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Abstract— This paper presents a new approach for identifi-
cation experiment design where the objective is to design the
least costly experimental conditions such that the controller
designed with the identified model stabilizes and achieves a
prescribed level of H∞ performance with the unknown true
system G0.

I. INTRODUCTION

In the industrial practice, a controller for a real-life
system G0 is generally designed using a model Ĝ of
G0 identified using data collected on the true system.
When designing the identification experiment, the control
engineer generally faces the problem of making a trade-off
between its desire of obtaining as much information as
possible about the true system by using a very long
identification experiment and a very powerful input signal,
and the economical constraint asking her/him to reduce as
much as possible the costs of the identification by keeping
this identification short and by exciting G0 with a low
power signal. In this paper, we propose an elegant solution
to that problem of trade-off by determining the least costly
identification experiment for control. The least costly
identification experiment is here defined as the experiment
on G0 (with a fixed data length) where the spectrum
Φu(ω) of the input signal u(t) is the one for which the
total power Pu of u(t) (i.e. Pu = (1/2π)

∫
Φu(ω)dω)

is minimized under the constraint that the identification
still delivers a model Ĝ sufficiently close to G0 for the
controller Ĉ designed with Ĝ to stabilize and to achieve
sufficient performance with G0. In this paper, the desired
performance on G0 will be expressed by magnitude bounds
on one (or several) closed-loop transfer functions of [Ĉ G0]
(H∞ performance constraints). Note that, to remain brief,
we will focus on the design of the input signal spectrum
Φu(ω), given a fixed data length, since this variable Φu(ω)
is generally the variable considered in experiment design.
However, our results can be easily extended to the design
of the shortest identification experiment for control, given
a fixed Φu(ω).

Our approach of the experiment design problem has
thus as objective to minimize the total power Pu of the
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input signal under a performance constraint on the loop
[Ĉ G0]. This approach is thus somehow the dual of the
approach previously developed in the broad literature on
experiment design (see [9][Chapters 12 and 13] and e.g.
[4], [6], [5], [7]). Indeed, in these papers, a measure of the
performance degradation between the loops [Ĉ G0] and
[Ĉ Ĝ] is minimized under a constraint on the power of
u(t). In other words, the difference between our approach
and the approach previously taken in the literature is
that, in the latter, the authors seek the best performance
with Ĉ for a given cost of the identification while, in our
approach, we seek the minimal cost for the identification
to obtain the desired performance with Ĉ. Another novelty
of our approach is that, as opposed to the performance
characterization generally used until now in the literature
and which was more related to control design methods
such as minimum variance control and model reference
control (see e.g [4], [6]), the performance objective is here
formulated in the modern H∞-control paradigm.

In order to find a solution to our new experiment design
problem, we will use the same assumptions as in the
approach of the literature: the modeling error is assumed
to be due to the variance error only (no bias error) and
will be approximated with an expression accurate for
a high-order model and a large number of data. Under
these assumptions, the spectrum Φu(ω) that solves our
experiment design problem is determined in two steps. We
first determine how far the true system G0 may be from the
identified model Ĝ for the Ĝ-based controller Ĉ to be still
a satisfying controller for G0. Once this largest admissible
uncertainty around Ĝ has been determined, we design the
spectrum Φu(ω) of the identification input signal with
the minimal total power Pu such that, at a self-chosen
probability level, the obtained modeling error G0 − Ĝ
is smaller than this largest admissible uncertainty around Ĝ.

Overview. After this introduction, we will present in Sec-
tion II the framework we will consider in this paper and
formally state the experiment design problem we will
solve. In Section III, we determine the largest admissible
uncertainty around Ĝ for control; this quantity is then used
in Section IV to give a new formulation of the experiment
design problem and to solve it. In Sections V and VI,
we finish this contribution by an example and some brief
conclusions.



