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Abstract

The Iterative Feedback Tuning (IFT) is a data-based method for the tuning of restricted-

complexity controllers. In the classical formulation, the IFT aims at minimizing a certain

model-reference criterion in which the reference-model is chosen by the user. This minimization

is based on signal information only. In this paper we formulate a new criterion for the IFT

method. In the new criterion some freedom is given to the reference-model in order to let it

reproduce the features of the unknown plant (i.e. the delay and non-minimum phase zeros)

which the controller should not attempt to change. It is shown that using the new criterion

corresponds to giving more emphasis to the placement of the closed loop poles.

1 Introduction

In this paper, we consider the data-based tuning of a parameterized controller C(z, ρ)

for a plant (possibly non-minimum phase) whose transfer function P (z) in unknown. We

indicate by T (z, ρ) the I/O transfer function of the closed-loop system formed by the

feedback connection of C(z, ρ) and P (z):

T (z, ρ) =
P (z)C(z, ρ)

1 + P (z)C(z, ρ)
.

∗This paper presents research results of the Belgian Programme on Interuniversity Poles of Attraction,
initiated by the Belgian State, Prime Minister’s Office for Science, Technology and Culture. The research
is also funded by the European Research Network on System Identification (ERNSI) funded by the
European Union. The scientific responsibility rests with its authors.
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We concentrate on the model-reference criterion:

JMR(ρ) =
1

N

N∑
t=1

(
y(t, ρ) − M̄(z) r(t)

)2
y(t, ρ) = T (z, ρ)r(t) (1)

in which r(t) is a certain reference-signal and M̄(z) is a desired reference-model chosen by

the user. A practically important control design problem is that of finding the controller

parameter vector ρ∗ such that ρ∗ = arg minρ JMR(ρ) on the basis of input-output data

{u(t), y(t)} collected on the system, without knowledge of P (z).

The Iterative Feedback Tuning (IFT) method gives a solution to such a problem. The

IFT is based on the fact that an estimate of the gradient of JMR(ρ) can be obtained

from data collected from experiments on T (z, ρ). The cost-function JMR(ρ) can then be

minimized through a gradient-based iterative minimization scheme, in which a sequence

of controllers C(z, ρi) are computed and applied to the plant. The reader is referred to

[3, 4, 5] for a presentation of the method and the description of successful applications.

One of the problems in the application of the IFT method is the choice of an ade-

quate reference model M̄(z) in (1). In the application of IFT it is assumed that one has

no knowledge or only partial knowledge of the plant and, therefore, one cannot know in

advance if a certain reference model is achievable (even approximately) or not. This is

particularly crucial when P (z) is non-minimum phase. In such case, one should put the

non-minimum phase zeros of the plant in the reference model; otherwise the controller

attempts to achieve an unstable pole-zero cancellation in order to reduce the phase lag. In

practice, with restricted complexity controllers, simulations have shown that this reduces

to the cancellation of the fixed integrator in the controller. In model-based control, one

would choose a reference model M̄(z) that has the same delay and non-minimum phase

zeros as the plant. However, the IFT method has been designed for the case where no

model of the plant is available.

The purpose of this paper is to deal with this issue. It is addressed by introducing a

new IFT criterion. The new criterion is still a model reference criterion but with some

free parameters in the reference model. The free parameters correspond to the position

of the zeros of the reference model and are tuned together with the parameters of the

controller. In this way, the data obtained during the iterative procedure are used to tune

the reference model towards one that is compatible with the requirements of the plant.

The criterion also contains a second term which aims at pulling the adjustable reference

model towards a desired reference model while remaining compatible with the plant. This
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second term can be viewed as a regularization term. The minimization of the proposed

criterion can be performed through a simple modification of the original IFT procedure.

A first attempt to give some freedom to the design criterion of IFT has been proposed

in [7, 8]. In [7, 8], the idea was to put - in the case of a step reference signal - a zero-

weighting time mask on the first t0 instants of the closed-loop response. In this way,

the emphasis was put on achieving a small settling time without forcing the closed-loop

response to follow a particular pre-imposed transient response which was possibly not

achievable. The criterion proposed in [7, 8] took the form:

JMasked

t0
(ρ) =

1

N

N∑
t=t0

(yt(ρ) − K step(t))2

where step(t) is the unit step starting at time t = 0 and K is the new desired reference

level. Interestingly enough, we will show that the masked-IFT comes out as a particular

case of the adjustable criterion proposed in our contribution.

