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ABSTRACT.

can usually be fitted to the same multiv

We show that these parametrizatioms are

Several "overlapping' but uniquely identifiable parametrizations
ariate stationary stochastic process.
defined by a finite set of intrinsic

invariants, and that they all give the same value to the determinant of the

Fisher information matrix.
INTRODUCTION.

An important problem is that of determining the
structure of the state-space or ARMA model for
a multivariate stationary finite-dimensional
stochastic process such that the model parame-
ters become uniquely identifiable. Two diffe-
rent lines of thought have been followed for
this problem. The first idea is to use cano-
nical (state-space or ARMA) forms (1] -1[2].

To any finite dimensional process one can asso-
ciate in a unique way a set of "structural
invariants" (e.g. the Kronecker invariants)
which in turn uniquely determines a canonical
form. The disadvantage with using canonical
forms is that if those structural invariants
are wrongly estimated, then the parameter
estimarion problem becomes ill-conditioned.

In recent years an alternative approach has
been proposed, namely that of using "overlap-
ping parametrizations" [3] -[8]. It has been
recognized that the set of all finite dimen-
sional systems can be represented by a finite
number of parametrizations, each parametriza-
tion being uniquely identifiable. To each
parametrization there corresponds a set of
integers called "structure indices". Each

of these parametrizations is able to repre-
sent almost all finite dimensional systems;
each system can normally be represented by more
than one such parametrization, and any two
parametrizations for a given process are rela-
ted by a linear transformation which corres-
ponds to a coordinate transformation in Eucli-
dean space; hence the word "overlapping"
parametrizations. Now because a process can
be represented in more than one overlapping
form, the question naturally arises as to
whether, for a given data set, any such form
is better than the others in a statistical or
numerical sense. So far no definite answer

is available to this question. Different
procedures have been proposed that select one
out of several candidate parametrizations
which is considered best in some ad hoc sence

(41 - (71.

In this paper we first show that, for a n-th
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- tem is described.

order process with a p-dimensional observa-
tion vector y,, the parameters of any over-
lapping paramétrization (either in state-
space or in ARMA form) are obtained from a
set of 2np "intrinsic invariants" which are
determined from the Hankel matrix of imoul-
se responses. To any choice of p structure
indices, there corresponds, for a given
system, a set of 2np parameters which com- .
pletely specify this system. The choice of
the p structure indices determines in which
particular local coordinate space the sys-
From these 2np "intrinsic
invariants", a unique state-space or ARMA
parametrization can then be derived; these
will belong to the set of overlapping para-
metrizations.

Next we compare different overlapping para-
metrizations in terms of asymototic accuracy
of the parameter estimates. We show that,
if the determinant of the Fisher informa-
tion matrix is used as a measure of asymp-
totic efficiency, then all overlapping para-
metrizations describing the same process are
equivalent, in the sense that they will give
the same value to this criterion.

Our result implies that if a process is
modelled in state-space or ARMA form using
a prediction error method, then the deter-
minant of the covariance matrix of the pa-
rameter estimates will asymptotically be
the same, whichever overlapping parametri-
zation is used.

PARAMETRIZATION OF MULTIVARIATE
SYSTEMS.

We consider throughout this paper a p-dimen-
sional stationary full rank zero-mean sto-
chastic process {y_} with rational spectrum.
Then it is well known that {yt} can be des-
cribed, up to second order statistics, by
the following finite-dimensional represen=
tations :

s R Ll il oo o i e e L T




State-space representation
= Fx
Feal t
= Hx_ + e
Tt t

+
Ket

. (2.1
where the state x_ is an n-dimensional vector ;
F, K and H are matrices of dimensions nxn,
nxp, and pxn, F has all its eigenvalues strict-
ly inside the unite circle, and {e_} is a p-
dimensional white noise sequence with covari-
ance matrix Q.

