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Abstract

We consider the prediction of stationmary stochastic processes with non-zero
mean. When the covariance of the process is known, but the wean is not, the
classical approach is to first estimate the mean from the past data, and then apply
an optimal predictor to the zero-mean residuals. Bastin and Henriet [1] showed that
an alternmative was to use a predictor based on “variograms“ rather than covariance
information, thus avoiding the estimation of the mean. We show here that the two
predictors are identical, when the unknown mean is replaced by its minimum variance

estimate. We also argue that in a practical situation, where the covariance is

unknown, it is wiser to use the variogram approach.

1 Introduction

We consider a discrete scalar stochastic process {yo,yl,-.-, yt,...} with
constant but not necessarily zero mean:
E{yt} =a (1)
We define the "variogram” of the process as the semi-variance of the increments
)%} 2

Y(t,e-1) = Elly - v,

We shall assume throughout that the variogram is stationary, i.e.

269

y(t,t-1) = y(1) =1y E{yt- yt_T)z) (3)
A process with the properties (1) and (3) is called intrinsic (see e.g. [2}]). 1If
the process is wide—sense stationary, then the (auto)covariance can be defined as

R(T) = E{(yt- m)(yc~r- w)} (4)
Fox a wide-sense stationary process, the covariance function and the variogram are
related by

(1) = o~ R(1) , with o = R(0) (3)
Note that an intrinsic random process is always wide~sense stationary, but the
converse is not true. The class of intrinsic processes is larger and includes
Wiener processes as a special case. Except when specifically stated, we shall from
now on assume that the process {yt} is wide~sense stationary,

In this paper we shall derive different minimum variance unbiased (MVU)
expressions for (d+l)-step ahead predictors of the {yt} process under a variety
of assumptions. We shall not make any assumption about the existence of an
underlying finite-dimensional model. Hence we shall consider Levinson predictors
with growing memory: the predicted value at time t=N uses all avallable past data.
In Secrion 2 we shall briefly recall the expressions of the classical Levinson
predictor (CLP) for Yi+d» 8iven {yo.yl....,yN_I} » under the assumptions that the
constant mean m and the covariance {(or the variogram) are known. In Section 3 we
consider the case where the mean is unknown. Two different MVU predictors can be

used in this case:

-~

1) one can compute an unbiased estimate m , and then replace the mean by its
estimate m in the expressions of the CLP of Section 2. This predictor will be
called Approximate Levinson Predictor (ALP);
2) alternatively, one can use a MVU predictor of the form iglbiyu_i, in which
the bi are computed from the variogram function. This predictor, derived by Bastin
and Henriet [1], who called it the modified Levinson predictor, does not involve the
@mean or its estimate in any way.

In Section 4 we show that the two predictors are exactly identical if the MVU

estimate is used for m in the ALP. This may appear as a surprising result,

considering that the first involves an estimate of the mean, while the other does
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not. Our result corrects a result of Bastin and Henriet, who claimed that the MLP
Jeads to a strictly smaller prediction error variance than the ALP. We shall
further derive a number of interesting expressions for the MLP and its prediction
error variance, and show that all these quantities can be expressed in terms of
either the covariance function or the variogram. In Section 5, we shall give a
number of reasons why the MLP, written in terms of the variogram, is to be preferred
in practical situations, where both the mean and the covariance function are

unkanown, and have to be estimated from the data.

2  Processes with known mean and covariance funcrion

When the mean is known, the classical (d+l)-step ahead Levinson predictor {CLP)

for yyyq given yg,...,¥y-y has the form (see e.g. [3]):

g - B T ‘glai (Yy-ym) = m + al(Y~mU) (6)
is
T _ T_ T_ —
where : a = (al,...,aN), U= (l,l,se01), ¥'= (yN—l"“’YO)' The prediction error
~ AT . - . s : .
Yira~ YNtd “Nd is unbiased. The minimization of the prediction error variance
E{(§N+d)2} with respect to the a; leads to the following system of N linear

equations:
Ra = Ry 7)
where
R = E((Y-n0) (Y-n0)"} (8a)
Ry= E{(Y-nU) (y 4™} (8b)

Using (5), we can also write:

_ 2T _ 2
R = o“UU I, Ry=0U-Ty 9
where
v(0) Y(1) ... y(E~1) y(d+1)
r = iv(l) ¥(0) Y(N-2) » T y{d+2)
" ° (10)
Y1) Y(N2) aer YO Y(d+N)
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Note rthat y(0) = O. Substituting (9) in (7) yields an alternative system of

equations for a in terms of the variogram:

f a PO (11)
U -5 ag 1
o

N
A T
where = | - =] -
a a'y =] izlai. (12)
Using marrix and vector notations, (l1) can be rewritten as Al Al = ¢, with
obvious definitions for AI’ Al and ¢ . The optimal prediction error variance,
A = 2

v, = E((yu+d) }, can be written in a number of ways:

_ 2 _ T, _ 2 T

Vc o a RO = ad + a ro
_ 2 Tl
[+ RO RO
_ T~-1
=cac 13)

3  Processes with unknown mean and known second order statistics

We now consider the case where the constant mean m is unknown, but where the
covariance function R(T) or the variogram ¥(7) are assumed known. Recall that

they are related by (5).