The paper is organized as follows. The proposed criterion is introduced and motivated

in Section 2. Some technical results, for the case of a step reference signal, are collected in

Section 3. The effectiveness of the proposed criterion is shown with simulations in Section

4. The conclusions in Section 5 end the paper. The Appendix contains all the technical

proofs.

2 The proposed criterion

We assume that, as in the classical model reference setting, a desired reference model

M̄(z) is given. However, since the plant is unknown, we do not know if M̄(z) is achiev-

able, in particular M̄(z) may not contain the delay and possible non-minimum phase zeros

of P (z). As already stated, the idea is to give some freedom to the reference model in

order to overcome this issue. An adjustable reference model M(z, η) is then defined. The

tunable parameter vector η in M(z, η) defines the position of the zeros. Throughout the

paper, we assume that the controller C(z, ρ) has a fixed integral action so that we know

that the static gain of the closed-loop is 1; we then fix the static gain of M(z, η) to 1.

Moreover, for simplicity we assume that the reference models M̄(z) and M(z, η) have all

their poles in a, |a| < 1. It then makes sense to express all their transfer functions as

combinations of Laguerre basis functions with poles in a.
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It is well known that, as long as T (z, ρ) is stable, it can be expressed as a Laguerre

expansion with infinite elements, i.e.:

T (z, ρ) =
∞∑

k=1

gk(ρ)Lk(z, a) Lk(z, a) =
K

z − a

(
1 − a z

z − a

)k−1

K =
√

1 − a2 (2)

the convergence rate of the expansion depending on a. The reader is referred to ([2, 9, 10])

for the general theory; moreover, of particular interest is the paper ([11]) in which the

Laguerre expansion is treated in connection with control criteria.

The adjustable reference model M(z, η) is then given by

M(z, η) =
n∑

k=1

ηk Lk(z, a) subject to M(1, η) = 1 ,

and we assume that the desired reference model belongs to that family, i.e. M̄(z) =

M(z, η̄) for some η̄ = [η̄1 , η̄2 , . . . , η̄n]T .

The design criterion Jλ(η, ρ) is defined as the following modification of the criterion (1):

Jλ(η, ρ) =
1 − λ

N

N∑
t=1

(y(t, ρ) − M(z, η)r(t))2 +
λ

N

N∑
t=1

(
y(t, ρ) − M̄(z)r(t)

)2
. (3)

The criterion Jλ(η, ρ) is minimized with respect to η and ρ:

(η∗
λ, ρ

∗
λ) = arg min

η,ρ
Jλ(η, ρ) subject to M(1, η) = 1 . (4)

This defines the optimal controller C(z, ρ∗). The parameter λ expresses the relative impor-

tance of the desired response M̄(z) r(t). The minimization of Jλ(η, ρ) can be performed

through a suitable modification of the IFT procedure for the classical model-reference

criterion. The same number of experiments is required. As usual, at each step one can

obtain an estimate of the gradient and a positive definite approximation of the Hessian.

We shall not elaborate on these modifications, since they are straightforward. Instead,

the focus of this paper is to motivate the adoption of this new criterion Jλ(η, ρ) and to

show how well it copes with the problem of mismatch between a desired reference model

M̄(z) and the plant P (z), in terms of delay and non-minimum phase zeros

In order to motivate Jλ(η, ρ), let us first consider J0(η, ρ) (i.e. Jλ(η, ρ) for λ = 0).

Since the zeros of the adjustable reference-model M(z, η) are completely free, one should

expect that the controller tuned according to J0(η, ρ) spends all its degrees of freedom

on the placement of the poles of the closed-loop transfer function. We could refer to this

strategy as approximate pole-placement control, since, due to the restricted complexity

of the controller, the poles will not be precisely in a. Then, since we have from (3) that:

Jλ(η, ρ) = (1 − λ) J0(η, ρ) + λ JMR(ρ) , (5)

4



we conclude that Jλ(η, ρ) realizes a compromise between such (approximate) pole-placement

strategy and the classical model-reference criterion.

