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ABSTRACT,

The design of linear minimum variance unbiased estimates
in 2-D random fields (RF) is a standard problem when the
mean and the covariance function of the field are known.
Here, we investigate the case where the data are so
scarce and so scattered in space that reliable estimates
of the covariance function are impossible to obtain by
classical procedures. Using the variogram of the RT
rather than the covariance function, we develop a
procedure for the estimation of a varlogram model, whlch
then leads to meaningful estimates of various
functionals of the RF,

b I. INTRODUCTION.

We present a methodology for the interpolation in 2-
dimensional randowm fields (RF) with scattered data., We -
are concerned with real-life problems, where the mean
and the covariance function of the RF are not known a
priori, and where the available data are so scattered
{and often so scarce) that these functions are hard to
estimate by usual ways.The major difficulty, then, is
‘the preliminary identification of a mathematical model
of the RF. The paper is therefore mainly concerned with
£his identification problem. !

1

We consider a 2-dimensional RF Z(x,ypver a domain @ :
(Hy)e Q ¢ RZ, and we assume that a realization of
this RF is available in the form of a finite-dimensional
vector of measurements Z=(z{,....,2 ), wiere z.—z(x S )
is a realization of Z(x,,y,). The N locations @re
'scattered in the domain 2, We want to coustruct an
ioptimal linear estimator f(a)for various functionals
f(z) of the RF "

? f(z) = X + L Az,

. i
i=t .

(1.0

The functional £{z} can, e.g., be the estimate of Z(x,y)
at a point (x ,y ), the surface integral of Z(x,y) over
the domain Q, or the derivative of the RF at a point

{x _,y ). A typical problem is the contour mapping of a
'spatially distributed variable : e.g., from rainfall
measurements at a few locations, one may want to
lestimate the rainfall at all points of a grid, or the
iaverage rainfall over a basin.

‘Some common features in many applications are

i~ the measurement locations are scarce and not

¢ equispaced; .

.~ the mean of the RF is almost never zero;

.~ the mean and the spatial covariance function are
' seldom known and are hard to estimate.

‘Typical systems engineering applications are in geo-
statistics and hydrosciences. Our own interest for this
problem grew out of a parameter estimation problem in
2~D groundwaterflow models. Over the years we have
developed a method for the identificatiou of a model
for the R¥, and we have applied this technique to a
large number of problems,

As every control engineer knows, linear minimum variance
unbiased estimation with a random process requires the .

i
i ‘-
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knowledge of the covariance function of this process.
The same is true for estimation in random fields. In
practice, however, the covariance function is not known.
In this paper we shall suggest that, for interpolation
in RF, the covariance function should be replaced by
another function, called variogram, which contains the
same information, but which has several advantages aver
the covariance function. In particular, a stationary
variogram exists for RF for which no stationary
covariance exists, such as Wiener fields and other nom
stationary fields with stationary increments which are
very common in 2~D problems.

In section 2, the expression of the Best Linear Unbiased
Estimator (BLUE) is given for the case of point-wise
interpolation (i.e. f(2z) = z(xo,y }). Two methods are
presented: one where the mean and the covariance ’
function of the RF are assumed stationary and known,
the other where the mean is unknown but the variogram
is stationary and known. In section 3, we discuss these
two methods and explain why the second is preferable.
We also show that the experimental variocgram or a
covariance function {(i.e. estimated from the data) is
‘very chaotic and must be replaced by an analytic model.
Section 4 presents and compares two identification
methods for the variogram model; this is the main
contribution of this paper. Finally, the usefulness of
our 2-D estimation technique is illustrated in section
5, where we present results obtalned on a real-life
appllcatlon.

II. OPTIMAL INTERPOLATION IN A RANDOM FIELD.

‘Notations and Definitions.