Input-output representation (ARMA model)
yt+Aiyt—l+'"+Aryt—r=et+B1 t~1+"'Bset-s (2.2a)
where A],...A ’Bl”"’B are pxp matrices and

e is as before. This representation is equi-
valent with the following :

A(z)y, = B(z)e, (2.2b)

where A(z) and B(z) are square polynomial ma-
trices in the variable z (z is the advance ope-
rator zyt=yt+l), with det A(z) # 0 for |z]=1,

and lim A~ !(z) B(z) = I.

Z>

Without any loss of generality, we can make the
following assumptions regarding these two re-
presentations.

Assumption la : The matrix triple (H,F,K) is of
minimal order n, where n is the dimension of
the state vector Xes i.e. the pair (H,F) is ob-
servable and the pdir (F,K) is controllable. n
is then called the order of the process.

Assumption 1b : The polynomial matrices A(z)
and B(z) are left coprime. It can then be shown
that deg det A{z) = n, the order of the process.

all minimal triples
denoted by Sn.’

Definition la : The set of
(H,F,K). of order n will be

Definition 1b : The set of
lynomial pairs (A(z),B(z))
will be denoted by}Sﬁ.

all left coprime po-
with deg det A(z)=n

Eliminating x_ in (2.1) or premultiplying (2.2)
by A (2) leads to a third representation for
the process {yt} :

t

=HE (2.3)

T H
P e

where the pxp matrices H, are called impulse
. i

response matrices (or Matkov parameters). The

infinite matrix H is defined as H = [HOHIHZ"'

I
with Hy=I , H(z)= <1,

o 1. s s
b Hig' 1s analytic in |z
1=0 7
s t ., .
The infinite column vector E  is defined as

t T T T : T .
E = [et, s Cpigr ren 1 . In addlt}on we
shall assume that the inverse G(z) = Hml(z) =

¥ 6.2" exists and is analytic in |z]< 1. Then

1i=0

{et} is called the innovation process of {yt}
A . A . .

and et = yt yt/t—l whire yt/t—l 1s the linear

least squares predictor of Ye given the past

history Yt~! of {yt].

The impulse response matrices are related to
the representations (2.1) and (2.2) as follows:
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"on Q.

]

R =1, H, =HF K, i-=

0 i i, 2,

i 2 (2) B2 (2.4b)

The impulse response representation (2.3)
completely specifies the second-order sta-
tistics of the process {y_}, namely the
covariance function Ry(k)t= E {ytyt-k}’

k=0,1, ...

We can now define identifiability up to
second order statistics. Let § be the vec-
tor of parameters in either the triple (H,
F, K} or the pair (A(z), B(z)) and let Q

be the covariance matrix of the white noise
sequence {et} in either (2.1) or (2.2).

Definition 2 : 2 parameter pairs (8,,0Q )
and (62,Q2) are undistinguishable if ané

only if

. - . >

(2.5)
where Ry(k ; Bi, Qi) is the covariance

funetion of the process {yt} generated by
model 1i.

Note that if {y } is Gaussian (or if a se-
cond order identification method is used
such as a prediction error method), then
the probability law (or the loss function)
is completely determined by the second
order moments, and Definition 2 can be
replaced by the following

Definition 2' : For a Gaussian process 2
parameter pairs (6,,Q,) and (8,,0,) are
undistinguishable iff

T 3 - T -
'D(YO s eI)Q]) = p(YO ) ezan) (2.6)
A4 Yg and VT >0

Now it is easy to show that (e],Ql) and
(62,Q2) are undistinguishable iff
Q] = Q2 and Hi(el)= Hi(ez), i=0,1,2...

(2.7)
Because Q} = Qz, we shall in the sequel drop

the explicit dependence of Ry(k) or p(Yg)

The undistinguishability concept
induces an equivalence relation on the

sets Sn and S%, which we shall denote by
the symbol ~, It follows from (2.4) and
(2.7) that

el n 92 = Hi(el) = “1(92) Vi (2.8)
_ ol
4:>Hz = H]T, F2 =T F'T,

2 Tth] for some nonsin-
(2.9)

X

gular matrix T.

<= A, (2) = M(z)A, (2}, B,(2) =

M(z)Bl(z) for some unimodu-—

.. (204a)




(2.10)

lar matrix M(z).

