentiating (11) yields

P(t) = A(E)P(E) + P(E)AT(H) - 2p(t)n R Tup(t) (21)
That is, E(t) satisfies a Lyapunov equation., Its solution is
. _

B(t) = -2 lt a(t, ) P(NER IR (8T (£, 7)a7 + 8(t, £ )P (t,)0 (1, t,) (22)
0

By (11) and (15} the quantity on the left hand side of (20) is ﬁ(to).
It then follows from (20) and (22) that i(t) €0 vt 2>t, Therefore
P(t) < P(t,) and Q(t) > O(t,) Vv t » t,.

The result then follows from Theorem 3.

A discrete-time verions of Theorem 5, which would be helpful in solving
the discrete-time finite horizon LQG problem, is not yet available. It

would require a DT analogue of (21).
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