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ABSTRACT

We consider a class of single input single output second order nonlinear systems
whose coefficients are bounded and have bounded time-variation. We describe an
adaptive observer/identifier for these systems and derive sufficient conditions on
the system and on the inputs that guarantee global stability of this adaptive
observer. We present an application to a robot manipulator with two degrees of

freedom.

1. STATEMENT OF THE PROBLEM

We consider the following class of single input single output (S1S0) nonlinear

systems:
Y(E) + ag(y,y,0)y(t) + ay (v, v, )y(t) + £(¥) = b(y,y,t)u(t) (1.1)

where a;, 8z and b are parameters which may depend on Yy and &, but which we shall
consider as unknown functions of time, and where f(y) is a8 known function of vy.
Under the assumptions A.1 to A.5 on the parameters and the signals spelled out
below, we present a stable adaptive observer for the on-line estimation of Q(t) from
measurements of u(t) and y(t), and we illustrate it with an application in robotics.
Our observer is an extension to nonlinear systems of an adaptive observer
initially derived by Luders and Narendra (1973) for linear time-invariant systems,
and is a special case of an adaptive observer derived in Bastin and Gevers (1985)
for a wide range of nonlinear systems. The reason for presenting this special case
is that, for the system (1.1), we can present a complete set of assumptions that

guarantee global stability of the observer. Before spelling out. our assumptions, we
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need to make the following technical definitions.
Definition 1.1: Cp is a set {t;} of points in {0,%) for which there exists a 4 such
that for amy tj,tj € Cp with tjet;, Itj-t; i3, i.e. Cp comprises points spaced at

least A apart.

Definition 1.2: A function f{-) belongs to Us if there exist & and Cp such that

i) f(t) and f(t) are continuous on {{0,®)} - Cp};

ii) there exist constants M, and M such that |f(t)|<M, and |T(t)IM,
¥t € {[0,%)—Ca};

iii) f(t) has finite limits as tét; end ttt; for each t;€Ca.

In other words, functions in Up are smooth enough to have bounded continuous
derivatives except at a countable number of switchings, which cannot occur too
frequently.

We now maske the following assumptions:

AL g, ('), ax(*) and b(+) are continuous w.r.t. y, 9 and t and differentiable

w.r.t, t. They satiafy the inequalities
0¢9; <a €9, 0 ¢ m <8y ¢ my, 0 {ng ¢<b<Kny

for some finite 2,, m; and n,, with

my+27/my my +5my _ .
2, < — - 2y > /my - /my
/o, - /i,
A.2: The derivatives &,{( ), 51( ),85() and $(‘) are uniformly bounded, 1i.e.

there exists a K, 0<K<w, such that:
lag(9,3,8)1 €K, lag(v,v, )] <K, [B(y,y, )] <K
and |a,(y,y,t)[< K for all te(0,®).
A.3: u(t) and y(t) belong to Up, and ju(t)] ¢ M < » ¥te(0,=)

A.4: There exists $>0, ty,>0 and «;>0 such that ¥tjtg

t+%
It w(rWT(T)dT 3 1




where

Wi(r) & --—-—( L > [u su s?u s3]
84y

for some arbitrary »>0.
A.5: f(y) is a known bounded function of ¥, and there exists N, O0<N<w, such that
1f(y)] < N ¥te{0,®) and all ().
Assumption A.l will ensure that the system is BIBO stable, while A.2 will guarantce

that the inputs of the error system of our adaptive o
provides that the signals u(t) and y(t) are smooth enough (see above), while A.4 is
the input that will be needed to guarantee

bserver remain bounded. A.3

a persistence of excitation condition on

the exponential convergence of the homogeneous part of the error aystem.