Two matrix triples (H,, F,, K,) and (H,, F,,
. 1 L2 2
Kz) (resp. two polynomial matrix pairs

(Al(z), B,(z)) and (A, (2), Bz(z)) are called
equivalen£ if the reldatioms “(2.9) (resp.
(2.10)) hold.

The covariance function (or the probability
law in the Gaussian case) of the process {y_ }
is completely determined by specifing(H, F, K,
Q) or (A(z), B{(z), Q). But because of the non-
uniqueness induced by (2.8)-(2.9), in order to
achieve identifiability, we have to find a
reparumetrization of the family Ry(k ; 8) or
p(Yg ; 8) in such a way that two different
sets of parameters (in the reparametrized set)
correspond to two different sequences of
Markov parameters.

Fromnow snwe shall, for simplicity, asume that
the process {y_} is Gaussian; identifiability
is then defined by Definition 2'.

All statements hold, up to second order sta-
tistics, for non-Gaussian processes if
p(Yg;e) is replaced by Ry(k;e).'

What is needed to achieve identifiability is a
factorization of the map p : & » p(. ; 0) in
the following way :

P

Sn =Pt p

£ (2.11)

Iy

¥
u

€, . * . s
Here Sn is either Sn or Sn (see Definitions |

p is the map defined by the probabili-
The set X_ and
X - P must

above) ;
ty law ; P is the image of p.
the functions f': + X and P :
satisfy the following conditions :

a) for each 6 € 'Sn, £ = f(0) is finite-dimen-

sional (2.12a)
b) p(. ; 8) = p(. ; £(8)) for all 0 € Sn (2.12b)
e) pC 5 B = B s €)= & =&, (2.120)

The function f consists of a finite number of
scalar components, say f£,, ..., £, , which form
a complete system of invariants (see [2]) for
the equivalence relation (2.8), since by b) and
c)

8, v 6, <> B3 £(8D) = (. 5 £(8)))

a=> £(0)) = £(0,) (2.13)

The set X can be identified with the quotient

sets Sn/m or Sx/m, or, equivalently, with the
class of all "impulse response sequences H
admitting a minimal realization of order n.
Now it can be shown that, when p > 1, no single
parametrization is able to describe all n-th
order systems. Rather X can be described by

. -1 . . .
a family of (:~l) overlapping parametrizations
of dimension 2ap. Each set of 2np invariants
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" can choose a set of linearly independent

‘construct a set of 2ap invariants from X

(i.e. each local parametrization) is defi-

ned by specifying p integer valued numbers
"o,

n, ...,np called "structure indices
fn|’ ., “p ::Sn(n{,..., np) > X
with X € R 2np (2.14)

whereSn(nl, ,nD) is a subset of 'jn'

Each map (2.14) is locally a complete sys~
tem of surjective invariants of dimension
Znp ; the subsets (a,, +..,n ) for all
possible choices of Ny eeey D overlap,
and cover 0’ P

In the next section we shall define the

structure indices and show how a chaice of

structure indices n,, ..., n_ defines a

set of 2np invarianés f P These
TR

p

"2np invariants are computable functions of

the impulse response matrices H Hy, Hy, o

0’
.. and will be called intrinsic invariants.
We shall then show how to comstruct over-—
lapping state-space or ARMA parametriza-
tions as a function of the 2np intrimsic
invariants.

CONSTRUCTION OF A COMPLETE SYSTEM
OF INVARIANTS. :

From (2.3) we can write the linear least
squares k-step ahead predictor yt+k| ¢ as

follows :
yt*kk ¢ =i§k Hi ey k =0,1,2,..(3.1)
Therefore, )
~ A Yeat|e Hy Hy -evlheg .
Y = s = =XE
t V2]t Hy Hy oo t-1

(3.2)

. . .

. . .

Since the process is of order n, the rank
of the Hankel matrix# is n, Therefore we

rows of J{ , which will form a basis for the
whole row space of J{ . Now the structure
indices will define which rows of ¥ will
form the basis, and we shall show how to

for a given choice of structure indices.