3.1 The approximate Levinson predictor

The most obvious strategy is to replace the mean in (6) by a linear unbiased

estimate based on the past data:

- N
T,
w = 121 Cyyog " Y (14)

with the unbiasedress condition:

T
g 'u=1 (15)

The CLP of (6) is then replaced by the approximate Levinson predictor (ALP):

* - T -
Yprg D * 2 (Y—aU) (16)




272
where a is the solution of (7), as before. This estimator was called approximate
classical Levinson predictor (ACLP) in {1]. The prediction error can be writtenm

= mral(Y-mU) + a(m-m) Qa7)

~ é * —
Tnid - Tka” Y I+
The sum of the first two terms in (17) is the optimal CLP, so that the sum of the
first three terms is the CLP prediction error. Therefore, the prediction error
B opre* 2y .
variance V_ = E{(yN+d Yeg) b st

V= v+ uzoi + ZQE{[m+aT(Y~mU)-yn+d][5-m]}

- 2.2 Tty T
Vet a a;n + 2aE{{a™ (Y-nl)~yy, . [ (Y-u0) "]}

since @ is unbiased. dg denotes the variance of m. The third term in the above

o
expression 1s zero by (7). Therefore
2.2
V,=V +a a; (18)
It follows from (18) that V_ will be minimum 1f o s minimum, i.e. &f o is

m
chosen as the MVU estimate of m. The corresponding estimator will be called MVALP,

for Minimum Variance Approximate Levinson Predictor. The MVU estimate for m is

obtained as follows:

& = ta - w?) = BT (a0 )7}
m
=fRg=o -T2 (19)

Mirimizing cTRz w.r.t. £ subject to (15) yields
¢ = R (20)
After lengthy manipulations, using (5), & can also be expressed in terms of
Y(t):
g = @rte il . 21)

The corresponding minimum error variance for the mean estimate will be denoted

% :

-m
o2 = T eyt = of- iyt (22)
-m

The expression (18) shows that the ALP yields a larger error variance than the
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CLP. This is to be expected, since the CLP is the optimal estimator. The two error
2

variances coincide when oa + 0, as should be expected. We shall denote by V_ the
_a
prediction error variance of the MVALP. Using ‘
=1 = 2% o 1pFp-l
a=1-auy=1} RyR U (23)

together with (22) and (13), we can write

- 2 ey Tr=tyy=

v, = v+ Tkl (24a)
_ JIT S TN S |
= v+ u-mR P tr Th (24b)
= o? - RIR IRy + (1-RIR 12 (TR 1)L (24¢)

Note that this last expression is entirely in terms of the covariance function of
{yz).

3.2 The modified Levinson predictor (MLP)

When the mean m is unknown, an alternative strategy is to seek the MVU

predictor of the following form:

- N T

Y wa ™ 1£x byyyoy * DY (25)
together with the constraint, imposed by unbiasedness, that

N

$ b, =1 , i.e.  BU =1 26

& N (26)

Minimization of E{(gn+d)2} w.r.t. b subject te (26) yields the following linear

system of (M+1) equations:

= 0 (27)

where u is a Lagrange coefficient. Alternatively, using (5), we get

rT U b | _ Ty (28a)
v 0 u X
or, with obvious matrix and vector notations,
A, 12 = ¢ (28b)
The prediction error variance can be written in a number of ways
2 T
Vp= o 4B Rb=-2b"Ry =2 b~ b b
(29a)
_ 2 T T
=u+o0 ~ b R0 =p+b T
. 0 (29b)

= ¢ TAEI c




274
Note that the last expression is the only one that does not involve b or u.
An expression similar to (29c¢), involving only the covariance function, can of
course be obtained from (27).
The predictor MLP was proposed by Bastin and Henrier {1}, who showed that
Vo=Vt o™ (30)
with a defined by (12). This, together with (24a), shows that
Vo = Ya (31)
In fact, we show in the aext section that the MVALP and the MLP are identical,

which of course explains (31). In the process, we shall derive a number of

interesting expressions for b and u.

5 The MVALP and the MLP are identical

Proof: It follows from (16} and (14) that the MVALP can be written:

« “
Yy+d = (1= aTU)m + a'y
- (a cT + aDy (32)
Therefore, we need to prove that
atazg="b (33)

where a, ,b are solutions of (7), (20) and (27) respectively, and with o given by
(12).