In order to put such intuitive reasoning on a more formal basis, we define J̄λ(ρ) as:

J̄λ(ρ) = min
η

Jλ(η, ρ) subject to M(1, η) = 1 . (6)

Observe that the optimal controller C(z, ρ∗
λ) defined by (4) is, equivalently, defined by

ρ∗
λ = arg min

ρ
J̄λ(ρ) .

The criterion J̄λ(ρ) can also be written as:

J̄λ(ρ) = (1 − λ) J̄0(ρ) + λ JMR(ρ) .

Let us introduce the notation:

g̃(ρ) = [ gn+1(ρ) . . . . . . ] .

We shall refer to g̃(ρ) as the vector of the coefficients of the tail of the Laguerre expansion

of T (z, ρ). Then, we have the following proposition for the expression of J̄0(ρ).

Proposition 1

Let T (z, ρ) have static gain 1 (i.e. C(z, ρ) contains a fixed integrator), and let both M̄(z)

and M(z, η) have static gain 1. Then the criterion J̄0(ρ) takes the form:

J̄0(ρ) = g̃(ρ)T Q0 g̃(ρ)

in which Q0 depends on the pole location a and the reference signal r(t).

Proof: see Appendix.

Proposition 1 states that tuning the controller according to arg minη,ρ J0(η, ρ) corresponds

to minimizing a quadratic cost function constructed with the coefficients of the tail of the

Laguerre expansion of T (z, ρ). The non-negative definite weighting matrix Q0 depends

on the particular choice of the reference signal (in Section 3 we illustrate the case of

a step reference signal). The connection with (approximate) pole-placement lays in the

observation that minimizing J̄0(ρ) with respect to ρ corresponds to minimizing some norm

of the tail of the Laguerre expansion of T (z, ρ). It is well known from Laguerre function

theory (see [1, 10]) that if the coefficients of the Laguerre expansion of T (z, ρ) converge

to zero quickly, this means that the poles of T (z, ρ) are close to a.

In the general case where λ �= 0, the optimal controller will again attempt to put all the

poles of T (z, ρ) near a. Since

J̄λ(ρ) = (1 − λ) g̃(ρ)T Q0 g̃(ρ) +
λ

N

N∑
t=1

(
y(t, ρ) − M̄(z)r(t)

)2
,
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the optimal controller will result from a compromise between making the tail of T (z, ρ)

small (in the ‖ ‖Q0 norm) and making T (z, ρ) close to M̄(z), both of which correspond

to putting all poles close to a.

Thus, in terms of the location of the closed-loop poles, the new criterion is consistent with

the pole-placement objective of the traditional criterion JMR(ρ). The key difference is in

the handling of delay and/or non-minimum phase zeros. If P (z) has non-minimum phase

zeros which have not been put in M̄(z), then the adjustable model reference parameter

vector η∗ will reflect this and, for small enough λ, the optimal controller will be essentially

determined by the minimization of J̄0(ρ).

In Section 3 we develop the result of Proposition 1 for a step reference signal. In Section

4 we illustrate the use of the modified IFT criterion with some simulation examples.

3 Some results for the step reference signal

In this section, we assume that the reference signal r(t) is a step. The aim of the section

is to analyze the behaviour for this particular case. This will allow us to establish a

connection with the masked-IFT developed in [7, 8]. First we collect our assumptions as

follows.

Assumption A

The reference signal r(t) is a step applied at time 0 when the closed-loop system is at

rest. The controller C(z, ρ) includes a fixed integral action (i.e. T (z, ρ) has gain 1).

Both the desired reference model M̄(z) and the parameterized reference model M(z, η)

have gain 1. �

We also introduce the notation:

ḡ(ρ) = [ g2(ρ) . . . gn(ρ) ]T

m̄ = [ η̄2 . . . η̄n ]T .

