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A NEW AND WIDER CLASS OF OVERLAPPING FORMS FOR THE PRESENTATION OF MULTIVARIABLE SYSTEMS
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Abstract  One approach to the identification of multivariable linear systems is to use
one of several "overlapping" or "pseudocanonical" forms. They are uniquely identifiable.
The structure of each pseudocanonical form is determined by a set of structure indices,
that indicate which particular rows of the Hankel matrix of Markov parameters have

been selected to form a basis. In this paper, we relax the traditional constraints on
the selection of these rows. This allows for more flexibility and enhances the chances
of obtaining a numerically well-conditioned basis. . .
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INTRODUCTION

A problem which has been the subject of many
studies in linear multivariable systems theory is
the determination of uniquely identifiable
parametrizations for state-space or autoregressive
moving average (ARMA) models. One approach that
has received increasing attention is the use of
overlapping parametrizations (also called pseudo-
canonical forms). This concept was first suggested
by Glover and Willems (1974), and studied by Ljung
and Rissanen (1976), Van Overbeek and Ljung (1982),
Picci (1980), Rissanen (1981), Deistler and Hannan
(1981), Wertz, Gevers, and Hannan (1982), Gevers
and Wertz (1981), Guidorzi and Beghelli (1982),
and Correa and Glover (1982). It has been shown
that the set of all finite dimensional linear
systems can be represented by a finite number of
uniquely identifiable parametrizations. Each
parametrization is characterised by a set of
integers known as structure indices. Each system
can be represented almost surely in any one of
those pseudocanonical forms, and any two
parametrizations describing the same system are
related by a similarity transformation.

The structure indices are determined by the
particular way in which a basis is selected for
the rows of the Hankel matrix of impulse responses
(or Markov parameters). In order to obtain a
representation that contains a small number of
uniquely identifiable parameters, certain rules
must be imposed for the selection of this basis.
A11 overlapping forms described so far have
involved the following two selection rules (see
Guidorzi and Beghelli (1982), Correa and Glover
(1982), Wertz, Gevers and Hannan (1982), Van

Overbeek and Ljung (1982), Gevers and Wertz (1982)):

(i) a block selection rule: if the dimension
output vector is p, then an entire block
of p rows is chosen;

(ii) a Hankel chain selection rule: if a vector is
in the basis, then its corresponding
predecessor vector is also in the basis
(the predecessor of a vector in the Hankel
matrix is the one that is located p rows
above that vector).

Most authors further refined rule (i) by imposing
that the first block row had to be selected.
Gevers and Wertz (1984) showed that this may lead
to a singular leading coefficient matrix for

the corresponding matrix fraction description
(MFD) form. They proposed an alternative selection
procedure that produces an identity leading
coefficient matrix whill still retaining the block
selection rule.

In this paper, we show that one can actually relax
the block selection rule (i), thereby increasing
the flexibility in the choice of a basis. Once a
basis has been selected with our new rules, there
are a number of ways to construct a state-space
representation; the most obvious way is to include
in the state the components that correspond to the
selected basis rows of the Hankel matrix. This
leads to a minimal representation. Alternatively
one can include additional components in the state-
vector, leading to a non-minimal representation;
the most obvious way is to include in the state

the components that correspond to the selected
basis rows of the Hankel matrix. This leads to a
minimal representation. Alternatively one can
include additional components in the state-vector,
leading to a non-minimal representation. The reason
for doing so is that the parameters of this non-
minimal representation can be easily related to

MFD forms constructed with these new selectionrules.
These relationships have been established in Gevers
and Tsoi (1984), where an alternative non-minimal
state-space representationwas used. Here we shall
limit ourselves to state-space forms and establish
the connections between the minimal and non-minimal
state-space.

SELECTING A BASIS OF THE HANKEL MATRIX:
A NEW SET OF RULES

We consider a p-dimensional stationary full rank
zero-mean stochastic process {y¢} with rational
spectrum. The Tlinear least-squares predictor of
{yt } given the past history of the process is of
full rank. Then{ yt} can be described up to
second order statistics by a state-space
representation

Xt+1 = FXt + Ket
yt = Hxg + et (2.1)



where xy is a n-dimensional state vector, y; is a
p-dimensiona) white noise sequence with covariance
matrix Q, and F, K, H are constant matrices of
appropriate dimensions. F is assumed to be stable.

In this paper, we shall not assume n in (2.1} to
be minimum. From (2.1) it is simple to show that
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where the R; are p x p matrices, known as the
Markov parameters or the impulse response matrices.
Furthermore,

Ry = HFT-TK, i =1,2,...: R, =1 (2.3)
By demanding that the casual inverse of y¢ exists,
ie

et = L Ny ypoi 2.4

igg Yt-i (2.4)
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where No = Ip, and N(z) = 'XO Hy z=1 has no poles
ik
outside the unit circle, it is possible to define
ey & vt - Yozt

where §t/t-k is the linear least squares k-step
ahead predictor of yi.