We consider a RF Z(x,y), (xX,¥) e 0 € Rz, for which the

following functions are defined :

- the mean (assumed stationmary) :
=E (Z(x,y)}

~ the spatial covariance kernel : )
: R(i,3) = E{[Z(xi,yi)—mlfZ(xj,yj)-ml} . [2.2]

where (xi,yi) and (xj,yj).are two arbitrary points in

{2.1]

3- the spatial varlogram
Y(,3) = 5 E {20x,y)- 20,55 1)
We consider two speclal classes of random fields

{2.3]'

‘a) (Weak sense) stationary random fields:

‘In addition to the stationmary mean assumption, we assume
that the covariance is stationary :

R, D) = R(d.. [2.4}

‘where d,. is the Euc11dean distance between the. p01nts
(x Yy Yy and (x.,y:). In this case the RF variance is
fifiite and stationﬂry 1 o°= R(0); the variogram is, by
definition, also statlonary,y(L,J)wy(d , and is
related to the covariance function as %gilows :

2
Y@ o= -R@ [2.5]




b) Intrinsic random fields : )

In addition to the stationary mean assumption, we

assume that the variogram (but not. necessarily the co-

variance) is stationary : » ‘ ‘
Y(L3) = v ) [2.6)

This is a wider class than class a), since it involves

not only stationary RF but also non stationary RF with

stationary increments (like e.g. 2-D Wiener fields).In

this last case, the relationship [2.5] is no longer

valid : the RF variance can be infinite if lim y(d)=w.
d—)oo

Lt e

Optimal Interpolation

We consider now the following situatiom :

. given a finite realization Z = (zi,...,z ) of the RF
measured at N scattered points in @, find an optimal
linear minimum variance unbiased estimate of Z(x "o )} at
an arbitrary point (x Yo Ye Q.

We solve this problem both for stationary and intrinsic
random fields.

METHOD 1 : Stattonary fields with known mean and

covariance.

The linear miniwumr variance estimator of z(xo,yo) is

given by (see e.g.[1]¢ %

N .

z, % z(xo,yo) SVt I ovzs T m L vi(zi—m)[2.7]
i=| i=|

where{vi, i=l,...,N}is the solution of the system :
M ) :
jzl v R(dij) =R ;) i=h,..N [2.83
The interpolationNerror variance is given by : f
2 . :
9, = R(o) - ii] vy R(doi) ‘ [2f9?

fThis estimator is unbiased and is a straightforward
‘extension of the well knowm Lev1nson predlctor for
stochastlc processes.

METHOD 2 : Imtrinsic fields with unknown mean and
known variogram.

We look for a linear minimum variance unbiased
‘estimator of the form:

~

[2.10];

N
z, = AO + I A. zs
: i=1
The Ai are the solution of the following system :
. N te i
jf] Aj Y(dij) +u = Y(doi) i=ly...,N {2.113a]
N : . ’
g A, =1 ,Aa =0 l2.110]

j=t =

where p is a Lagrange parameter. The interpolation
.error variance is given by:

=up+ i Ai Y(doi)

[2.12]
i=1 .

TII. DISCUSSION.

In most practical applications, one does not know a
-priori if the RF is stationmary or not, and the values
of m,R(d} or y(d} are not given. The only information
on the RF is the set of data. ¥From these, one must:

a) make a stationarity assumption

b} estimate the mean m and the covariance R{d), or the
variogram y(d). The first step is to draw the
"experimental variogram'.

‘Computation of the emperimehtal vartogran,

Since in most practical cases the points are not
equispaced, the experimental variogram is estimated as
‘follows, The interval of useful distances is divided

‘inte m subintervals [d,,d, I, i= l,...om , and for each
sublntetval the fol]ow1ng estlmator is used : :

YAD= z- 1 (e 2’ NN
1 ksJ

where the sum is over all couples of points (k,j)
9eparated by a distance d such that d, ld < d, 412 Ni
is the number of such couples, and d.1~ w(d +d1+l)

The experimental variogram has the graphlcal appearance
of a broken line: a typical examwple is shown in fig.l
for a piezometric field, which will be further studied

. in section 5.
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Fig.l: Experimental variogram of the water level
(piezometry) in a 6km x km aquifer.

: Comments

1) From fig.l, a stationarity assumption on the co-
variance R(d) is difficult to validate. Indeed, a

_necessary condition for a stationary R(d) is:

2
lim R(d) = O,or equivalently (see [2.7] ) lim y(d)=o.

vFrogé?ig. 1 it is clearly impossible to decidg*ﬁhether
“y{(d) will asymptotically reach a finite value ¢° or not;

since no data are available for large distances.

2) A stationary variogram exists for a wider class of
random field models than a statiomary covariance

. (see section 2). In case of doubt on the stationmarity,

it is therefore safer to opt for method 2.

