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Abstract—The aim of this contribution is to demonstrate The problem setting of experiment design first arose in

efficient applicability of modern convex optimization techniques  statistics and was extensively studied throughout the last
in control theory. We solve the problem of designing an input century. We adopt the most common viewpoint and optimize

for a parameter identification experiment such that the worst- the i t t ith tt t function that
casev-gap over all plants in the resulting uncertainty region € Input power spectrum with respect to a cost function tha

between the identified plant and plants in this region is as small depends on the average per data sample information matrix
as possible. The motivation for choosing this cost criterion is M of the experiment. This matrix is defined as the limit of the

robust controller design, where the controller has to stabilize ratio between the information matrix and the number of data
all plants in the identified uncertainty region. as the number of data tends to infinity (see e.g. [12]). Thus
I. INTRODUCTION we effectively optimize the average information matrix twit
Lespect to the considered cost function, and then construct
an input power spectrum and an input that produces this

In this contribution we deal with a problem that connect
prediction error identification methods with robust cohtro

theory. A series of investigations in this direction hasrbeelnformation matrix. o
undertaken recently [2]. In this work we focus on com- For different classes of cost functions iterative procedur

putational aspects, specifically we show that the existinf€® designed to find the optimal input power spectrum up
fo a prespecified precision. Most common cost functions are

apparatus of convex analysis is capable of tackling thid kin ) e ] N, ~ 1
of problems efficiently. In(detM ) (D-optlmallty), tM (_A-(l)pt|mal|ty), trWM ,
Subject to investigation are discrete time SISO realhereW =0 (L-optimality), Amax(M™") (E-optimality). All
rational stable LTI plants, which are to be identified in opef€ntioned cost functions depend analytically on the esitrie
loop within an ARX model structure. We assume the tru@f M and Kiefer-Wolfowitz theory can effectively be applied

plant to lie in the model set. Hence the model error ifo them (see [5]). These criteria are convex and monotonic

determined only by the covariance of the estimated paramet¥ith respect tM (see [12, p.39]).
vector. In this contribution, we optimize the input power spectrum

Since the aim of the identification experiment is controlVith respect to the worst-casegap of the uncertainty region
design, it is desirable to obtain an uncertainty region wit/?- We shall also introduce another cost function, which
good stability robustness properties. The set of contmlle@PProximates the worst-casegap, but is somewhat simpler.
that stabilize all models in the uncertainty set should bBOth cost functions are compound criteria (see [5, section
large. A suitable measure of robust stability that allows tm  4CGl) @nd application of Kiefer-Wolfowitz theory does not
connect the "size” of an uncertainty set with a set of rolyustiMake them more tractable. However, the proposed criteria
stabilizing controllers is the worst-casegap d/vc(é 2) satisfy the natural condition of monotonicity with respect
introduced in [2]. It is the supremum of the Vinnicombe to M, as well as the condition of quasiconvexity, which is

gap [10] between the identified moddland all plants in the Slightly weaker than convexity. ,
uncertainty setZ which emerges from the experiment. The 1© tackle the considered problem we will use the theory
problem we deal with is to minimize the worst-casgap ©f Tchebycheff systems and their moment spaces. The set of
of the uncertainty regio’ by choosing a suitable inputt) possible average |nformat|_0n matrlcb_flsc_an be r_epresented
for the identification experiment. as the feasible set of a Imegr matrix inequality (LMI) [4,
chapter VI, Theorem 4.1]. This allows to apply convex anal-
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this assertion is provided in Theorem 1 in this contributionis stable. Denote by ! the delay operator. Then we can

In view of this, we propose an algorithm that yields optimalvrite

input power spectra which are discrete. Given the resutt jus B(6) 1 1

quoted, this is in no way a restriction. There are different y= Z’"”lﬁw— I G(O)u+ NI

ways to choose an input sequence with a desired power spec- (6) (6) (6)

trum. We can choose the input e.g. as a multisine functiowhere A,B are obviously defined polynomials in the delay

However, in many cases one could use also binary signalperator. Note that by our stability assumpt#®has no zeros

(see e.g. [12, p.29]) or other functions. For a comprehensiwn the unit circle and hendé\|? is strictly positive there.