II. CONSIDERED PROBLEM

We will assume that the stable true system G0(z) can be
parametrized using an unknown parameter vector θ0 ∈ Rk

i.e. G0(z) = G(z, θ0), and that the input-output relation
of this true system is given by y(t) = G(z, θ0)u(t) + v(t)
where the additive noise v(t) is the realization of a zero-
mean stochastic process. As said in the introduction, we
want to design the least costly identification experiment on
G0 which yields a model sufficiently close to G0 for the
controller designed with this model to stabilize and achieve
sufficient performance with G0. For this purpose let us make
the following assumptions.

A. Assumptions on the identification expreiment

We will consider that the identification experiment on
the true system is performed in open-loop in the Prediction
Error (PE) Identification framework [9]. We further assume
that this identification experiment will be performed using
a full-order model structure M = { G(z, θ) } and with a
fixed amount N of collected data. In the design of such
identification experiment, we have consequently only one
degree of freedom: the power spectrum Φu(ω) of the input
signal u(t) that we will apply to the true system to identify
it.

Such an identification experiment delivers a parame-
ter vector θ̂N ∈ Rk which defines the identified model
G(z, θ̂N ) [9]. Due to the stochastic property of the noise
v(t), the identified parameter vector θ̂N is (asymptotically)
normally distributed with mean θ0 and a covariance matrix
Pθ ∈ Rk×k which can be estimated with the data, i.e
θ̂N ∼ N (θ0, Pθ). This means that the error θ̂N−θ0 between
identified and true parameter vectors is a random variable,
but that, with probability 0.95, the true parameter vector
θ0 lies in the following ellipsoid UΦ centered at θ̂N and
defined by the covariance matrix Pθ:

UΦ =
{

θ | (θ − θ̂N )T P−1
θ (θ − θ̂N ) < χ

}
(1)

with χ such that Pr(χ2(k) < χ) = 0.95. The ellipsoid UΦ

(which gives an upper bound on the error θ̂N − θ0) is a
function of the chosen input spectrum Φu(ω). Indeed, the
covariance matrix Pθ is a (complicated) function of Φu(ω)
[9], and using (1), it is easy to see that the smaller Pθ, the
smaller the ellipsoid UΦ (and thus the smaller the error
θ̂N − θ0).

The error between identified and true parameter vectors
being a random variable, so is the modeling error G0(ejω)−
G(ejω, θ̂N ). Using the property that Pr(θ0 ∈ UΦ) = 0.95,
we can nevertheless state the following: the probability that
the modeling error |G0(ejω)−G(ejω, θ̂N )| is smaller than

rΦ(ω) ∆= sup
θ∈UΦ

∣∣∣G(ejω, θ) − G(ejω, θ̂N )
∣∣∣ (2)

for all ω is equal to 95%. It can be proven that rΦ(ω) can
be exactly computed by solving a LMI-based optimization
problem at each ω (see the appendix).

Since the ellipsoid UΦ is a function of the chosen input
spectrum Φu(ω), the upper bound rΦ(ω) on the modeling
error is also a function of Φu(ω). A more straightforward
relation between the bound rΦ(ω) on the modeling error
at each frequency and the input spectrum Φu(ω) can be
deduced if we assume that both the number of data N
and the McMillan degree n of G(z, θ) are large (N → ∞
and n → ∞). Indeed, under this assumption, we have the
following result:

E
(
(G(ejω, θ̂N ) − G0(ejω))∗(G(ejω, θ̂N ) − G0(ejω))

)

≈ n

N

Φv(ω)
Φu(ω)

where Φv(ω) is the spectrum of the noise v(t). This expres-
sion shows that, at each ω, the expected value of the square
of the modulus of the modeling error is approximately in-
versely proportional to Φu(ω). Based on this approximation,
we can deduce that, at each ω, the square of the quantity
rΦ(ω) defined in (2) must be also approximately inversely
proportional to the input spectrum Φu(ω) when N and n
are large, and thus that

r2
Φ,1(ω)

r2
Φ,2(ω)

≈ Φu,2(ω)
Φu,1(ω)

(3)

where rΦ,1(ω) and rΦ,2(ω) are the upper bound on
the modeling error corresponding to two identification
experiments performed in the same full-order model
structure on the same true system and with the same
number of data N , but with input spectrum Φu,1(ω) and
Φu,2(ω), respectively.

