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Abstract

We investigate the design of identification experiments using
some recent asymptotic expressions for the variance of the esti-
mated transfer function. In particular we highlight a number of
applications for which it is beneficial to let the experiment be
carried out in closed loop.




1 INTRODUCTION
The identification of transfer functions from experimental data
is a fundamental problem in applications of control theory. A

typical approach to such identification can be outlined as
follows. '

Suppose that the true system can be described as

y(£)=Gy(@hult)vy(t)=[ kzlgo(k)q“kju<t)+v0(t)=

1l
fe~18

go(k)u(t—k)vo(t) (1.1)

k=1

Here y(t) and u(t) are the scalar output and input, respective-
ly, qml is the backward shift operator, Go(q) is the transfer
function operator, and go(k) are the impulse response coeffi-
cients. Moreover, {vo(t)} is assumed to be a zero-mean stationa-
ry stochastic process with spectral density @V(w). We shall
frequently work with the following representation of vo(t):

Volt) = Ho(@le(t) = 1 + Z

ho(k)e(t~k) (1.2)
k

1

where {e(t)} is a sequence of independent random variables with

. 2
zero mean values and variances o . Then

2 iw 2
& (w) = o"|Hj(e )| (1.3)
The function Go(elw) is the transfer function of the system

(1.1). In order to estimate G0 and HO from observed data

Zn=(u(l),y(l),....,u(N),y(N)), one often proceeds as follows.
Postulate a set of candidate models

y{t) = G(g,0)u(t) + H(g,0)e(t); GGDM (1.4)

-

Let Y(t!G) denote the one-step ahead prediction according to the
model corresponding to the value 9:



y(t\e)=H'l(q,e)[G(q,e)ju(t)~{l-H'l(q,e)jy(t). (1.5)

and let e(t,©) be the prediction error e(t,0)=y(t)-y(t|6). Then
let the estimate be

N 1 N 2
o, = arg min = ] €7 (t,0) (1.6)

N -
OEDM N t=1

In this way we obtain the estimates

- N ’ -~ - ’ -

G (e ¥y=6(e*?,0.), . HN(e1“)=H(e1“,eN) (1.7)

N N

The quality of the estimates GN and Hy can be evaluated in terms-
of the difference

-

iw, A iw iw
ATN(e ) = TN(W ) - To(e ) (1.8)
where
R GN(elm) _ Go(elw)
T ety & | ; Tole™) & | (1.9)
iw iw
HN(e ) Ho(e )

It is natural to split up the error ATN(elw) into a random part
and a bias part:

iw S 1) ~ e ~ o iw iw
ATN(e ) = TN(e y - ETN(e ) o+ ETN(e ) - To(e ) (1.10)
A scalar criterion can be formed as
™
Jg =/ tr[o(w)M(w) Jdw (1.11)
-7
where

_ iw T, -iw
HN(w) E ATN(e )ATN (e ) (1.12)
is the mean square error of the estimates (a 2x2 real valued
matrix function) formed by expectation w.r.t the random vector




Qll(w) Ql2(w)
Olw) = . (1.13)
Q5 (w) sz(w)

is a weighting matrix that reflects‘the intended use of the
model TN' In Ljung (1984a) several examples of .0 corresponding
to typical model applications such as simulation, prediction and
control are given. Specific examples will be given in Section 4

below.

Our point now is that the value of the criterion (1.11) will
depend on a number of design variables that are at the user's
disposal. His objective is thus to choose these so as to mini-
mize (1.11) subject to whatever constraints are imposed. A com-
prehensive treatment of this problem is given in Ljung (1984b).
Here we shall concentrate on input design issues.

We then suppose that the user has at his disposal to choose the
input spectrum and posSibly also some feedback mechanism. The
input may thus be generated as

u(t) = -F{g)y(t) + w(t) (1.14)

where F is the feedback regulator and w(t) is some extra input
signal. We suppose that F and the spectrum of w, @w(w) is at

the designer's disposal, subject to constraints we are geing to
specify later. We would thus like to minimize the criterion
(1.11) with respect to these design variables. This is the prob-
lem discussed in the present paper.