treatment of Tchebycheff systems see textbook [4] by Karlin Suppose an identification experiment with input

and Studden. (u(2),...,u(N)) is performed, leading to an observed output
In the last years several authors successfully treated inply(1),...,y(N)) with N data samples, whera(t) is qua-

design problems arising in Identification for Control withsistationary with power spectrud®,. Suppose a parameter

convex optimization methods. In [6], the input spectrunestimate 6 is obtained by least squares prediction error

for an open loop identification experiment was designed tminimization. Then it is well-known [7] that the estimate

minimize the closed-loop system performance. By a Taylod is asymptotically unbiased @ — « and its covariance

series truncation, the cost function reduced to the wettshtefor largeN is given byE(6y— 8)(6p— 6)T ’\O(ELprT)

trace criterion (L-optimality). However, the input spectr where ¢ is the gradient of the predictor with respect to

were restricted to those which can be realized by white noige at 6 = 6. The asymptotic expression for the parameter

filtered through an FIR filter. An LMI description of the covariance is then a function of the input power spectrum

corresponding set of information matrices can be deriveand the true values of the coefficients Afand B [7]. The

from the positive-real lemma [1],[11]. inverse of the parameter covariance matrix is the Fisher
We stress that the assumption of an ARX model structuigformation matrix. Let us denote the asymptotic expressio

and an input energy constraint are in no way restrictive. THer the information matrix byM and the average |nformat|on

ideas and methods proposed here easily carry over to othsatrix per data sample (see e.g. [12, p. 24])NbyM = M

model structures and to input power or output power/energy Since the parameter estimads asymptotically normally

constraints. distributed [7], we can assume, following [2], that the true
The remainder is structured as follows. In the next sectioparameter vecto6y lies with a prespecified probability €

the considered identification problem as well as the co$0,1) in the uncertainty ellipsoid

functions are formally defined. In section 3 we show that the

set over whic_h the optirr_]ization takes place is ame_na_ble _to an {9| N (6 é)T M(G _ é) < 1} 7 1)

LMI formulation. In section 4 we prove that the optimization xnﬁnb(a)

problem is quasiconvex. In section 5 we construct cutting

planes to the different cost functions. Sections 3 to 5 age tiwherex? is the x2 probability distribution withl degrees of

key part. The results obtained therein allow the problem tiseedom.

be treated with standard convex analysis methods. Since theThe uncertainty eIhpsoKdJ corresponds to an uncertainty

optimization takes place in an abstract parameter spai, itset? = { G(z,0) = ”k“B |9 eu }ln the space of trans-

necessary to convert values in this space into power specte functions.

and input sequences. This task is accomplished in section 6.The worst-case/-gap between the identified mocﬁ(é)

In Section 7 we demonstrate the benefits of the computeghd the uncertainty regio is defined by

input in a numerical example. Finally, in section 8 we draw

some conclusions. dwc(G(8),2) = SULEJ%(G(Q),G(G)% )

Il. PROBLEM SETTING whered, denotes the Vinnicombe-gap between two plants

Let us consider an ARX model structure [10]. SinceG(8) belongs toZ, the worst-case-gap can be
expressed in the following way [2, Lemma 5.1].

dNC(G(é)v ‘@) = sup KWC(G(ejwa é)v @)a (3)

we[0, ]

y(t) Fay(t — 1)+ +anyt —ny) =
= buut—ng)+--- +bnbu(t —ng—np+1)+et),

whereu(t) is the input signaly(t) is the output signal, both where ki c(G(el®,8), 2) is called the worst-case chordal

onedimensionalf = (ay, ... 7ana7b_17':"bnb)T is the param-  distance betweeG(8) and 2 at frequencyw and is defined
eter vector, ane(t) is normally distributed white noise with py,

covariancelqg. Let us assume that the true system dynamics ‘G(ejw é) _ G(ejw 0)|
can be described within this structure and corresponds to a sup —— —~ :
parameter valu® = 6. Assume further that the true system fev \/(1+ IG(e®, 0)[2)(1+|G(el®, 6)]?)

(4)




Our goal shall be to minimize the quantity This subspace can be parameterized byttigpnometric
dwc(G(6),2) = max,ec (o, kwe(G(e!'?, 8),27) by choosing momentsof the measure#lj\‘z, i.e. the numbersy =
an input with an appropriate power spectrum. 1 % cogkew)dw, k=0,...,n, wheren = ny+n,— 1.

To restrict the class of admissible power spectra we impo?'_é AolA N
an inout eneray constraint et us compose a vectore R" of the real humbers,

P 9y k=0,...,n It lies in the moment space# ™1 of the
1 Tchebycheff systerfl, cosw,...,cosnw} on [0, 1 (see e.g.
— < ’ L . N
2n/_n¢”(w)dw =6 ©®) [12]). Thus the set of feasible information matriddsis the
. e " ine i i i (n+1)
wherec > 0 is a prespecified positive constant. ;ﬁmef Image Og theh tngotno.me(;rlc r?r?mfent CE)CI)M ‘ f It LMI
Problem 1 Find ®, satisfying (5) such thab (®,) min- erefore can be characterized as the feasible set of an

- : i - .g. [4, Chapter VI, Theorem 4.1]). Let us denote the
imizes the cost function 71 = dwc(G(6),2) defined by _(see_e g [ .
equations (3),(4). interior of the feasible set by#.