:3) We could have developed the arguments of this section

using a representation of the experimental covariance

‘(rather than the experxmental varlogram) Note that rhls

requires the preliminary estimation of an estimate m
of the mean of the RF. This shows an additional .
advantage for method 2 : not only is mnot required for

the interpolation, but it does not even have to be

estimated to obtain an unbiased estimate of the
variogram. )

Coneluston

For the reasons that we have just indicated, we conclude
that-method 2 is preferable for the optimal :
interpolation of real-life random fields.

IV. JIDENTIFICATION OF A VARIOGRAM MODEL.

Introduction i

The formulas [2.10]-[ 2-i1]give a straightforward
solution to the interpolation problem in random fields.

_However, the use of the "experimental variogram' in

.
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[2.11) would lead to completely absurd values for the
estimates %; this will be illustrated in section 5.
Therefore it is necessary to use analytical variogram
models, which obey some structural admissibility
constraints, and to infer theiy parameters from the

data. This is the most difficult part of the estimation

problem in RV,

In this section, we shall present some common variogram
models, and describe two basically different parameter
estimation approaches !

- either the parameters are adjusted so that the
‘variogram fits the experimental variogram(by a least-
squares or generalized least-squares method) ;

- or they are adjusted so as to minimize the
interpolation errors computed with this variogram model
(by a minimum interpolation error or a maximum
likelihood method).

Variogram models

The shape of the experimental variogram obtained inmost
“practical applications indicates that. fairly slmple
parametric models can be used to describe the variograms

f2) : .

v(d) = o d8 ‘ {4,1a]
Y@ =a [l ~ exp(-8d)] 14.11)
y(@ =alt - exP(—BdZ} fa.1c)
, y(d) = o log(l+gd) “f4.1d]
-Note that all these models have the form
5 y(d50,8) = ay (d;8) [4.2]

With this form, a is called the "scale factor" while
(d;8)is called the shaping factor or the spatial
autocotrelatlon factor. Then it is important to observe
that :

N ;
a) the optimal interpolator zo =L Az is independent

i1
‘of the scale factor(see {2.11a])." ! ;
b) the variance of the 1nterpoiatxou error [ 2.12} can
be written : ;

2 = [4.3]

i

: o V5 (B)
‘Admissible parametrizations

{The models [4.1] do not define admissible variogram
‘models for ail values of {o,R). The choice of the

. parametrization is constrained by the following
conditions :

“a) ™he coefficient matrix of the system { 2.11a] must
“be non singular for all possible locations of the
‘measure points. 2

“b) The interpolation variance s_ must be positive for
all possible locations of the measure points.

{From these constraints, the following necessary
i conditions for an admissible parametrization can be
‘derived (see [3]) =

i
H
i
;

» l) Y(O,a, ) = O [4.4a)
| 2) y(d;a,8) > 0 for d>0 [4.40]
? 3) y(2d;0,8) < 4 v(d;a,8) for d>0 [ 4.4c]

'Thls 1mp11es ln partlcuiar that o > 0 and B >0 for all

models [4.1],and furthermore that 8 < 2 for the model
[4.1a].

Estimation of o ‘and g by the least squares method.

Given the measurements z., ...., 2, one can compute
experimental squared increments :

; =i(z.~z.)Z f=1,.0N 5 j=itl,o. N (4.5 ]

q.. is an unbiased estlmate of v(i,j)and we can write :

HEEAE B TR

. i)+ vy with B v..]— 0
Uy = YWg5) + vy if-

Having chosen a theoretical model y(d;«, 8), the para-
meters ¢ and B are then obtained by mlnlmlzlng the cost
function :

4.6 ]

N N . 2
J(a,B) = I o {ays - ey (d; 80} [4.71]
i=1 j=isr M J :
3J/3e = 0 yields
~ Izx qij Y*(dijsa)
B o) = . 3 _
RN SR CHR) [4.8]

B is then obtained by minimizing

B = 3@ (8),8) = y

s £

N * 2
Io{a.-8 ((B) ¥ (dij,B)}
3

[4.9]

Although very simple in principle, the least-squares
method has a serious drawback :the observations q;; are
correlated, and this can lead to the very undesirable
situation where the addition of new observations can
deteriorate the quality of the estimated parameters
(see[ 5]).