This problem relates closely to questions discussed in some
other papers. Asymptotic variance expressions for the random
term in (1.10) were derived in Ljung (1984a), while expressions
for the bias term are discussed in Wahlberg and Ljung (1984) and
Ljung (1984b). Open loop design is studied in Yuan and Lijung
(1984a,b).




The paper is organised as follows. The basic expressions for the
analysis are given in Section 2. The connection between perfor-
mance degradation and input desing is established in Section 3.
Minimisation of the variance contribution for typical applica-
tions discussed in Section 4, while Section 5 deals with the
special case where the objective of the identification is to
design a minimum variance regulator.

2 ASYMPTOTIC RESULTS FOR TRANSFER FUNCTION ESTIMATES

Basic convergence results for the estimate eN, given by (1.6)
can be quoted from Ljung (1978) and Ljung and Caines (1979) as
follows

-

S o* w.p.l as N » = (2.1)
* = i 2 '
6* = arg min E €7 (t,0) (2.2)
eeD
v N’(@Nfe*) Q N{0,P) (convergence in distribution) (2.3)
N+>w

An expression for P can be given, but we do not deetail with
that here.

The asymptotic normality result (23) can be t;anslate@ to a
resu1§ on the asymptotic distribution of TN(elw)—T*(elw)
[T*(elw)QT(elw,e*)J, but this gives, in general, quite a complex
expression for the corresponding covariance matrix. For a wide
class of model sets, however, a simple asymptotic expression can

be derived. Suppose that

The model set it subject to the following shift property

5
6 = . dim 0 =s (2.4a)
(%]
n
o) -k+1
2 g0y = ¥ 2 1(q,0) (2.4b)
36 20




In Ljung (1984a) it is shown that (2.4) is the typical structure
for an n:th order linear, black-box model, involving s different
polynomials in the delay operator. Then the following result
holds:

Y N'(TN(elm)-T*(eiw)) g N(0,P_(w)) (2..5a)
N+ n
.1 _ = -1 A3
lim = P (w) = & (0)*[&(w)]"" = P(w) (2.5b)
n+ = n

‘where ¥(w) is given by:

~ éu(w) @ue(w)
d(w) = (2.6)
2

@eu(w) o

u J

with @u(w) being the input spectrum and @ue(m) the cross spect-

rum between the input u and the white noise sequence e, in the
system description (1.1)-(1.2). Clearly, for an experiment per-
formed in open loop, ¢ue(w)50.

Heuristically we could rewrite (2.5) as

Plw) : (2.7)

COV(TN(eiw)) ~ 0
N

We shall now introduce the approximation

BT (el) ~ (el (2.8)

which is reasonable, since we typically have

E Ty(e'®) = m*(e™) + o(1// M (2.9)
In addition, in this Conference paper, we shall assume that the
chtribution of the bias term ETN(elm)—TO(elw) in (1.12) is
negligable w.r.t. the contribution of the random term (see

(1.10)), so that the mean square error HN(w) can be approximated




by

Mg(w) ~ = P(w) (2.10)

Z o

This amounts to assuming that the model set is large enough. The
influence of the bias term on experiment design will be analyzed
in a full version of this paper. With these assumptions, we can
rewrite (1.11) as

i
3y ~ [ tr[o@@F e Jo (w)de & 3(F) (2.11)
-7

We have appended the argement & to the criterion to stress that

our objective is to minimize J(®) w.r.t. o and ® e
3. PERFORMANCE DEGRADATION AND INPUT DESIGN

Errors on the transfer function estimates will of course degrade
the performance whenever the model is used. In this section we
derive some basic formulas for performance degradation due tot

- iw) iw

he random error TN(e -T*(e"" ), and we shall show how this

degradation can be kept small by proper input design.

Let s{t) be a signal derived from a model application. It could,
e.g. be the output of the system when a minimum variance regula-
tor, conputed using the model, is applied. Specific examples
will be given in Section 4. Conceptually we could write

s(t) = £(T(q))w(t) (3.1)
to denote that the transfer functions T, as well as some addi-
tional signal (reference signals and/or noise) are used to de-

termine s(t).