Along with the worst-case-gap of the uncertainty region Definition 1. (see e.g. [4]) Let®, be a discrete power

. . . o7 : ith supportsupp®, C [0,71. The number
2, we will consider another cost function, which is eas'e;pectrum Wit 1 !
to compute and is an approximation &fc. For a fixed #suppdy N (0, 1m)] + 5#{suppPy N {0, 11}], where # denotes

positive definite matridMp the size of the parameter ellipsoid the cardlngllty, IS calleq thindex of b, .

U defined by any muItipIeM: BMO of Mo where B > The notion of the index allows us to characterize the
0, is proportional tof~%2. Since for smallyellipsoids the @nterior om;thz momlentspaca’{(””). The following theorem
worst-casev-gap is asymptotically proportional to the size'> & standard result on moment spaces.

- - int i (n+1)
of the former, it follows that for larg@ the value of 71(M) thg?oel?c:\(/av?glgl.c(sﬁgi;!(.)?\.s[ﬂ?):(_jex be apointinZ. Then

diminishes asymptotically proportionately fo /2. Thus we . . D _ . .

can approximate#; by the leading Taylor series term ) xe€ Bd(//l_( ) if and only |f_the_re exists a dlscrlete
nonnegative measure ¢, 7 with index less tharfs=

that inducesx.”This measure is unique.

©) i) XelInt(.#z"D) if and only if there exists a discrete
nonnegative measure ofd, 71 with index 25 that

jz = |lim @

e—0

.Problem 2 Fm(.j Dy sat|sfy|ng (5) SUCh. thaltl(,,) mini- inducesx” There are exactly two such measures. Exactly
mizes cost function 7, defined by equation (6).

Th | of th i tribution is the devel one of them contains the frequenay
€ goal of Ihe present contribution 15 the AEVEIOPMENg;) | o ¢ Int(.#(™Y) and w € [0, 7. Then there exists

of numerical algorithms for so!ving bth Problems 1 and 2. a unique discrete nonnegative measure{@m which
There is a two-fold reason for introducing cost functig. inducesx;” has index not exceeding}2, and contains
Beside its much lower computational complexity, it turng ou the frequencyw. [ 2

that identification with an input power spectrum minimizing Proposition 2: Let. ® be a power spectrum arkd the
- in many cases gives better results than one with an input P di ' Y f pt' Ff Theris si
power spectrum minimizing 1. This apparently counter- corresponding average information matrix. ns singu-

intuitive observation has the following reason. Both coslffk‘)r i and only if @, is discrete and its index is less than

functions depend on the identified parameter valjethe 2: .
. ) The proposition follows from the above theorem by con-
true parameter valuéy and the noise covarianck. These . . . —
. .~ _sidering the special structure M.
guantities are unknown and must be replaced by estimates i = . . - -
. L . e . Corollary 1: Any M € .# is strictly positive definite.
obtained e.g. from a preliminary identification experiment . . C T
. AN This corollary ensures the existence of the invevse in
This approximation introduces an error to the argument % Lo
S . . e interior of the search space.
the minimum of the cost functiong?Z; and _#», i.e. to the L. . .
. . . The minimum of the considered cost functions under
solutions of Problems 1 and 2. Now simulations show that . . : . .
. : L constraint (5) is attained when equality holds, i.e. we can
the impact of this effect on argmigf> is lower than that on
. o . replace (5) by
argmin_¢; and that this difference as a rule overweighs the .
error introduced by approximating cost functigf; by _#>. i/ Py(w)dw=c. @)
We will address this issue again in the simulation section. 2/ -n
This determines an affine hyperplane in the space of feasible
average information matrices [12]. Moreover, (7) defines
In this section we shall describe the set of possible averagections of the moment cone. Expressing the variagle
information matricesM, over which the optimization takes affinely throughxa,...,x,, we obtain a compact feasible set
place, as the feasible set of an LMI. B described by an LMI on the variables,...,X,. Denote by
Proposition 1:[9] The average information matrik is 2 the interior of this set and by#. the corresponding set
contained in ana + ny)-dimensional affine subspace of theof information matricesM = Mo+ ¥, xiM;. Here Mg, M;
space of symmetri¢n, + ny) x (na + ny)-matrices. are known constant matrices.