Note that o
yr+j/t-1= ¥ Ri et+j-i, § =0,1,2,...
i=j+1

Similarly,
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i=j+1

Let

py AT

YNCE) = |yesea1 =|Ry R, Rs..| { ex-q
yt+1/t-1 Rz R3 R'» LR et-2
Yer-1/7t-1 | [ T e

= H,o [Cegq”
et
Hence
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Comparing {2.6) with (2.1) and (2.5), it is.obvious
that the state vector x¢ forms a basis of VYy(t)

Let the set of selected basis components be denoted
by 1 = {iq, iz, ...i4}. Also, let the [j+ k-1 plth
component of ?N(t) be denoted by yjk(t-1). Let
RJ denote the jth block row of Hy, ., and ryjj the
ith row of RY, ie

gJ = [Rj Rj+1 ] = r;j
r2;

"pi

Then, rij = [i+{j-1)plth row of Hy o . Let rij(k)
be a row p-vector made up of the kih set of
p elements of row rij

Thus, HN’m = Fry )
21

rp
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Let xt be the basis. Then
Definition 2.1 For given i, i=1,2,..p, denote
{a) S5 4 (91k(t-1)j§1k(t-1)e x¢ for some ky 1}

(b) Let n; = number of elements in S;. Then n, ,
Nz .... np will be called the structure
indices. N E
In addition, n = ny

i=1

{c} mj = m@}?g.._ {mlyim{t-1)e x¢}, 1= 1,2,...,p

(d} s; =m; +nj -1 and s 4 i:qT?f,p[si}

Example
Supposep=2, n = 5, I = (1, 4, 5,6, 8}, then

S1 7 {;il(t'1)’ 913(t'1)],

Sz = {y220t-1), yas(t-1), ¥oult-1)}

and ny = 2, np = 3; mp = Tymp = 25 s1 =2, sz = 4
We wish to impose the following selection rules
Rule 1: S; # 0,or equivalently, ny» 1,i=1,2,..p
ie every one of the p components of y(t) appears
at least once.

Rule 2: for i =1, 2,...,p

(9ismi(t-1), yimye1 (1Moo sq(t-1)e xy, ie,
the nj components of xt whose first index is i
appear in nj successive blocks. This is the Hankel
chain rule.

Rule 3: my=1 for at least ome iir {1, 2,...,p}




Comment : Hence,we have

Rules 1 to 3 are a reltaxation of the selection

rule imposed by Van Overbeek and Ljung (1982), xpe1 = Fxg + Keg

Wertz, Gevers and Hannan (1982), Gevers and Wertz

{1984) in that we do not require to have one full yt = Hxy +eg (3.4)
block ka(t -1}, 3 =1, 2,...,p in the basis xg.

Rules 1 to 3 cannot be relaxed further. If they where

were not imposed, then the resultant =

parametrization would be over-parametrized. o

Equivalently, the F matrix might become full. . 1n1-1 : E
: I
Example 0 N |
o : :
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With p = 2, n = 5, the following are a few Tig, t e fiis,y
candidate selections: .
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{1,2.3,4,5}, {1,3,4,6,8} {1,3,6,8,10} : Lo

11,4,6,8,10}, {1,6,8,10,12 } (11,13,2,4,6) . LT
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STATE-SPACE REPRESENTATION

1
b ]
I
Wewill now define two state vectars which will o 1y -1
lead to two different state-space representations, i L P
the first one minimal, the second one not. : !
ooy
1
i

Representation 1 a o :
pimy ... pl%:...,

xt = [F,m (t=1) Jr,met(t-1)0 3, g (1) .

a ]
ppmy c+- Cppsp

1
---:yP,mp(t'U,---yp,sp(t—ﬂ]T nx nomatrix

The dimension of x¢ is n = I ni. The state-

space representation is charactem zed by the h,

matrices H, F, K as shown in (2.1). They are W= .
abtained by expresging R <[ - ap xnmatrix
Yism g4y (t-1),.. yz,m +n (t 1):---yp,mp+np(t—1)

as a function or x¢, or equwalently, by hp
expressing ry,m +n, ,Pz,m in ,--T‘p Mp*np as a

where
function of the corresponding basis rows of Hy

1 1
The corresponding rows of Hy, o may be represented hi = [6...00,..1 10...0 ¢...40...0] if mj = 1
as:- -~ e — e
Tr.m n ni Np

. and

s, hi = Bitim,---Bit1s,iB2m,---Bil2s ’

.
.