If the true transfer function TO(q) is used in (3.1), we obtain
the "true" or "best" result

sylt) = f(TO(q))w(t) (3.2)




When, instead, TN is used we get the result

selt) = f(TN(q))w(t) (3.3)
Similarly the expected transfer function estimate T* gives
s*(t) = £{T*(q))w(t) (3.4)

It is now of interest to evaluate the performance degradation

due to the variance of the estimates. Let

-

Sy (t) & sg(t) = s*(t) (3.5)

-

When the error %N(q)=TN(Q)—T*(q) is small, we can use Taylor's
expansion to derive

SN(t) = To(@) Fla)w(t) (3.6)
where
o)
F(gq) = — £(T) (22 matrix; r=dimw) (3.7)
dT T=T0(q)

The spectrum of EN(t) is,

~T, iw iw T, —iw,~ -ilw, _ ~
P50 TInle IFeTIe ()P (e T Ty (e T =t B (w)0(w) ]

(3.8)
where
Sy(w) = %N(ei“)%g(e'iw) (2x2 matrix) (3.9)
and
Q(w) = F(eiw)éw(w)FT(e—iw) (2x2 matrix) (3.10)




The expected value of @g (w) 1is

N
bg(w) = E @EN(w) = tr[FEN(w) Qlw) ] (3.11)
with
~ n = -1
E Sy (0) - (0T (w) (3.12)
‘Denoting
Q) (w) Q) p(0)
Q(w) = (3.13)
QZl(w) _ 022(w)

We have the alternative expression

5 .
(670, (w)=2Re(Q) ,(w)® (-w)]}+Qy,(w)® (w)]

glw = » 5 o (w)

o @V(w) - i@ue(w)l

- ¢
(3.14)

If the identification has been performed in open loop, then
@ueso. If it has been performed under the feedback law (1.14),
where {w(t)} is an additive stationary stochastic process with
spectrum @w(w), independent of {e(t)}, then we have (deleting

arguments):

e = - __ 0 42 (3.15)
1 + FG
0
FH 2 2
3, = ‘ _ 0 s ‘ 1 | & (u) (3.16)
1 + FG, 1 + FG d _

-

The variance of SN is
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- T
var sy = 1 [ 4 (w)du (3.17)
2n -7

Our experiment design task therefore is to minimise Var EN with
respect to ¢u and Que (or equivalently F and @w) for different
applications under either input variance constraint or output

variance constraint

n

[ e (wdw < C (3.18)
-7

n

/] ® (w)dw < C (3.19)
S ¢ -

4. REDUCTION OF VARIANCE BY FEEDBACK

In this section, we solve the minimisation problem first descri-
bed for a variety of applications (simulation, prediction, mini-
mum variance control,...). Each application will lead to a par-
ticular set of weights Qij(m), i,3=1,2 in (3.13). We shall in

particular highlight some applications in which the use of feed~

back during identification has & beneficial effect.

For simplicity we shall in the sequel assume that ozzl. This can
always be achieved by absorbing ¢ into HO. We then denote (see
(3.14)):

' Q. {w)-2Re(Q. (w)® () ) +Q, (w)® (w)
N ¢s(m):J(w)é 11 12 ue 22 u Qv(w)

n 2
@u(m)—!éue(w)[

(4.1)

Before going into specific applications, it is worth noting the
following.

Preliminary result:

If le=0 and the input variance is constrained , then open
loop operation is optimal, i.e. @ue(w)=0. This follows directly
from (3.14). It also follows that the input spectrum is
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opt
e P (w) = p /0 (0)8 (w) (4.2)
where p is adjusted so that equality holds in (3.18).,

4.1 Estimation of the I/0 dynamics G(elw) only

Suppose our objective is to minimize Var(EN) only. It is easy to
show that if the input power is constrained, the optimal strate-

Suppose there is a delay d in the plant, i.e.