B. Assumptions on the control design

As said previously, we aim at designing a “satisfying”
controller Ĉ(z) for the unknown true system G0 using a
model Ĝ = G(z, θ̂N ) of G0 identified in the PE framework.
We will state that a controller Ĉ is a satisfying controller for
G0 if Ĉ stabilizes G0 and achieves a certain performance
level with G0. This required performance level will be
here formulated under the form of constraints on one or
more H∞ cost functions: J(G0(z), Ĉ(z),W (z)) < 1 where
W (z) is some given performance filter. In this paper, for
simplicity, we will consider only one H∞ performance
constraint given by:

J(G0, Ĉ,W ) =
∥∥∥∥ W

1 + G0Ĉ

∥∥∥∥
∞

< 1. (4)

The controller Ĉ for G0 will be designed with an
identified model Ĝ of G0 and using a fixed H∞ control
design method (i.e. H∞ control design with fixed weights)



[11]. This control design must of course at least ensure
that Ĉ stabilizes Ĝ and that J(Ĝ(z), Ĉ(z),W (z)) ≤ γ < 1
where γ is a fixed number smaller than one. In other words:

Ĝ(z) → Ĉ(z) such that[Ĉ Ĝ] stable and
J(Ĝ(z), Ĉ(z), W (z)) ≤ γ < 1.

(5)

Since the identified model Ĝ = G(z, θ̂N ) is, in practice,
never equal to G0, the controller Ĉ(z) designed with
G(z, θ̂N ) is not guaranteed to stabilize G0 and to satisfy (4).
In this paper, we will nevertheless show that it is possible
to design the identification experiment delivering Ĝ in
such a way that, modulo a self-chosen probability level,
the controller Ĉ designed with the identified model Ĝ
will stabilize the unknown true system G0 and satisfy (4).
Moreover, we will determine the least costly identification
experiment having this property.

C. The least costly experiment design

It is obvious that, for identification experiments with
a fixed data length N such as presented in Section II-A,
the costs of the identification are minimized if the total
power Pu of the input signal is minimized. Consequently,
the experiment design problem in our framework can be
formulated as follows:

Experiment design problem: For an identification exper-
iment performed on G0 with N data, determine the power
spectrum Φu(ω) of the input signal u(t) which minimizes

the total power Pu of u(t) i.e. Pu
∆= 1

2π

∫ π

−π
Φu(ω)dω under

the constraint that Φu(ω) > 0 ∀ω and the constraint that,
with a confidence level of 95 %, the controller Ĉ designed
from the identified model Ĝ using (5) is guaranteed to stabi-
lize G0 and to achieve the desired level of performance (4)
with G0.

III. ADMISSIBLE UNCERTAINTY AROUND THE

IDENTIFIED MODEL

In order to determine the spectrum solving the experiment
design problem presented above, a logical first step is to
determine how close the true system G0 has to be from Ĝ
for (4) to hold and for Ĉ to stabilize G0. For this purpose,
we use the following proposition.

Proposition 3.1: Consider a stable model Ĝ and the
performance criterion (4). Then, the controller Ĉ designed
from Ĝ using (5) stabilizes and achieves J(G, Ĉ,W ) < 1
with all stable plants G such that |G(ejω)−Ĝ(ejω)| ≤ r(ω)
if and only if

r(ω) ≤ radm(ω, Ĝ) ∀ω (6)

where radm(ω, Ĝ) is called the largest admissible uncer-
tainty around Ĝ and is defined by:

radm(ω, Ĝ) ∆=

∣∣∣1 + Ĝ(ejω)Ĉ(ejω)
∣∣∣ − ∣∣W (ejω)