R=| ¢
rp:mp
; ifom; > 1

"'p,sp The cuefficiegts Bjjkp are obtained from the

r

1 t
teeeBitpmy - - -Bitpsy]

Thus, for i = 1,2,...p,there exists unique ajyg following p (Z “'i) -p relationships for
such that i=1

Sk i=1,2,0000,05 J=1,...,my1
I ke Tk

Sk
f=my (3.1)

p
rij s L1 Bijk (3.5)
k=1 g=myg

By the Hankel structure, it follows that
Sk

p
74, mi*ntq =k21 . ) ik g Tk, &+q, q3 0 52
1 gem )

[ rym, (1)

Flm +n,-1(1)
In additi : ,
n addition sk K = . ,a @ x p matrix

p :
12 9,% Sike Ykgit-1) (3.3) rpnp 1)

¥i,mjtni(t-1) =
k=

r;;mp+np-1 (1)




Comment

The total number of "free” parameters for this
representation is:-

in F : pn

in K : pn

in H : vn,where v = number of m; that are
> 1 {0¢vgp-1)

Hence, the number of parameters involved lies
between 2np and 3np-n

Representation 2
The state vector is defined as follows:

X = [5,,(610,5,,(t-1), 0 9y (E-1) 0L
Fpa (1.5, (-1 Fps (6-1)T

The corresponding state-space representation is
characterized by the matrices H, F, XK. The
coefficients of F are obtained by the same
tinear combinations as before, see{3.3). Howeveg
here some zeras must be added in the last row of

each block of F,since the basis elements.
[yym, (6100w oYys (611 Sy (8210 (8-1)]

now constitute a subset of the components of xi.
The rows of Hy .. corresponding to x; are given by

N
M

We therefore have

{ zt'ﬂ = f:')-(t + ket

yt = Hxg + et (3.6)
where
F =
—~ ) !
' -
0 vy
1
. IS -1 :...| O
0 Lo
0...0 O m e alls, 1 '0"‘0"1pmp' .Cnpsp
Aozpmom e —————— R i
m1-1= 1 !
- — O
'O
1
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o0
0...0 uplmi."aplsl \ 10-700 Gppm e ppsp
' my, -1
e p —
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The following relationship exists between the
representations 1 and 2.

Lemma 3.1

n of the rows of K appear directly in K. The
other rows of K are related to those of K via

the 85k,

P Sk

i Tyeeusp
rigt =1 1 Bijke rkall)
k=1 f=my

‘I,...,m]-—‘i

1 H

(3.7)

The coefficients of K in representation 1 are
obtained from the relations (3.7) for j = 1.

Proof: The proof follows the definition (3.5) of
the 855k

Comment .

To construct K, we will usually need some g;syq
which do not appear in F or H. In fact, if

mj > 2, we need Byjkg for Jj = 2,... , mj-1

Example
tet p=2,n=4, and [ = {1, 3, 6, 8. Thus
M o= 1, m=1; np =2, mp=3; and s, = 2, s, = 4

Representation 1

F= 4] 1 0 0 K = f‘11(1)
M1y 0192 9123 124 |, r12(1)
0 0 0 1 ro3(1)
@11 0212 0223 224 rog{1)

K= [ 1 ¢ 0 0 ]

Ba111 B2112 P2123 P20
andﬂxt contains the components indexed (1,3,6,8)
of YN(t)

Representation 2

F= g =
0 1 060 0 0 riy(1)
@111 a1z O 0 a3 a4 1)
0 0 01 0 0 r (1)
0 6 00 1 0 r,,(1)
0 0 8 8 0 1 rz3{1}
a1t 9212 @223 9224 rz24{1)

and A={100000

001000
and it contains the components indexed
(1,3,2,4,6,8) of Ty(t)




Finally we have the following result concerning
Representation 2.

Lemma 3.2:
Representation 2 is completely observable, but not
completely controliable,

Proof - _
From the form of F and K in (3.6), we have
- o-
FK = FK =
_Y‘12(1) ] and 1‘13(1)
r13(1) .
: r1,55+1(1)
) rs 20|
r1,51+1(1) <+ ____: ________
ra2(1) r23(1)

?"2'521,](3) -

rﬁ»sp*1(1) * rﬁ,sp +2(1)

where the rows indicated by the arrows are
obtained by applying (3.2) with q = 1 and 2,

P
respectively. Hence [K, FK, F X, ...] = R. Thus
rank R = n. Complete observability follows from the
fact that the observability matrix is a matrix
obtained by a permutation of the rows of the
identity matrix.

CONCLUSIONS

We have relaxed the usual selection rules for the
selection of a basis for the rows of the Hankel
matrix of Markov parameters. Once a set of basis
vectors has been selected, with these more
flexible rules, there are different ways of
defining a state vector. We have exhibited two
such state-space representations, a minimal one
and a non-minimal one, and we have shown the
relationships between the two.

In Ljung and Rissanen {1976), it has been

argued that, for numerical reasons, one should
select a state with least complexity. This idea
has given rise to a number of methods for the
selection of a "well-conditioned" state, using
either complexity measures or orthogonality ideas
(see eg, Van Qverbeek and Ljung (1982), Wertz,
Gevers and Hannan (1982)) Even though the
parameterizations we have presented here are more
complex and contain more parameters than the usual
ones, by allowing more flexibility in the choice
of the state we have increased the chances of
obtaining a "well conditioned" state.

In Gevers and Tsoi (1984) we have also described
MFD forms using these new selection rules, and we
have argued that they might be useful for the
description of time series processes with very
different time scales.
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