[-~] _k
Golq) = § g,lk)g (4.3)

Then we decompose Ho(q) as

= H* T
Hy(q) = Hy(q) + Hy(q) (4.4a)
where

_ -1 ~G+1 % . v, -k
B* (@)=1+h;q “+...+hg_jq  ; Ho(q)-kzdhkq (4.4b)

Then (3.19) is equivalent with

_ 2 2 x4 2 ~
@y(w)—|GG| ® +|BE|“+{H | +2Re(GyH ® ) < D (4.5)

—

where ﬁo is the complex conjugate of EO with D possibly a func-

tion of w. (We have dropped the argument w for convenience).
1)) subject to (4.5).
By (3.9), (3.12) and (2.6), this is equivalent with minimising

Our task therefore is to minimise Var(Gy(e
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J(w) = : (4.6)

ue

subject to (4.5). The optimal solution is

B (el 5 (w) K
[y
opt( y = - _O—T—" °Pt(w) - |¢°Pt(w)| Yo .
Go(e w) U'GO(Elw)I
(4.7)

where p is a Lagrange multiplier. This corresponds to the feed-
back law

Hy(q)
Go(q)

u(t) = - y(t) + w(t) (4.8)

(4.8) is the minimum variance control law, which is of course

applicable only if Go(q) has minimum phase. If the power of the
external signal w(t) is adjusted so as to satisfy the constraint
(4.5) with equality, then the corresponding optimal variance of

§N<e1“> can be approximated by (see (3.12)):
iw n 2y n lGolz
Var(G (e”™)) ~ = = -0 — (4.9)
N
® - 2] D-|HE |

Comment: It is interesting to compare (4.9) with the best achie-
vable error variance using open loop identification. With & e=0
and @ chosen such that @ymD, the error variance becomes

2
. o G
Var(G (e'®)) ~ 2 Y =D g _I__E’I_ (4.10)
N “Neo, NV D |8 '2
0

where ‘H |>|H ‘ (see (4.4)). The conclusion is that, if the
system has minimum phase and if the output power is constrained,
one should use the minimum variance control law (4.8) to identi-

fy G(elw). The benefit over open loop identification is indica-
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ted by a comparison between (4.10) and (4.9).

4.2 Simulation

Suppose the objective 1is to use the model GN(q) to simulate the
output with an input signal with spectrum @G(w). The question
is: What is the optimal input design during identification? The
simulated output will be

-~

yy(t) = GN(q)u*(t) (4.11)

It differs from the output simulated with the "expected model"
G*(g). The error is

¥y (t) = Gla)u*(e) (4.12)

The corresponding spectrum is
o lw 2¢*
e5(w) = [Gyle” )| 7ok (w) (4.13)

Comparing with (3.11)-(3.13), we have here:,Qll=®;,

Q,,7Q,,70,,=0-

e e — — m—— S - — — - —

— — s T | it — — — ——

solution for @ue(w) is identical to that obtained in Section

4.1, and the same conslusions apply: applying a minimum variance
controller during identification is optimal if the system has

minimum phase.

4.3 Prediction

Suppose the objective is to use the model as a predictor on a
new set of input data with possibly different spectra. The de-
viation between the prediction error sN(t) obtained from the
model and its expected value e*(t) can be approximated as
follows
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-~

St & eg(t) - er(e) = ;11_ (Eg(@rut) i (qre(t)) (4.14)
0

This means that Q(w) in (3.10)-(3.11) takes the form

Q:(w) @;e(w)

o(w) = _* | (4.15)

2
LN & (~w) 1

where the stars indicate that these are the spectra of the data
to which the predictor will be applied. Therefore

® (w)+8*(w)~2Re(d* (w)d (-w))
J(w) = u u ue ue (4.16)

2
& (w)=[2,  (w) ]

Suppose the predictor is to be applied to an open loop situa-

— e e v — o — T e e — — ———

the optimal strategy is to use feedback, i.e. @Sgt#O even though
®* =OQ
ue

5 THE MINIMUM VARIANCE REGULATOR APPLICATION

An interesting case is where the identified model is to be used
for the design of a minimum variance regqulator. We shall show
that, in the case of a constraint on either the input or the
output variance, the optimal strategy is to identify the model
under minimum variance control feedback.