Since we have assumed that T (z, ρ) has gain 1, the coefficient g1(ρ) is determined for any

given [ ḡ(ρ)T g̃(ρ)T ]T , and the same holds for η̄1 and m̄.

The next proposition concerns the relationship between the step response of a system and

the coefficients of its Laguerre expansion.

Proposition 2

Let T (z) be a stable transfer function with gain 1 and let T (z) =
∑∞

k=1 gk Lk(z, a) be its

6



Laguerre expansion as in (2). Define g = [ g2 g3 . . . . ] and qi(t) as:

qi(t) =
K (1 − a2)

1 − a

(
1 − az

z − a

)i−1 z

(z − a)2
δ(t) i = 1, 2, . . . .

Let V be the upper triangular matrix of infinite dimension

V =

⎡
⎢⎢⎢⎣

1 1 1 ·
0 1 1 ·
0 0 1 ·
· · · ·

⎤
⎥⎥⎥⎦ . (7)

Then the following expression holds for the step response of T (z):

T (z)step(t) =
1 − a

K

K

z − a
step(t) − [q1(t) q2(t) . . .] V g .

�

Proof: see [6].

Using the above result, we can write the expressions of J̄0(ρ) and JMR(ρ) in terms of the

coefficients of the Laguerre expansion of T (z, ρ) for the case of a step reference signal.

In the following proposition, we give the asymptotic expressions of J̄0(ρ) and JMR(ρ) as

N → ∞. Even though these are asymptotic results, such expressions approximate J̄0(ρ)

and JMR(ρ) very well as long as N is greater than the settling time of the step response

of T (z, ρ) (this is discussed in [6]). Since it is reasonable to choose an N in JMR(ρ) that

satisfies such a condition, we are justified in considering the following expressions to be

of interest.

The expression of JMR(ρ) is given in the following proposition.

Proposition 3

Let Assumption A hold. Define α and β as

α =
1 + a2

(1 − a)2
β =

a

(1 − a)2
.

Then the following holds:

lim
N→∞

N · JMR(ρ) =

[
m̄ − ḡ(ρ)

g̃(ρ)

]T

V T Q̄MR V

[
m̄ − ḡ(ρ)

g̃(ρ)

]
(8)

Q̄MR =

⎡
⎢⎢⎢⎢⎢⎢⎣

α β 0 0 ·
β α β 0 ·
0 β α β ·
0 0 β α ·
· · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

with V defined as in (7). �

Proof: see the Appendix.
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We now examine the expression of J̄0(ρ) for a step reference signal. The first step is to

find the minimum point of J0(η, ρ) with respect to η. This is given below.

Proposition 4

Let Assumption A hold. Define η̂(ρ) as

η̂(ρ) = arg min
η

J0(η, ρ) subject to M(1, η) = 1 .

Then, in the limit as N → ∞, η̂(ρ) satisfies:

η̂(ρ) −
[

g1(ρ)
g̃(ρ)

]
=

⎛
⎝ 1 + a

1 − a2n

∞∑
k=n+1

gk(ρ)

⎞
⎠

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

(−a)n−1

...
(−a)1

(−a)0

⎤
⎥⎥⎥⎥⎦ + (−a)n

⎡
⎢⎢⎢⎢⎣

(−a)0

(−a)1

...
(−a)n−1

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ . (9)

�

Proof: see [6].

The criterion J̄0(ρ) is then obtained by substituting η̂(ρ) (as given by (9)) in the expression

of J0(η, ρ). For the case where the pole of the Laguerre expansion is set at a = 0 we have

the following interesting result. Notice that this corresponds to the classical impulse

response representation, i.e. T (z, ρ) =
∑∞

k=1 gk(ρ)z−k.

Proposition 5

Let Assumption A hold. Let a = 0, then the following holds:

J̄0(ρ) = JMasked

t0=n (ρ).

�

Proof: see the Appendix.

The above result puts the criterion of masked-IFT in the framework of this paper. Follow-

ing from the discussion of Section 2, it comes out that the use of masked IFT corresponds

to trying to place all poles of the closed-loop system at the origin.