2. THE ADAPTIVE OBSERVER

The system (1.1) can be written in the following phase variable form:

2y 0 1 y(z1 0 0

RN N R
Z2 -a, ~agllz f(y) b

y =%

Now consider the following transformation:

X =2
‘ (2.2)

Kp = %2 + (81 - 02)21

for some arbitrary positive constant ¢3>0. Then (2.1} is equivalent with

R R MR,

where




8, = ¢y - 8y
. (2.4)
- - + - o2
8, = a; ~ Ay + Camy ~ Cp

Notice that e,=6,(t) and 6,=6,(t). The system (2.3) can now be rewritten in the

following "adaptive observer canonical form" (see Bastin and Gevers, 1985}:

0
x(t) = Rx(t) + O(u,y)e(t) + [ } (2.5)
f(y)
y = %
where
0 1 y 0 0 e,
R = l ]. f{u,y) = [ J, e = |8, (2.6)
0 -c; 0 y u e

with @, and e, as in (2.4) and ©3=b. Notice that the form (2.5) is now linear in
the unknown parameters e,(t) and 8,(t}, since O{u,y) contains only known quantities.
Notice also that the transformation (2.2) is invertible, i.e. one can compute z; and
z, (i.e. y and y) from xy and x,, provided a, can be estimated. 1t follows directly
from (2.4) that the estimation (or tracking) of a,(t) is equivalent to the
estimation of ©,(t), given that c, is a known constant. As we shall see, c, will
determine the dynamics of the adaptive observer.

We can now write the following adaptive observer for (2.5):

. . . 0 cy¥y
X = Rx + Q(u,y)e + + . (2.7a)
fly) vTe
where V is a vector ¥T = [0 vy V3] which is the solution of

\"2 ~Ca 1] Va2 y

. = + ’ vV({0) = 0 (2.7b)

A2 0 ~col vy u
Yy

® = fv, (2.7¢c)
Va

& = I'ix,, r»o (2.7d)
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In (2.7a) ¢, is o positive conatant, to be chosen by the designer and which, with

will determine the dynamics of the st
that xgéy is measured. Bquations (2.7b,c) constitute en auxiliary system which

generates the regression vector (L), Fipally [ in (2.7d) is 8 3x3 positive

definite matrix which will determine the dynamics of the parameter estimator;

pormally T will be chosen a8 diag(Y1:72:72) with 7320, i=1,2,3.

Ca» ate estimator, while §1 4 x,—%;. Recall

3. THE MAIN STABILITY RERSULT

We first derive the error mode} for the adaptive observer. Define x 8 x-x and

6 = e-6. It then follows from (2.5) - (2.7) that

0
§ = R + 0(u,y)e - [ :] (3.1)
-vTe

where

;Ci 1
ﬂ* Q [ ] (3.2)
0 -C2

We can now define

) 0
5 - (3.3)
vTe

he following ervor model is obtained

%

ni>

X

After lenghly manipuletions t

i oT . 0 ]
§x * %
* ¥ 1 g 0 o|{¥ R
S PR % ---------- + Lemmmmmm 6 (3.4)
. e 01 0000l
o| o o olle I

where R¥ is defined by (3.2), and v(t) and &(t) are the solutions of (2.7b,c). Now

(3.4) is a sth order linear time varying state equation driven by ¢. Our msin

theorem states that this system is Bounded Input Bounded State (BIBS) stable. We

ghall denote

(3.58)
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Theorem 3.1: If the assumptions A.l to A.5 hold and if the constent K in A.2 is
sufficiently small, then there exist finite positive counstants Ky, K, and Ky such

that

1) He()l « K lie (O + Kg (3.6a)
ii)  lim suplle() < KK (3.6b)
te
Proof: We first prove that the homogeneous part of (3.4) is exponentiaslly

asymptotically stable (EAS); the result will then follow from the boundedness of
vTe,

First note that by eliminating ¥ the homogeneous part can be rewritten as

B(t) = - To(L)H(s) {67 (1)8(1)) (3.7
. o o1 ) T . .
where H(s) = e (sI - R¥)} "ep ~—— with ey = (1 0). We notice that
) S*C‘

H(w) 0 and that H(s) 1is strictly positive real (SPR) when cy20. The exponential
stability of the homogeneous part will follow (see Anderson et al. (1986), Theorem
2.3) if we can prove that o(t) is bounded, ®(t)€la and ®(t) is persistently

exciting, i.e. if there exist positive constants T, to, & and B such that for all

taty:
t+T
0 < «l € [t o(T)oT(T)dr ¢ Bl < = (3.8)