∣∣∣∣∣Ĉ(ejω)
∣∣∣ . (7)

Proof. We will first prove that, at each ω, radm(w, Ĝ) given
in (7) is the largest value of r(ω) for which J(G, Ĉ,W ) < 1
with all stable plants G such that |G(ejω)−Ĝ(ejω)| ≤ r(ω).
For this purpose, note that J(G, Ĉ,W ) < 1 holds if and
only if, at each ω,∣∣∣1 + Ĝ(ejω)Ĉ(ejω) + ∆(ejω)Ĉ(ejω)

∣∣∣ >
∣∣W (ejω)

∣∣
where ∆(z) ∆= G(z)−Ĝ(z). Consequently, the largest value
radm(ω, Ĝ) for which J(G, Ĉ,W ) < 1 holds for all ∆(ejω)
such that

∣∣∆(ejω)
∣∣ ≤ radm(ω, Ĝ), obeys the following:∣∣∣1 + Ĝ(ejω)Ĉ(ejω)

∣∣∣ − radm(ω, Ĝ)
∣∣∣Ĉ(ejω)

∣∣∣ =
∣∣W (ejω)

∣∣
which delivers (7). The remaining of the proof consists then
of verifying that the loops [Ĉ G] are also stable for all these
G. For this purpose, notice that, at each ω,

∣∣∣G(ejω) − Ĝ(ejω)
∣∣∣ ≤ radm(ω, Ĝ) <

∣∣∣1 + Ĝ(ejω)Ĉ(ejω)
∣∣∣∣∣∣Ĉ(ejω)

∣∣∣
The stability property is therefore a direct consequence of
the small gain theorem [11][page 145].

Note that the largest admissible uncertainty region
radm(ω, Ĝ) around Ĝ is a function of the considered model
Ĝ, of the controller Ĉ designed from Ĝ with (5) and of the
chosen performance weight W (z).

IV. SOLUTION OF THE EXPERIMENT DESIGN PROBLEM

The results presented in the previous sections will
allow us to reformulate the experiment design problem
considered in this paper in a more compact way. Indeed, on
the one hand, according to Proposition 3.1, the frequency
function radm(ω, Ĝ) determines the maximal distance
|G(ejω)− Ĝ(ejω)| such that the Ĝ-based controller Ĉ still
stabilizes and achieves sufficient performance with G. On
the other hand, the frequency function rΦ(ω) given in (2)
determines an upper bound (with confidence level 0.95)
for the modeling error |G0(ejω) − Ĝ(ejω)| obtained after
an identification experiment using an input signal with
spectrum Φu(ω). Using these two notions, the identification
experiment problem presented at the end of Section II-C
can therefore now be rewritten as follows:

Experiment design problem. For an identification experi-
ment performed on G0 with N data, determine the power
spectrum Φu(ω) of the input signal u(t) which minimizes
the power Pu of u(t) under the constraint that Φu(ω) >
0 ∀ω and the constraint that

rΦ(ω) ≤ radm(ω, Ĝ) ∀ω (8)

where rΦ(ω) is defined in (2) and radm(ω, Ĝ) is the
largest admissible uncertainty around the particular model
Ĝ identified in this experiment.



As usual in the experiment design theory, the experiment
design presented just above is not solvable without prior
information about the system we want to identify and
the model we will identify. This will be evidenced in
the sequel. This prior information will be gained using
an initial and exploratory identification experiment. Let
us make the following assumptions about this initial
identification experiment.