To any choice of n linearly independent
rows of ¥ we shall associate a multiindex i

= (il’ ey in) where the numbers il’ ey

iy arranged in increasing order, are the
iAdices of the rows ofgdl that form the ba-
Two restrictive conditions will be

s5is.

imposed on the selection of the basis
rows :

Condition 1 : if jg i , then j-p€1

1, 2, ..., p€i

Condition | follows from the structure of
if the (j-p)-th row of

the Hankel matrix :




){ is in the span of the preceding rows, so
is the j-th row. Condition 2 results from the
full rank assumption onf{ y } : it follows
that the p components of yt+l/t are linearly
1ndependent

: If the selection of the basis

then the
"nice".

vectors obeys conditions | and 2,
corresponding multiindex is called

All nice multiindices correspond to a choice
of the basis inside the first np+! row
blocks of } . For given n and p, there are
(“_l) possible nice multiindices (Example :
for a 2-dimensional vector process (p=2) of
order 3 (n=3), there are only 2 choices :

iy = (1, 2, 3) and i, = (1, 2, 4)). There are
however subsets of 3 for which only one
basis exists.

Let i = (1 .+e31 ) be a nice multiindex
defining a basis for the rows of X . For k =
I, «.., p, let be the least natural number
such that (k + n,p) £ i. Then n,, ..., n

are called the "Structure indices" correb-
ponding to that basis; they specify which
rows of are taken in the basis, Note that
(20 = We can now deflneiﬁ (n ceny nD)

as the set of all n-th ordersvstemsfor which
the n rows spec1f1ed by n,, ..., n_ in the
"Hankel matrix are linearly 1ndepen8ent.

(nl, «uyn_) is a proper subset of 0"
Consider now an element of (n s sasy M)
specified by its Hankel matr1x}6 . We shall
construct a complete system of 2np surjecti-
ve invariants for this system, i.e. a repa—
rametrization of this system using 2np para-
meters.

Let H  be the i-th block of p rowys of the

infinite Hankel matrix }{ (e.g. W ~[H2 iy
v..]) and let
- T
[hyy vee gl (3.3)
where h . are rows of infinite length. Since

H is an element of j {n,, ...,n_), the rows
h ncaé be expbessed as :
l(n1+l)’°°" p(np*l) e expressed as :

' =1 (3.4)
I ¥ oa,, h, i=l,...,p 4
. ijk ik

These relations define np scalar numbers

h, =
1(ni+l)

TP
1k

Now denote by h,.(k) the element in row i,
column j of Hk. Then the 2np numbers {a'jk’

k=l,...,nJ;h (k) , k= l,...,n.,l,J p]

completely coordlnatlze S (M, 4...50 ), 5)
they map that set in a one to one mafner, on
Euclidean space of dimension 2np. The impul-
se response sequence H, , H s H sees 1s com-
pletely specified by tﬂe p structure indices
and these 2np numbers. These 2np numbers
constitute a complete system of surjective
invariants, which will be called “intrinsic
invariants" of the process.
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In the notation of Section II :

. Znp
Eppoeeomy 3n(n],...np)——» R

: {H }of = {a

plpre P iji Pij ()
i D
(3.6)
We have thus constructed a family of func-
tions f , each of which is a com-
l”"l P
plete syste? of surjective invariants map~
ping onto R . These functions are defi-~
ned on the overlapping subsets J (n ....n )}

which cover 3 Next we show that one can

construct corresponding overlapping (state-
space or ARMA) parametrizations whose para~
meters are functions of the 2np intrinsic
invariants just defined.