We note from (2.7b,c) that

oT(ty = (y(t) XLt Bty (3.9)

8+C, 8+Cz

we first establish that ¢(t) is bounded. The conditions A.l on a, () and ay(*)
imply, by @ result of Starzinskii (1952), thet the homogeneous system
y o+ 3‘9 +ay = 0 is uniformly asymptotically stable with equilibrium y=y=0. It
then follows from Theorem 3.1 p. 105 of Willems (1970), and from the boundedness of
b, u(t) and f(y) (essumptions A.2, A.3 and A.5) that y(t) is bounded on {(0,%).
Therefore ¢{t) is bounded, since it is the output of a stable filter with inputs

u(t) and y(t). In addition #(t)eUs by A.3.
We now establish the lower bound in (3.8). Using A.2 and A.4, the BIBO
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stability of (1.1}, and the boundedness of u(t), it follows, using Theorem 6.2 of
Mareels and Gevers (1986) thet there exist 0, tg>0 and T0 such that ¥idtg

t4T
o < j: N(T)NT(T)dT (3.10)
where
NT(T) & [ gy YN N ]T (3.11)
sy siy

with y au arbitrary positive constant. The lower bound in (3.8) follows from the
form of ®(1): see (3.9). We conclude from Anderson et al. (1986) that the

homogeneous part of (3.4) is EAS. Therefore there exist finite K;>0 and a>d such

that
t .
He(U I ¢ Kematlieo) |1 + [ Kpema D IVTmemiidr

The results (3.6a,b) follow immediately, using A.2, (2.4) and the fact that V(t) is

bounded because u(t) and y(t) sre.

Comment 1: It follows immediately from (3.6) and (3.3) that there exist positive

constants K,, Kg and Kg such that

1) He(t) ! ¢ Kqlle(0)H + K (3.128)
ji) lim suplle(t)l] € KgK (3.12b}
tose0

where K ig defined in A.2 and

x(t)
e(t) & [w ] (3.13)
e(t)

Hence all the internal varisbles of our adaptive observer remain bounded.

Comment 2: Notice from (3.12b) that the upper bound on the asymptotic accuracy of
our observer is proportional to the rate K of the parameter variations. If the
parameters of the system are constant, the errors (in X and in 5) converge to zero

exponentially fast.
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Comment_3: The boundedness assumption A.3 on u(t) can be replaced by the weaker
condition that u(t) is locally integrable such that

t+7
L Ju(t)IdT ¢ M < » vie(0,®)

and all finite T. However, this adds & number of technical complications in the
proof.

The adaptive observer (2.7) estimates the state x(t) and the parameter vector
e(t) of the system (2.3). It is closely related to an adaptive observer Tfirst
derived by Luders and Narendra (1973) for linear time invariant systems. Our
contribution was to show that, with reasonable constraints on the parameters of the
pnonlinear system (1.1} and with bounds on their time-variation, the original
state-estimation problem for (2.1) can be reformulated as a state observer +
parameter estimator problem for (2.5) where the parameters 8(t) ere now considered
as time-varying parameters to be tracked. These parameters now multiply only the
measured variables u(t) and y(t)., From (2.7) the original state—estimates can now
easily be reconstructed by inverting (2.2):

zy = Xy (3.14a)

-

¥ = xp *+ Byxy (3.14b)

ne>

The boundedness of x(t) and e(t) implies that of %(t).
Finally notice that the sufficient richness conditions A.4 on u(t) will be

satisfied if u(t) is a linear combination of two sinusoids at different frequencies.

4. APPLICATION TO A ROBOT MANIPULATOR

We consider an application to a telescopic arm in a vertical plane, which
performs a "pick and place” robot manipulation: see Fig. 1. We call M the mass of
the load, #(t) the length of the arm, y{(t) the angle with the vertical axis, k the
tension of the spring, « the viscous friction coefficient, u the applied torque, and
we assume that the arm mass is negligible w.r.t. to the load. The equations of

motion are!:
M#Zy + MR2y + ay + ky + Mgsiny = u (4.1)

In addition, we assume that the trajectory is imposed by a guiding device which

imposes a fixed and known relationship between 2(t) and y(t):




e

. g A

(4.2)

2 = gly)

We consider an application where the angular position y(t) and the torgque u(t) are

it is desired to estimate the anguler speed &(t), the mass M and

From (4.1) end (4.2) we can write

measured, and where

the friction coefficient .