Assumption 4.1: An initial identification experiment per-
formed on G0 with N data and an input spectrum
Φu,init(ω) has delivered a model Ĝinit. We further assume
that this identification experiment was such that:

∃ω for which rΦ,init(ω) > radm(ω, Ĝinit). (9)

where rΦ,init(ω) is the upper bound of the modeling
error obtained in this initial experiment (see (2)) and
radm(ω, Ĝinit) is the largest admissible uncertainty around
the identified Ĝinit. The frequency function rΦ,init(ω)
can be computed using LMI optimization as stated earlier
and, according to (7), radm(ω, Ĝinit) can be computed as
follows:

radm(ω, Ĝinit) =

∣∣∣1 + Ĝinit(ejω)Ĉinit(ejω)
∣∣∣ − ∣∣W (ejω)

∣∣∣∣∣Ĉinit(ejω)
∣∣∣

(10)
with Ĉinit, the controller designed from Ĝinit with (5).

Note that, according to Proposition 3.1, assumption (9)
implies that Ĉinit is not guaranteed to be a satisfying
controller for G0. Because of this assumption (9), the initial
identification experiment is thus assumed to have been
performed with an input signal whose power is inferior
to the power we will have to choose when designing the
least costly identification experiment for control (i.e. the
solution of the considered experiment design problem).
The initial identification experiment is thus assumed to be
a “cheaper” identification experiment than the one we want
to design.

We now show that this initial identification experiment
is indeed necessary to deduce a solution for the experiment
design problem. A first use of this initial experiment
is that the quantity radm(ω, Ĝinit) defined in (10) can
be considered as an approximation of radm(ω, Ĝ). This
quantity radm(ω, Ĝ) is necessary to the solution of the
experiment design problem as shown in (8) and can not
be computed a-priori since the model Ĝ is unknown at the
very moment we design the identification experiment. The
experiment design problem would therefore be unfeasible
if we could not replace the unknown radm(ω, Ĝ) by an
known approximation i.e. radm(ω, Ĝinit).

The experiment design problem would also not be solv-
able if we would not possess a direct relation between the

quantity rΦ(ω) in (8) and the design variable Φu(ω). The
results of the initial identification experiment combined with
the approximation (3) provides us with such an (approxi-
mated) relation. Indeed, based on (3) and Assumptions 4.1,
we have that

r2
Φ(ω) ≈ r2

Φ,init(ω)
Φu,init(ω)

Φu(ω)
(11)

Using the estimate radm(ω, Ĝinit) of radm(ω, Ĝ) and the
(approximated) relation (11) between rΦ(ω) and Φu(ω),
the experiment design problem stated in the beginning of
this section and leading to the least costly identification
experiment for control can be solved.

Proposition 4.1: Assume than an initial identification
experiment has been performed (see Assumptions 4.1).
Then, the spectrum Φu(ω), solution of the experiment
design problem presented above in this section, can be
approximated at each ω by:

Φu(ω) ≈ Φu,init(ω)
r2
Φ,init(ω)

r2
adm(ω, Ĝinit)

(12)

where radm(ω, Ĝinit) and rΦ,init(ω) are defined in As-
sumptions 4.1.
Proof. By replacing rΦ(ω) by its approximation (11) and
by replacing radm(ω, Ĝ) by its estimate radm(ω, Ĝinit), the
condition rΦ(ω) ≤ radm(ω, Ĝ) ∀ω becomes:

r2
Φ,init(ω)

Φu,init(ω)
Φu(ω)

≤ r2
adm(ω, Ĝinit) ∀ω (13)

This last expression directly yields (12) as the solution of
the experiment design problem.

Let us summarize. We wanted to determine the least
powerful input signal for an identification experiment
such that (8) holds (and guaranteeing consequently that
the model-based controller stabilizes and achieves the
required performance level). For this purpose, an initial
experiment is necessary. This identification experiment
will typically be performed with a (very) low power input
signal and therefore be such that the obtained upper bound
on the modeling error is too large to guarantee with a
confidence level of 0.95 that Ĉinit is a satisfying controller
for G0 (see Assumptions 4.1). However the information
delivered by this initial and “unsuccessful” identification
experiment enables us to determine the solution of our
experiment design problem as shown in the previous
proposition. Indeed, the previous proposition gives us
the least costly experimental condition (i.e. the spectrum
Φu(ω) corresponding to the minimal power of u(t)) for an
identification experiment delivering a model Ĝ for which
the corresponding controller Ĉ will well stabilize G0 and
satisfy (4).