State-space_parametrization

Consider an element of jn(nl,...,nn) for a

given sot of structure indices, and let
{a. 5K h (k)} be the intrinsic invariants

of that element Then the following is a
state~space representatlon of that element :

| PN 0: :0 ... 0
o . .. ! i. [N ‘
H=1]. ... .0.. N p (3.7a)
! 1
e e e [N .
o...o! 1. .. 0
e PO —
n n
1 »
F = [Fijl i, j = 1,...,p
. (3.7b)
o] 0. . 0
Fii) -1 A £ I A i
0 0. . .0
Ousy oov Oy Gooqore O
111 ling ij! 1JnJ
ng " j#1
Kl kil (3.7¢)
K = , with K, =}. , and k [h (j),
; . ooy b, (D)),
KD k. e )
’ in,
1 a row p-vector

The proof is a straightforward but tedious
verification that the relations (2.4a) hold
with the aijkand hij(k) defined from the Hi

as in (3.4)~(3.5).
ARMA Parametrization

By an argument similar to that developed in,
{2] we obtain the following equations for
the entries A(z) and B{(z) of (2.2b) :

i i-1i

aii(z) =z - qa Z —...-a (3.12a)

]
|
Q

a;(2) z T T %451 (3.12)




and

- - (3.12¢)
bij(z) =bij5+l z o+ bijﬁ z + ... 4+ bijl
with 0 % max n,. The a,. are defined by
1 ijk
lgigp
(3.4), while the b.ljk are defined as follows
'E = M K where (3.13)
I
I N AEEY ipl
B = : , BT =] (3.14)
8 b, = b, -
it(a+!)* " “ip(n+1)
(10...0)
k
% - .II
(ntp)xp . (3.15)
lni
(01 0...0)
k2l
kpn
P
with kij defined by (3.7¢)
M=[M,.] (i,ij=1...p)
H - (3.16)
BCTERERRI PP | s PRPRE
i iing .lJl 1Jnj
M., =f~a.. y Mo, = [-a..
ii iing ij ijn
1 0
;_n{ [0 I N . O E-n 0 T ¢
itfo ........0 j{ 0 eeene.. 0

7 ~
We can now summarize the main points of this
section by extending the scheme (2.11). For
every element of :Sn(nl,..., np), we have first

defined the intrinsic invariants fn n '
preceon,

Next, by (3.7), (3.12) and (3.13), we have
established two bijections gl(nl,..., np) and

gz(n[,..., np) between the intrinsic invariants

(defined on E) and the quotient spaces Sﬂ/N and

x
Sn/“' p
P
n
£ A
B
\\\\\4 X,//////ﬂ (3.17)
n

Hence, by a property of complete sets of sur-
jective invariants (see, e.g. [2]), hi(ni’ ..
s np) = gi(nl, cens np) s frl ., are also
locally complete sets of surjectivg invariants.
This leads to the following factorizations :
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P P
s TP §* 37>
n n
A -1 A~ =1
k‘ﬁ’%l k%ogz (3.18)
x
S/~ S/~

In figs. (3.17)-(3.18) all quantities are to

be indexed by (n,,..., n ). These factori-
zations of the probabiligy map make the mul-
tivariable models identifiable. Given an
arbitrary element (H, F, K) of Sn(n],...,np),

which is parametrized by n"+2np parameters
that are not identifiable, we replace this
element by an equivalent element of the
quotient space Sn/~ via the map hl(nl""’np)

(see Fig. 3.18). This last element is para-
metrized by the system of 2np invariants
defined by h, and appearing in the form (3.7).
These 2np invariants are uniquely identifia-
ble. The same can be said if an ARMA form

is used.

ASYMPTOTIC EQUIVALENCE OF ALL
CVERLAPPING FORMS.

In most cases an n—th order system can be
represented in more than one of the over~
lanping forms, because different choices of
nice multiindices can be made, which will-
define different sets of linearly indepen-
dent rows of the Hankel matrix.

Example : Consider a bivariate process

(p = 2) of order 3 (n = 3). Two nice
multiindices exist, with the corresponding
sets of strmucture indices : nl=2, n2=l or
nl=l, n2=2.