The solution of (27) is unique, because it is the vector b that minimizes
E{EyN+d]2} = bTRb + 02- ZbTRo subject to (26). It is also trivial to see that
ataf satisfies the last equation of (27). Therefore, to prove (33}, it remains to

be shown that there exists a u such that
R(a+a g) -yl = Ry (34)
It follows immediately from (7), (20) and (22) that this is so for
uo=a g (35)
This concludes the proof.
In the process of proving our main result, we have shown that the solution u

of (27) and (28) is « gg . This yields some closed form expressions for b and
®
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some new expressions for u in terms of either R(1) or v{(1). From (35}, (27) and

(28) we get
b= RTUR, + agd 0) =TT~ adlU) (36)
m m

Using (35), (12) and (22), we have

vt R L W

Ry 0
o1 = T (37)
vir vir g

The second equality in (37) is obtained by multiplying (36) to the left by T »
and using (26), (12) and (22). This then allows us to write two expressions for b

in terms of R(1) or Y(7) only:

- o TR,
b o= KRy R (38a)
v Rty
- I s RN
= T I'0+Tl‘ U {38b)
virty

The formulas (38a) and (38b) are remarkable because the expressions in terms of

(R, Ry) and (F,PO) are identical. Note that the first term of (38a) is a while the

second term is « § . (Recall (33)). This is not so, however, for (38b), because

R“lﬂo # F_lro. Finally, note that the expressions (37) and (38) can also be
obtained from (27) using a matrix inversion lemma.

In Bastin and Heanriet [l], it was claimed that ya - Vm = alo? >0 , and that

therefore the MLP was better thar the MVALP. This was based on an exrouneous

expression for V,: the correct expression is (18) above. Note, however, that the

equality Vo= ¥ holds only if the unbiased estimator m  is chosen to be the
a

minimum variance estimator, If the sample mean estimator
Y
N

is used in (16), then V_< V_.
m a

N
Z;y*‘“i (39

1




276

5 Motivation for the use of the variogram and the MLP

We have shown that when the mean is unknown, but the covariance or variogram is
known, the MVALP and the MLP are identical. We have also shown that the predictor
coefficients of all three predictors that we discussed can be computed either from

R(1) or from y(1).

In practice, neither the mean nor the covariance or the variogram are known,
and they have to be estimated from the data. Two issues must then be raised:

a) what predictor should one use?

b} should one estimate its coefficients wusing sample estimates of

R(T) or ¥(t)?

Since we have shown that the MVALP and the MLP are identical, the practical choice

is between:

- the ALP (16) with ; replaced by its sample mean (39), or

~ the MLP (25).

In both cases, the parameter vectors (a for (16), b for (25)) can be computed either

by covariance egquations ((7) and (38.3)) or by variogram equations {(11) and

(38.b)), and in practice covariances and variograms would be replaced by their

sample estimates. Of course, other predictors could be used in practice, such as

least-squares predictors derived directly from the data rather than from sample
covariance or variogram estimates, but our aim in this discussion is only to compare
the two predictors just mentioned.

We give a number of reasons why we believe that the MLP should be used with its

coefficients bi computed from the variogram formulas (38.b).

1) The MLP does not require an estimate of the mean. The ALP would use an estimate
of the sample mean which, in almost all cases, would not have minimum
variance. We have shown that, with known covariances, this would lead to an ALP
that has larger error variance than the MLP., It is likely that this result will
still hold when exact covariances are replaced by estimated ones, although this

has not been proved.

2)

3)
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So far, we have assumed that the process is known to be stationary. In
practice, however, this is nor always easy to validate. Failure to detect fhat
& process is nonstationary may lead to completely erroneous results {if
covariances are used, as the following example, due to Matheron {5), shows.

Consider a Wiener process with variogram Y(t)=ir|, and suppose we have

observed {yo....,yu_il. Now suppose that the user believes thet the process

N

he or she observes is wide-sense stationary, and that he or she estimates m by

(39) and &(?) by:
- 1 N~-1 - B
MO =5 1 G oG- o (40)
t-7

Then it can be shown that, for 1t> O,

) N 2
E{R(T)} =123-§£-§1 +~§- = (41)

" = 2
It is a parabola; an apparent variance of R(0) = o2 = ﬂggl will be found,
whereas the true variance is infinite. The experimental variogram, on the other

hand, is unbiased:

: I Nl 2
(1) = =TT EET (Yt‘ Yeoo) (42)

For intrinsic {(but not necessarily wide-sense stationary) processes, the
equations (28) and the estimator (38b) can be derived directly without going
through the relation (5). Note that in such case, the covariance R(T) and the

2
variance o may not exist, Therefore, the MLP (38b) covers a wider class of

random processes.

Concluding remarks

All chese elements seem to indicate that the MLP should be preferred in
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situations where the mean and the covariance function of a process are unknown. Of

course, a definite aunswer can ounly be given by comparing the expected predictors

when estimated means, covariances and variograms are used. A theoretical comparison

appears to be very difficult.
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