The expression (12) for the power spectrum Φu(ω)
of u(t) that solves our experiment design problem can
be explained as follows. Expression (12) shows that the
spectrum Φu(ω) must be chosen larger than Φu,init(ω) at
those frequencies where the modeling error rΦ,init(ω) is
larger than the admissible uncertainty and Φu(ω) must be
chosen smaller than Φu,init(ω) at those frequencies where
the modeling error rΦ,init(ω) is smaller than the admissible
uncertainty. In order to choose the factor Φu(ω)/Φu,init(ω)
with which Φu(ω) has to be increased or decreased we use
the fact that:

Φu(ω)
Φu,init(ω)

≈ r2
Φ,init(ω)
r2
Φ(ω)

to precisely determine the spectrum Φu(ω) for which,
based on the high-order model approximation (11),
rΦ(ω) = radm(ω, Ĝinit) (≈ radm(ω, Ĝ)) at each
frequency.

V. ILLUSTRATION: FLEXIBLE TRANSMISSION SYSTEM

We consider as true system the half-load flexible
transmission system having the following input-output
relation: y(t) = (B0(z)/A0(z))u(t) + (1/A0(z))e(t)
with B0(z) = z−3(0.10276 + 0.18123z−1), A0(z) =
1−1.99185z−1 +2.20265z−2−1.84083z−3 +0.89413z−4

and e(t) is the realization of a white noise signal of
variance σ2

e = 0.5. This true system is a slightly modified
version of the plant used as a benchmark in a special
issue of the European Journal of Control [8]. In this
example, we want to design the input spectrum Φu(ω)
leading to the smallest power Pu for an identification
experiment with N = 500 data under the constraint that,
with a confidence level of 0.95, the controller Ĉ designed
from the identified model Ĝ with the control design
method presented in the sequel is a satisfying controller
for G0. A controller Ĉ is stated satisfying if Ĉ stabilizes
G0 and achieves the performance specification (4) with
W (z) = (0.5165 − 0.4632z−1)/(1 − 0.999455z−1). The
controller Ĉ will be designed from an identified model Ĝ
using the 4-block H∞ control design method of [3] where
one of the constraints is

∥∥∥W/(1 + ĜĈ)
∥∥∥
∞

< 1 with the

same W (z) as above.

Initial identification experiment. In order to solve our
problem, we need to perform an initial identification ex-
periment. We have decided to perform a very cheap initial
identification experiment: the input signal u(t) is chosen
as a white noise signal of variance σ2

u,init = 0.1 i.e.
Φu,init(ω) = 0.1 ∀ω (which has to be compared with
σ2

e = 0.5). It yields an identified model Ĝinit. Using the
information obtained in this initial identification experiment,
we can not guarantee, with a confidence level of 0.95, that
the controller Ĉinit designed with Ĝinit using the method
of [3] stabilizes G0 and satisfies (4). Indeed, if we compute
the bound rΦ,init(ω) on the obtained modeling error and the

frequency function radm(ω, Ĝinit) using (10), we see that
rΦ,init(ω) > radm(ω, Ĝinit) in the frequency range [0 0.8]
as evidenced in Figure 1. Since Ĝinit and Ĉinit are not
satisfactory enough, we need to design a new experiment
design which will deliver enough information about G0

to design a satisfying controller for G0. According to
Proposition 4.1, the cheapest experiment design having this
property is the one with an input signal Φu(ω) having the
spectrum given by (12). This spectrum Φu(ω) is represented
in Figure 2. In this figure, we see that the spectrum Φu(ω) is
larger than Φu,init(ω) in the frequency range [0 0.8] where
rΦ,init(ω) was too large with respect to the admissible
uncertainty radm(ω, Ĝinit).
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Fig. 1. rΦ,init(ω) (dashdot) and radm(ω, Ĝinit) (solid)
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Fig. 2. the spectrum Φu(ω) given by (12)