IIl. LMI DESCRIPTION OF THE SEARCH SPACE



Thus we reduced the infinite-dimensional problem of nonzero vectog € R™ such thatf(x(9) < f(x) for any
searching the minimum of the cost functions over the set ofc S satisfying the inequalitg” (x—x(©) > 0. We compute
all admissible input power spectra to the finite-dimensionautting planes for cost functiong’;, _#» at an arbitrary point
problem of searching the minimum over a convex compaot? € 2;. Along with the LMI description of the feasible
section of the trigonometric moment cone, which can bset this allows the user to employ standard convex black-box
described by an LMI. methods for solving Problems 1 and 2. For a description of
IV. QUASICONVEXITY different methods see e.g. [1],[8]_.

) ) i ) ) Cutting planes for cost function#; can be computed

In this section we prove quasiconvexity of cost funcﬂon@sing the special structure of this function. Namely, the
/1, /2 and thus of Problems 1 and 2. . worst-case chordal distance can be expressed as a solution t

Proposition 3: On . cost function 71 is quasiconvex 5 generalized eigenvalue problem (GEVP) [2, Theorem 5.1].
with respect toM. The parameters of this GEVP enter in the components of the

The proposition follows from a general assertion on qua;ormal g(x) to a cutting plane ax. Details can be found in
siconvexity of cost functions depending on a quasiconvem and are omitted here.

constraint. Let us consider the following constrained -opti' | ot us now compute a cutting plane for cost function
mization problem. _#2. Denote byw® the frequency at which the function

1 T
F= Xexmgx)>0f(x), (8) A"‘Z‘ifg‘(’é':"wei(z‘)”z) ) attains its maximum. Let € R2 be a unit
oY= length eigenvector to the maximal eigenvalue of the matrix

whereX is an arbitrary setf (x) is an arbitrary function, and T(w@)M1T ()T,
g(x,y) is a constraint function picked out from a family of ~ Proposition 5: Let g € R" be defined componentwise by
constraint functions parameterized by the varigblEhe only g = —vTT(w<0>)M*1MiM*lT(w<0>)Tv_ If g+#0, theng
assumption we make is thgfx,y) is quasiconvex iry. The  defines a cutting plane for the cost functigs, at x(©. If
following lemma is easily proven by set-theoretic argursentg =0, then _#, attains a minimum ax(©.

Lemma 1:The value of problem (8), considered as a The proof is by computing the gradient of the function
function ofy, F = F(y), is quasiconvex iry. f(x) = tr(T (@) TWI T(w@)(M(x))~1).

Note that cost function#; is the maximum of a function
of 6 over the setU given by (1). ButU is defined by
an inequality which is linear iM. Thus the above lemma Now we show how to design an input signal from an

VI. DESIGN OF INPUT SIGNALS

applies. obtained solutionx©) € 2;. By Theorem 1, there exist mo-
Proposition 4: On .# cost function #, is quasiconvex ment points which can be realized only by discrete spectra.
with respect toM. On the other hand, any moment point can be realized by
Proof. Direct calculation shows thaj?, can be expressed a discrete spectrum. Therefore we propose the following
as follows. two-step procedure. First a discrete input power spectrum
VAma(T(@M-IT (@) T) generating the moment point? is computed, and then a

J»=const sup PN , multisine input with the desired spectrum is generated. The
we[0,m 1+|G(e, 0)| latter is a standard task.
where T (w) is a 2x (Na+ Np)-matrix given by the gradient ~ The pointx(©) corresponds to a point= (xo,X1, .-, Xn) in

jw . . .. . +1 ;
%19'9). The inverseP~1 of a symmetric positive definite Moment space/"™*%). Denote byx*(w) the moment point

matrix P and the maximal eigenvalugnay(Q) of a symmetric induced by the design measure thaF satisfies constraint (7)
positive semidefinite matrix) are convex functions with @nd concentrates all power at the single frequeacyThe

respect toP or Q respectively. HencmaxTM~1TT) is pointii:c, a convex combinatiogkakis(wk) of points on the
convex with respect td for fixed w. Since the operation CUrve {¥(w)|w € [0,7}. The weightsA and frequencies

of taking the maximum over a family of functions preserve$ determine a power spectrum which induces the moment
convexity, we have thatz2 is a convex function with respect POINtX.