The general expression of J̄0(ρ) - for an arbitrary a - is given below.

Proposition 6

Let Assumption A hold. Let α and β be as in Proposition 3, and define c as:

c =
a2

(1 − a)2

1 − a2n−2

1 − a2n
.
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Then the following holds:

lim
N→∞

N · J̄0(ρ) = g̃(ρ)T V T Q̄0 V g̃(ρ) (10)

Q̄0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

α − c β 0 0 ·
β α β 0 ·
0 β α β ·
0 0 β α ·
· · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

with V defined as in (7). �

Proof: see the Appendix.

For a choice of λ different from 0, one obtains a compromise between (8) and (10). The

general expression of J̄λ(ρ), for any λ, is given below.

Proposition 7

Let Assumption A hold. Let c be defined as in Proposition 6 and define cλ as:

cλ = (1 − λ) c .

Then the following holds:

lim
N→∞

N · J̄λ(ρ) =

[
m̄ − ḡ(ρ)

g̃(ρ)

]T

V T Q̄λ V

[
m̄ − ḡ(ρ)

g̃(ρ)

]

Q̄λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ

⎡
⎢⎢⎢⎢⎢⎢⎣

α β 0 · 0
β α β · 0
0 β α · 0
· · · · β
0 0 0 β α

⎤
⎥⎥⎥⎥⎥⎥⎦ 0

λ β

λ β

0

α − cλ β 0 0 ·
β α β 0 ·
0 β α β ·
0 0 β α ·
· · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with V defined as in (7). �

Proof: the proof is easily obtained from Propositions (3) and (6).

4 Simulation example

In this section, we illustrate the tuning of a simple controller - according to the criterion

Jλ(η, ρ) - for a non-minimum phase plant. The plant that we consider has the following
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Figure 1: Bode plots of P (z).
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Figure 2: zeros (o) and poles (x) of P (z).

transfer function:

P (z) =
0.18 · (−z + 1.5)

(z − 0.8)(z2 − 1.4z + 0.85)
.

The Bode plots and the pole-zero map of P (z) are displayed in Figures 1 and 2 respectively.

The objective is to tune the following simple controller for such plant:

C(z, ρ) =
ρ0 + ρ1z

−1 + ρ2z
−2

1 − z−1
.

The controller is tuned for a step reference signal using data from noise-free simulations.

The reference models are chosen as (we will consider different values of a):

M̄(z) =
(1 − a)6 · z4

(z − a)6
M(z, η) =

6∑
k=1

ηk Lk(z, a) .

Notice that the desired reference model M̄(z) has the same delay as the plant but does

not have the non-minimum phase zero in 1.5. In order to choose the parameter a in the

reference models we have performed an iterative procedure. We have started from a = 0.8

and tuned the controller for this choice of a. Then, we have progressively reduced the

value of a and for each value we have re-tuned the controller starting from the controller

tuned for the previous value. At each step, we have also tried different values of λ. For

each so-obtained controller, we have registered the settling time of the step response of

the corresponding closed-loop transfer function. In the table we report some values of the

achieved settling times together with the corresponding values of the design cost function.

The minimum settling time (for a given a) was always obtained for λ = 0.
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Figure 3: step response of T (ρ∗1).
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Figure 4: step response of T (ρ∗0).

λ = 1 λ = 0
a Settling time 2% J1 Settling time 2% J0

0.8 52 3.6 · 10−4 52 4.0 · 10−6

0.7 49 5.0 · 10−4 37 6.4 · 10−5

0.6 35 1.6 · 10−3 28 1.2 · 10−4

0.5 34 5.0 · 10−4 15 9.2 · 10−7

0.4 38 1.4 · 10−2 16 2.9 · 10−7

0.3 48 2.8 · 10−2 18 1.0 · 10−4

In the following we illustrate the case a = 0.4.

The controller parameter obtained for λ = 1 was:

ρ∗
1 = [ 0.64592 − 0.71086 0.19212 ] .

The controller and the tunable reference-model parameters obtained for λ = 0 were:

ρ∗
0 = [−0.26580 0.94611 − 0.58753 ]

η∗
0 = [−0.00318 − 0.07513 − 0.02353 0.518381 0.448899 0.134582 ] .