L (4.3)
22 R
e

- L

‘qu.[l.qsi,*_q_l})q._g—y*gsiny:
9 dy M22 N 2

e
i anc
i

A R

Since y(t) is measured, and 9:g(y) is known, it follows that £(t) and 14
dag

are known. Now define

a, () = ldg, , &, ayt) = X b= 1 (4.4)
9 dy M2?2 Me2 M

Using the transformation (2.2) and defining €, and @, as in (2.4) and

1 , we obtain the representation (2.5) with

93=b= ﬁ
0 3 y 0 O
R = 8wy = Loty = feiny (48
0 -c 0 ¥y —
g2

£

The adaptive observer (2.7) is directly applicable with u replaced by % in
92

r identifier, since

R e BT

(2.7b)., Notice that this adaptive observer is also a paramete

from x and € one can estimate successively:

R

R ) A
2 -ldey (4.6)
™ 2 dy

ocnt menmia.

This is a common feature of the adeptive observers described in this paper.

5. SIMULATIONS

PR

The robot application of Section 4 has been gimulated on a Microvax 1I, using &

ntial equations. Due to lack of time,

NAG subroutine for the solution of the differe
been performed at the time of

only a very limited number of simulations have

printing this paper. The model (4.1)}-(4.2) has been used with:
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2(t) 2 gly) = 25 + By(t)

and with the following parameters: «=0.3, M=1, 24=0.8, £=0.3, k=2. The input was a
pseudo random binary sequence (PRBS) with mean 5 and amplitude x 2. From these
simulations, two conclusions can be drawn:

1) The adaptive observer/identifier pe}forms very well as an observer, but not
as well as an identifier. This means that the tracking of 9, computed as in (4.86),
is excellent after an initial transient period, but that correct estimates of the
parameters are much harder to obtain. The same observation was made in Narendra
{1976) about the observer/identifier of Luders and Narendra for time—invariant
linear systems to which our own observer simplifies in the case of constant
parameters.

2) The behaviour of the observer as a parameter identifier appesrs to be rather
sensitive to an adequate choice of the gains ¢,,c¢;,r,,”Y, and 75, and to the
persistency of excitation of the input signal u(t). In particulaer, if the gains arc
too high, the parameter adaptation becomes exceedingly slow. This is in line with
recent theory on robustness of adaptive systems and on averaging: see Anderson et
al. (1986). On the other hand, the estimation of }(t) is rather insensitive to the
geins, provided they are sufficiently small.

3) The observer for 9 performs almost as well for the nonlinear time-varying
syatem (4.3) as for the time-invariant system to which (4.3) reduces in the case
where 2 0. 1In such case our obscrver is identical to that of Luders and Narendra
{1973). This is illustrated by Figures 2 and 3. These figures show the responses
of the angular speed y (full line) and its estimate ; (dotted line) for the case of
a constant aystem (8 0) in Fig. 2 and a time-varying nonlinear system (8=0.5) in
Fig. 3, with the following observer gains: ¢;=0.1, ¢,=0.1, »¢=0.2, ¥,=0.2, y5=0.2.

In each case the input was a PRBS with mean 5§ and amplitude 2.

6. CONCLUSIONS

We  have shown how to construct a globally steble adaptive
observer/identifier for a class of second order nonlinear systems with reasonable
assumptions on the system parameters. Our adaptive observer is inspired by one that
was originally derived for linear time-invariant systems, Our contribution has becn
to show that a class of second order nonlinear systems can be rewritten in a way
that has some "linearity in the parameters" property, for which this adaptive
abserver can be readily derived, and to then prove global stability by combining a

number of recent results on exponential stability and persistence of excitation., We

belicve that our results will find applications in the area of mechanical systems.
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Figure 1

Figure 1 : A "pick and place" robot manipulator
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