to M. This yields quasiconvexity off,. [J In order to find Ak, wx we exploit an idea t_hat is useq
to prove Theorem 1 [4]. Namely, the expression of a point
V. CUTTING PLANES on the boundary of the feasible set as convex combination

In this section we provide the necessary tools that allow thef points X*(w) is unique and the corresponding frequen-
user to apply standard convex algorithms to solve Problentges wy are the roots of a trigonometric polynomial whose
1 and 2 numerically. coefficients can be computed from a supporting plane at

Most black-box methods in convex analysis are based dhat point. The weights are obtained by solving a standard
the notion of a cutting plane [1]. IEC R™ is a convex linearly constrained least squares problem. But we cafyeasi
set andf : S— R is a quasiconvex function defined @ represent any feasible poirtas convex combination of two
then a cutting plane td at a pointx? € Sis defined by points on the boundary.



VII.

SIMULATION RESULTS

Consider the true system= Gou -+ Hpe =

i _ B(@ _ _01047%1410.08722
with Go = 25 = "1 5578 105768 2-
to the energy constraif((t) =

variance.

B(2)

1
mu—‘r me
The inputu is subject
1, and the noise has unit

of the worst-case-gap resulting from the experiments with
multisine input optimized with respect to criterig¢1, 7>

are 0.0937 and 0.0927, respectively. The difference betwee
them is statistically significant (2 1.64 standard deviations).
The means of the worst-casegap resulting from the exper-
iments with D- and E-optimal multisine input are equal to

The system is identified within an ARX model structure0.1434 and 0.1055.
of order two. The number of data points to be collected It is evident that using inputs optimized with respect to
is N = 1000. We minimize the worst-case-gap of the criteria 71, ¢> gives better results than using white noise
uncertainty region around the identified model correspmndi input or input optimized with respect to the classical D-

to a confidence level off = 0.95.

and E-optimality criteria. Note also that the inputs optied

In a Monte-Carlo simulation, 500 runs were performedwith respect to the cost functiory, give better results than
Each run consisted of five identification experiments: ong#1, despite the fact that the plotted quantity is in fagi.
preliminary and four mutually independent second experithis tendency was observed also in simulations with other
ments based on this preliminary experiment, correspondimystems. As mentioned already in section 2, the reason is

to the four different cost functiong?;, _#», D-optimality

and E-optimality.

that the optimum of the input power spectrum with respect
to #> is less dependent on the preliminary estimate of the

In the preliminary experiment, the input was chosen térue parameter vector. Given the lower complexity 6§ and
be white Gaussian noise with variance 1. The identifielence the lower computational effort in comparison wijth,
parameter vector and noise variance were used as a pritris recommendable to use primarily the former.
estimates of the true parameter vector and the true noise

variance for designing the input power spectrum for theeseri

VIIl. CONCLUSIONS

of second experiments. After each identification experimen | et ys summarize the results obtained in the present paper.
the worst-case-gap of the identified uncertainty region was\ye have to design an input sequence for an identification

recorded.

experiment that makes the worst-cagegap between the

The noise realizations for the five experiments within ongjentified model and the uncertainty region around it as
run and for different runs were different, as well as the inpusma|| as possible. The design takes place via power spectrum

realizations for the preliminary experiments of the diffier

runs.
0.2 T T T T T T T T T
*  white noise *
O criterion J1
0.18f O criterion J2 }
0.16 * 4
g *
e * % * * o *
* * %
3 0.14 O * TRk * e
* * *
¢ * * o ¥ * g W * . % x
® *
2012 * K * * .
2 0]
© <> o X0
01y <>o <><><> 8% 00 0 008(;
0.08 4
0 10 20 30 40 50
number of experiment
Fig. 1. Identification with white and subsequently estimaiptimal input

In figure 1 the worst-case-gap obtained from the prelim-
inary experiment with white noise input, as well as from the
experiments with inputs optimized with respect %, and
- respectively, are shown for the first 50 simulation runs.
The mean over 500 runs of the worst-casgap resulting
from the preliminary experiments equals 0.1345. The means

optimization. Two nonstandard cost criterj@ and ¢, are
defined, which reflect the optimization task with different a
curacy. _#1 is the exact worst-case-gap one would want to
minimize, while _#> is an approximation of 7. Both fulfil

the natural conditions of monotonicity and quasiconvexity
with respect to the power spectrum.

It was shown that optimization of the input power spectrum
with respect to these cost criteria can be reduced to a convex
optimization problem involving LMI constraints.

Simulations show clearly the superiority of the proposed
cost functions over classical design criteria. They alsp- su
gest to use cost function?, rather than_¢1, due to both
lower computational effort and higher performance.
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