The least costly experiment design for robust control.
Figure 2 determines the spectrum Φu(ω) of the input
signal u(t) corresponding to the least costly identification
experiment. Normally, we should design an input signal
having this particular spectrum Φu(ω). However, here, for
simplicity, we will design the least costly identification
experiment where the input signal is constrained to be a
white noise signal1 and, thus, we will design the input signal

1Such a choice has also the advantage that, in this case, the high-order
model approximation (11) is also “accurate” for lower order model (see
[10]).



as a white noise with a variance σ2
u equal to maxω Φu(ω) =

9.3. Note that σ2
u is now 93 times larger than in the

initial identification experiment. This identification exper-
iment delivers a model Ĝ and we design the candidate
controller Ĉ using the pre-specified control design method.
We then compute the upper bound rΦ(ω) on the modeling
error corresponding to this new identification experiment
as well as the largest admissible uncertainty radm(ω, Ĝ)
around the model Ĝ and we represent these two frequency
functions in Figure 3 where we can see that the condition
rΦ,init(ω) ≤ radm(ω, Ĝinit) ∀ω is well satisfied. We can
therefore guarantee with a confidence level of 0.95 that the
controller Ĉ designed with Ĝ using the method of [3] will
stabilize G0 and achieves sufficient performance with G0

i.e. J(G0, Ĉ,W ) < 1. This is confirmed in this particular
identification experiment by Figure 4.
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Fig. 3. rΦ(ω) (dashdot) and radm(ω, Ĝ) (solid)
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Fig. 4. |1 + Ĝ(ejω)Ĉ(ejω)|−1 (dashdot), |1 + G0(ejω)Ĉ(ejω)|−1

(solid) and
∣∣W (ejω)

∣∣−1
(dotted)

It is to be noted in Figure 3 that, in low frequencies,
we have rΦ(ω) ≈ radm(ω, Ĝ) which is what we expected
since for those frequencies the actual input spectrum
Φu(ω) = 9.3 ∀ω used in this identification experiment is
equal to the spectrum determined by (12) (see Figure 2).
The spectrum given by (12) is, by construction and
provided the approximation (11) is accurate, the spectrum
such that the upper bound rΦ(ω) on the modeling error

obtained in the corresponding identification experiment
is precisely equal to the largest admissible uncertainty
radm(ω, Ĝinit) ≈ radm(ω, Ĝ).

VI. CONCLUSIONS

We have presented in this paper a new approach to
determine the input spectrum of an identification experiment
when the objective is to design a controller with the identi-
fied model achieving sufficient H∞ performance with G0.
Since the submission of this paper, we have been working
on a way to avoid the high-order-model approximation
used in this paper. These new results are presented in the
contribution [2].
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APPENDIX

Consider the ellipsoid Uφ as given in (1) and the quantity
rΦ(ω) at ω defined in (2). Following the same reasoning as in
[1], rΦ(ω) =

√
γopt, where γopt is then the optimal value of γ

in the following standard convex optimization problem involving
LMI constraints evaluated at ω:

minimize γ
over γ, τ
subject to τ ≥ 0 and(

Re(a11) Re(a12)
Re(a∗

12) Re(a22)

)
−τ

(
R −Rθ̂N

(−Rθ̂N )T θ̂T
NRθ̂N − 1

)
< 0

(14)
where R = P−1

θ /χ, a11 = Z∗
NZN − Z∗

NxZD − Z∗
Dx∗ZN +

Z∗
Dx∗xZD − γZ∗

DZD, a12 = −Z∗
Nx + Z∗

Dxx∗ − γZ∗
D, a22 =

xx∗ − γ, G(ejω, θ)
∆
= (ZNθ)/(1 + ZDθ) and x = G(ejω, θ̂N ).