5.1 Minimum variance control with input power constraint

Suppose the system has minimum phase. Then the true minimum

variance regulator is

I-Ho(q)
u(t) = — y(t) : (5.1)
Go(q)




15

In practice, this would be replaced by

1-H,(q)
u(t) = ——— y(t) (5.2)

Gy (@)

Instead of y(t)=e{t), this would produce an output

1 Hpla)-1 '
yy(t)~e(t)+ { (G (@) +6*(q) =G4 (a) |-
Hy(a) Gy(a)
- [Hg (@) +B*(q@)-H,(q) Je(t) (5.3)

where we have assumed EN' EN' G*-G0 and H*—HO to be small. Con-
sidering again only the variance contribution to the performance

degradation and denoting

yields the following expression for Q(w):

EN R
0 0
1
Qw) = (5.4)
2 o

B Z 1

5| 0 .
where Eoézo(e‘l”). Minimising (4.1) subject to (3.18) yields,

after lengthy manipulations, the following set of equations:

9 |
léuel2+lzo\2-2Rezo¢ue(~m)=p(@u—[@ue| ) (5.5a)

W

_ i
arg @ue(m) = arg Z,(e ) (5.5b)

2 2 2 2 2
(2,126l )2|z0‘ =[|zo| -2re(248  (~0) )+ {7|o | (5.5¢)




16

where p is a Lagrange multiplier to be adjusted so as to satisfy
the constra@nt (3.18). Notice now that if we take
Que(w)=20(elw), then the 3 equations are satisfied, provided
#=0. Hence, provided the choice @ue=zo does not violate the
constraint (3.18), this is the optimal solution. It corresponds
to

u(t) = Zo(q)e(t) + w(t) = Zy(qryl(t) + wit) (5.6)

~ Therefore a necessary condition for optimality of @uezzo is
that

p iw 2

[ lzgte ™™ {%dw < C (5.7)

-R

5.2 Discussion and further results

a) The exact minimum variance control léw is u(t)ﬁzo(q)e(t).
Therefore, if the intent is to apply this controller to
the system, condition (5.7) will always be satisfied.
Hence, (5.6) is the optimal design strategy during identi-
fication.

b) One might think that the optimal strategy is to adjust the
spectrum of w(t) in (5.6) so that the constraint (3.18) is
satisfied with equality. As a matter of fact, it is easy
to see that, if @ue=zo, then J{w)=1 regardless of @u (i.e.

— v — —— -t — — —

— — - — — — i it — — — s — — —— — — — — — — — —— —

— — —— — — - — — — — — — — - — —- — — — — — —— ——— -
—t s T

— — —— o — —— —— - — — e Y e Ut e T e s e s e - -

— —— i — — — o — — o — — m—— 2—

c) With the optimal feedback design u(t)=zo(q)y(t), the spec-
trum of the error yN(t)—y*(t) is given by

N
— ¢ (w) ~ 1 (5.8)
n Y -

It can be shown that this is the minimum of ¢y for all e,




d)

5’3
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and @ue. By comparison with open loop identification, it
follows from (4.1) and (5.4) that

2
|Zo|

n @u(w)

(5.9)

F-q»y(w) ~ 1+

Hence, in open loop, the same minimum can only be achieved
with infinite input energy.

The reason why an external input w(t) does not decrease
the error variance is as follows. Suppose the system is
described by an ARMAX model

Ao(q)y(t) = By(glu(t) + Cylqle(t) (5.10)

Then the true minimum variance regulator 1is

A_(g)-C, (q)
a(t) = 2 0 (5.11)
B, (a)

By agplying more input power, the estimate§ AN(q)i BN(q)
and CN(q) are improved, but not those of (AN~CN)/BN, which
is all that is needed to compute the minimum variance
regulator (MVR). The simulations will illustrate this

point,

Simulation

The theoretical results have been tested by a sereis of simula-

tions on the following system.