Now the state x of thestate-space realization
(2.1), with H, F, K defined by (3.7), is
made up of the components of Yt_lindexed by

the element of the selected nice multiindex
(see e.g. [6]). 1In-our examnle;

- for n1=2,-n =i - for n

2 | =2

=1, n2

il=(|a2»3) _i_2=(])2,[‘)
A1 !
N 8 Bejea . & Weren
t Al t .2
Yeel/e~1 Ye/e-1
32 .2
“t/t-1 Yerl/e-1

In most cases, both choices ate possible,
but one might think that if 9t+l/t-l is

close to the linear span of ?t/c_] and

?i ¢t_1» then the choice of i, would be pre-
feéabie because the componen%s of the state
would be more orthogonal to one another,
thereby making the ensuing parameter estima-
tion problem numerically better behaved. More
generally the question is whether any one of
the overlapping parametrizations is optimal
in some sense. We present a partial answer

to this question.

Theorem : Given the intrinsic invariants



{“ijk’hij(k)} and {a?ik,h?j(k)] corresponding
to two differeng sets gf structure indic?s
n.,...,n_and ny,...,n_, then the determi~
nants ofPthe in%ormatign matrices correspon-
ding to these two parametrizations are iden-
tical.

The proof of the theorem follows from the
following lemma.

* x
Lemma ¢ Let {aijk’hij (k)} and [Qijk:hij(k)}

nvariants of a given n-th
order system in :i for two different choices
of the structure indices. Then the Jacobizan
of the transformation between these two para-
meter vectors is unity.

The
The
Let

The
and

be the intrinsic j

proof of the lemma can be found in | 6].
theorem can then be proxed asxfollgws.
o= {aijk’hij(k)] and 8~ = {aijk,hij(k)}.
corresponding information matrices Me
Me* are related by +!

a1og p(r]6%)",  3log p(v]e)
o {( . ) ( x )}

L T 30
Y b1

(3log p(Yla) y (ALog p( fe))}(__;)

30 EL

M x

g% = E

Y|

36 \T
=(—=) "B, {
So* Yle

- @7y
a0™

It follows from the bijective relationship
between the intrinsic invariants ;. ’hi'(k)
and the corresponding overlapping pérame ri-
zations H,F,K or A(z), C(z) that the theorem
also holds when two overlapping (state~space
or ARMA) parametrizatioms are compared.

36
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Corollary : Givenxtwg OXerlapping parametriza-
tions F,K,H and F",K", in ghe form (3.7)
(resp. A(z),B(z) and A" (z),B (z) in the form
(3.12)) for the same process, corresponding

to two different setg of structure indices
{n,, «..y, 0} and {07, ..., n”} then the
deéerminantg of the informatiBn matrices
corresponding to these two parametrizations
are identical.

If the parameters are estimated using a
maximum likelihood or a prediction error
method, then the covariance matrix of the
estimation errors is asymptotically equal to
the inverse of the Fisher information matrix
Me.

Therefore all overlapping parametrizations
are asymptotically equivalent, as far as the
aceuracy of the parameter estimates is con—
cerned, when this accuracy is measured by the
determinant of the covariance matrix of the
estimation errors. Of course other criteria
could be used that might be able to diseri-
minate, even asymptotically, between diffe-
rent structures, see e.g. { 7]. Some struc-
tures might also be better than others when
only a finite data record is available. 1In
[4] and [6] some heuristic selection procedu-
res have been proposed to handle the finite
data situation. '

+If X is a scalar and 6 a colum k-vector,

then 9X denotes the row vector 7JREE » 3%

28 k
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CONCLUSIONS.

The problem of specifying identifiable para-
metric structures for multivariable systems
can be solved by a factorization of the pro-
bability map in such a way as to define a
finite set of invariants which completely
characterize the process. Proceeding in
this way we have constructed a family of
overlapping parametrizations which comple-
tely cover the set of finite~dimensional
minimal~order systems. Since a given pro-
cess can in general be represented by dif-
ferent overlapping parametrizations, the
question then arises as to whether some
parametrizations might yield more accurate
parameter estimates than others. Our main
result is that all overlapping parametriza-
tions yield asymptotically the same value to
the determinant of the information matrix.
Therefore, when a prediction error identi~
fication method is used for the estimation
of the parameters, all overlapping parametri-
zations will give the same value to the de-
terminant of the asymptotic error covariance
matrix.
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