Therefore, it is advisable to replace the LS method by
a generalized LS method, which does not have this draw-
back (see[ 3] for details).

Estimation of B by an intevpolation error (IE)method.

In this second approach, we use the minimization of the
interpolation errors as a criterion for the estimation
of the parameters of the variogram model. This is
analogous to the idea of using a prediction error
identification method for the estimation of the
parameters of a dynamical model when this model is to be
used for prediction purposes., Recall that, when the
variogram has the form y{(d) = a y (d,B), the optimal

‘interpolation is independent of a. The scale factor

influences only the interpolation error variance.There~
fore, by minimizing some measure of the interpolation
error, we shall be able to estimate B only. The method
proceeds as follows.

.1° ) At each measure point (i = I,...,N) aun optimal

estimate 2, is computed based on the N~! other measure
points, using the interpolation formulas of sectiomn 2.
In matrix notations, one can write '

= AB) 2 {4.10}]

A(B) is a NxN matrix with zeroes on the diagonal; it
depends only on B and on the locatlon of the measure
polnts.

2° ) A vector of interpolation errors is defined
TR

Egz-z=[1,- MR 2 [4.11)"

The mean square interpolation error can ther be defined

“as

1/2
[4, 12]

3° ) The estimate B Ge nhraxned by minimizing £ with
respect to f. 4

B 8 G2 = 2T - a@1T 1 - i)

Comnents

a} The drawback of the method is that it does not take

“into account the geometry of the measure points, because

the criterion [4.11]gives the same weight to all inter-
polation errors. Therefore large interpolation errors
at the border of the domain will tend to bave an unduly
large effect on the choice of B. The answer to this
difficulty is to replace the criterion [4.12]by a
maximum likelihood (ML) criterion, assuming a Gaussian
distribution for the RF. The likelihood function
incorporates the covariance matrix of the errors,R(8),
which is a function of the geometric location of the




" i3],

“order to establish a chart of the piezometry) from
. measurements made at a few piezometers scattered within
. the reservoir (Fig.2). .

measure poiuts. The ML method provides an estimate of
both o and B, in a decoupled way, It is presented in
detail in [3].

b) The interpolation error described above can also

yield an estimate of the scale factor o as follows.
Denote by e.(B) the inEerpolation error at the i~th
measure point and by s the variance of the corresponding
interpolation error. Then, by [4.3],

b " .
= “c
sy o Vi(ﬁ) [4.13]
This suggests the following estimator for a :
w2 e
“AML(B) =5 .F % [4.14] ;
. i=L vy ;

This estimator is called § (for "approximate maximum

AML
likelihood") because it was in fact obtained as an !
approximation to the ML estimator for o derived in !

¢) The IE method and the ML method have been applied
to a large number of estimation problems in random
fields, They have shown to perform consistently better
than the LS or generalized LS methods, particularly
when few data are available. The application presented
in section 5 will illustrate this point.

V. APPLICATION : CONTOUR MAPPING OF THE WATER LEVEL
IN A GROUNDWATER RESERVOIR.

A typical application is the contour mapping of the

" plezometric level (i.e. the level of the top of the

water table) in a groundwater reservoir. Such a contour
mapping requires the estimation of the piezometric
level at all nodes of a grid covering the domain (in

SOIL SURFacg

PIEZO :
METER |
WATER TABLE :

BEDROCK

 Fig.2: Groundwater reservoir with piezometer.

Here we shall use this application to illustrate some
of the features of the theory preseunted before. The

‘studied domain consists of a 6 km x 6 km area around

Louvain-la-Neuve (Belgium). 28 piezometers were

available and observed during October and November 1977:
their locations will be indicated by dots on figs. &

and 5, A distance d = 5 km is considered. This
distance has been divided into 50 segments of 100 meters
each, and the experimental variogram has been drawn

as explained in section 3. The result is presented in
fig., 1.

‘This experimental variogram is fairly chaotic, and if
it were used as such to compute interpolated values of

the piezometry, it would lead to a mean square inter-

.polation error at the data points of E_= 171 m ! This

is totally unacceptable, since the datd points are all
between 56 and 117 m. This example shows that the use

see bhat with such models E_ will be of the order of 3
‘meters. . 1 .
The following table shows the result of the estimation
of the parameters a and B for the modelsf[4.1]and for
some combinations of the estimation methods proposed

in section 4.