S: A{qg)y(t) = B(g)u(t) + C(qgle(t) (5.12)
with
A(q) = 1 - 1.5g7% + ().'fq'2

B(q)

q"1(1+0.5q'1)

]
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C(q) = 1 - q—l + 0.?.q“2

The true MVR is
-1 -1
MVR: (1+0.5qg Ju{t)=(-0.5+0.5g “le(t)+w(t) (5.13)

One aim of the simulations was to check whether the asymptotic
results apply to low order models (n small) and for reasonably
short data lengths. Five simulations have been performed, numbe-
red 1 to 5 in the sequel. In the first three, the system is
identified from I/0 data obtained while the MVR (5.16) acts on
the system: {u(t)} and {y(t)} are generéted through (5.15)-
(5.16), where {e(t)} is white Gaussian noise of zero mean and
unit variance, WGN(0,1), while {w(t)} is WGN(0,0 ), where o
takes on 3 different values. In the last two simulations, the
system is identified in open loop: {e(t)} is WGN(0,1), {u(t)] is
WGN (0,0 ) with 2 different values for o, and {y(t)} is generated
through (5.12)., For each simulation, 10 independent runs have
been performed using 10 independent segquences {e(t)} of 500
points each.

For each of the 10 runs in simulations 1 to 5, the polynomials
AN(q), BN(q), CN(q) have been estimated by maximum likelihoogd
estimation using IDPAC, assuming a second order ARMAX model.
From these, the estimated MVR parameters have been calculated

-~ -~

Ay(q)=Cy(a) € +a,q

u(t) = = yit) (5.14)
- - -1
By (q) 1+ g
with
a.,—c a.,-c b
a = 1 l, o = 2 2' B = _..2. (5.15)
Ly 2 p b
1 1 1

Table 1 gives the true values of three of the system parameters
and of the three regulator parameters, as well as the average
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{over 10 runs) of their estimates and then standard deviations.

Table 1 confirms several points made in Section 5.2. Simulations
1 to 3 show that an increase in the external signal power in-
creases the accuracy of the ag, b.1 and Cyr but does not affect
the accuracy of the regulator parameters. To obtain the same
accuracy with open loop identification, one needs to allow for
more output variance. In fact, output variances such as those
obtained in simulations 1 and 2 cannot be achieved in open loop,
since the noise {e(t)} by itself contributes an output variance
of 1.521.

5.4 Minimum variance regulator with output power constraint

The optimal experiment design for this case is also (5.6), be-
cause it yields the smallest possible value for ¢y' and because

the output spectrum is @y(w)=02+¢y(m).
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Simulation number and experimental conditions

1 2 3 4 5
True
value 0001 M e l10 o
Ow" . Ow- . Ow g .= Ou"
-1.5 0.546 | -1.459 | -1.509 | =-1.499 | -1.506
1 +2.443 | +0.565 | +0.009 | +0.001 | +0.009
1 -0.987 1.118 1.002 1.000 0.997
! $3.840 | +0.565 | +0.056 | +0.005 | +0.058
-1 0.052 | -0.895 | -1.014 | =1.007 | -1.012
1 +0.666 | +0.479 | +0.049 +0.035 | +0.031
-0.5 | -0.505 | -0.508 | -0.494 | -0.493 | -0.436
! $0.026 | +0.037 | +0.035 | +0.036 | +0.041
i 0.5 0.509 0.517 | 0.500 0.499 0.501
2 +0.085 | +0.045 | +0.048 | +0.051 | +40.052
0.5 0.484 0.482 0.470 0.502 0.488
£ #0.051 | +0.099 | +0.049 | +0.007 | +0.088
5 1.000 1.034 4.409 1.889 | 20.401
2 1.000 1.013 2.333 100 1
Table 1 True and estimated values (with standard deviations)

of a s bl' < and Xyr Gy B for 5 different
experimental conditions, together with output variance
and input variance. The estimates are averages over 10
Monte Carlo runs of 500 data each. (Note, C.L.=closed-
loop experiment; O.L.=open-loop experiment).
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6 CONCLUSIONS

We have exhibited a number of applications where it proves bene-
ficial to identify the system under closed-loop operatibn.
Several of our results are consistent with earlier experiment
design results obtained under different sets of assumptions (see
e.g. Gustavsson, Ljung and SOderstrdm, 1981; Ng, Goodwin and
S6derstrdm 1977). However the results on the minimum variance
regulator are new and perhaps surprising. Because the optimal
design strategies always depend on the unknown system, one might
argue that our results are not very practical. However, they are
qualitatively important, and provide further justification for
the use of self-tuning regulators.
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