‘|Variogram Estimation -
odel th D
. |mode method & B Eq Iig
leaP Ca. 7
3 LS 91.49 {1.29 {°3,27{3.51 10

IE - AML(3)(31.20 (1.44

:ail-exp('de)] s @ {792, {0.081{13.82]3.49 1o’
IE - AML@) {277. |0.986] 5.34
Hof 1-exp(-gd)] ILS and IE 8> 0
‘la log (1+Bd) LS and IE [
{(note: d in km, Eq in meters)
Table 1. '
The numbers (O, @, @, @& refer to Fig.3.
Y“’ ‘
mt . 5
gy : o j
108 ] ;
€00 f
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5006 |
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4op ' ' é
300 4
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400 ]
i
T T T ¥ 1 ;
4 2 3 § 5 d (km) )
6o @  Model ad® ; LS method
L 03 todel a{1~_exp(~ed2)l 3 LS method
b——pu (& Model ad® 3 IE-AML method
g () Model a(l—exp(‘de)] 3 IE-AML method

Fig.3: Estimated variogram models for the
plezometric random field.

: In this table, LS means that & and E are computed by the
‘of analytic variograms is absolutely essential. We shall Least-squares Method, IE - AML means that B is computed




by the Interpoiatibn Method and o by the approximate
maximum likelihood formula [4.14]. Fig.3 illustrates
graphically some of the identificd models.

COMMENTS

1) As caun be expected from ﬁig.l, only variograms with
positive curvature (i.e. ad” and o { 1~exp(~8d2)}) can be
reasonably fitted to the experimental variogram, Indeed
both LS and IE methods converge to an estimate f= 0 for
the models with negative curvature..

2) With the mean-square interpolation error Eq as
eriterion, table | shows that adB is better than

of I-exp(~8d2)], even though the latter gives in fact a
better least~squares fit to the experimental variogram,
3) For the model «d®, the mean square errors Eq obtained
with the LS and the IE methods are quite close (3.27

and 3.01). This does not mean that both models are
equivalent : although the interpolated values will be
very close, the gstimation error variance s2 (which is
proportional to « : s2 = g V*(B), see [4.3]%will be
twice as large with tfle 1S model than with the IE model,

To conclude, the model y{(d;u,B) = adB is selected with
o = 31,2 and B = [.44. A grid with square elements of
size Ax = Ay = 0.5 km is superimposed on Q , and z(x,y)
is estimated at each node of the grid using the
interpolation formulas [2.10] and [2.11]. A contour
map can then be obtained from this grid and is
represented in fig. 4.

BQ &0

s

/)

§ Fig.4: Contour map of the piezometry (in meters
: _above sea level). The dots indicate the
: locations of the piezometers.

Since the optimal interpolation technique provides not
only piezometric estimates, but also estimated gtandard
deviations, a contour map can alsoc be drawn showing the
areas of equal standard deviations. This is shown in
fig. 5. As could be expected, the standard deviation
increases in areas where there are few measure points.
In practice, the computation of the experimental
variogram, the fitting of various standard variogram
models, the optimal interpolation and the contour
mapping can be done automatically by a software package
KRIGEA/CARTO developed at Louvain University by the
Automatic Control Group.

VI,CONCLUSION.

We have shown that the standard techniques for inter-
polation in random fields cannot be applied to many
real~life problems, because the spatial covariance

Fig.5: Contour maps of equal standard deviation for
the estimated piezometric levels of Fig.4,

function is unknown and its estimate will lead to absurd

answers when the data points are scarce. The solution
we propose is twofold : first, veplace the covariance
function by a variogram, because the latter covers a
much wider class of RF's and is easier to estimate;
next, use an analytical model for the variogram. The
major problem then becomes the identification of a

variogram model, We have presented a class of admissible
models and given two methods for the estimation of their

parameters. We have illustrated their performances

through a typical application and shown that the inter-

polation error method of parameter estimation gives
much better results. Other real-life applications are
presented in [ 4] .Hopefully, the reader should by now
be convinced that the methodology presented in this

paper is applicable to a wide range of 2~D problems.
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