The step response of T (z, ρ∗
1) (i.e. the classical IFT criterion) is displayed in Figure 3.

Compare with the step response of T (z, ρ∗
0), obtained from our new adjustable criterion,

which is displayed in Figure 4. The pole-zero map of M(z, η∗
0) is shown in Figure 5. Note

that M(z, η∗
0) has the non-minimum phase zero in 1.5 and almost reproduces the delay of

P (z) through the zero located very far from the origin. The pole-zero maps of T (z, ρ∗
1)

and T (z, ρ∗
0) are displayed in Figures 6 and 7 respectively. Notice how for λ = 0 the

closed-loop poles are actually much closer a = 0.4.
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Figure 5: zeros (o) and poles (x) of M(z, η∗0)
(+ one zero in −2961.3).
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Figure 6: zeros (o) and poles (x) of T (ρ∗1).
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Figure 7: zeros (o) and poles (x) of T (ρ∗0).
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Figure 8: step response of T̄ (ρ∗1).
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Figure 9: step response of T̄ (ρ∗0).
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Figure 10: step response of T̄ (ρ∗0.02).

Surprisingly enough, the best controller (i.e. C(z, ρ∗
0) ) comes out to be non-minimum

phase.

Let us now consider a different plant with transfer function:

P̄ (z) =
0.036 · (z + 1.5)

(z − 0.8)(z2 − 1.4z + 0.85)
.

We consider again the choice a = 0.4 in the reference models.

The controller tuned for λ = 1 (i.e. classical IFT) was given by:

ρ∗
1 = [ 0.49961 − 0.37388 0.04700 ] .

The corresponding closed-loop transfer function presented an oscillatory step response as

shown in Figure 8. For the case λ = 0 we obtained:

ρ∗
0 = [−1.78114 3.57684 − 1.71820 ]

η∗
0 = [−0.08813 − 0.27261 0.02017 0.56294 0.51173 0.26589 ] .

The corresponding step response is displayed in Figure 9. As happened for the first

example, also in this case the controller tuned for λ = 0 turned out to be non-minimum

phase and achieved the minimum settling time. On the other hand, in this case the price

payed was a very large under-shoot in the initial response. The initial response improved

significantly by switching to λ = 0.02 at the cost of a larger settling time. In this case we

obtained:

ρ∗
0.02 = [−0.53925 1.45662 − 0.79073 ]

η∗
0.02 = [−0.01107 0.02601 0.29964 0.48521 0.29321 − 0.09301 ] .
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The corresponding step response is displayed in Figure 10.

5 Conclusions

In this paper we have proposed an adjustable criterion Jλ(η, ρ) for the tuning of feedback

controllers using IFT. Some results on Jλ(η, ρ) have been given within the framework

of the Laguerre expansions. The effectiveness of the criterion has been illustrated also

through simulation examples. A deeper analysis of Jλ(η, ρ) will be the aim of further

research. The ability of M(z, η) to capture the delay and the non-minimum phase zeros

of the plant, the role of the weighting matrix Q0 in the placement of the closed-loop poles

and the sensitivity of the solution to λ require further investigation.
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A Proofs

The following Lemma will be used in the proof of Proposition 1.

Lemma 1

Consider the quadratic function:

Y (x) =
1

2
xT Ax − F T x

where A ∈ IRnxn is a symmetric positive definite matrix and F ∈ IRn.

Define x̂ as:

x̂ = arg min
x

Y (x) subject to UT x = d

where U = [1 1 . . . 1]T .

Then, x̂ is given by

x̂ = A−1
(
F + λ̂ U

)
(11)

λ̂ =
d

UT A−1U
− UT A−1F

UT A−1U
,

and the following holds:

Y (x̂) =
1

2
λ̂2 UT A−1U − 1

2
F T A−1F .

�

Proof

The minimizing x̂ is obtained, using Lagrange multipliers, by solving the following system

of equations with respect to x and λ:⎧⎪⎨
⎪⎩

Ax − F = λU

UT x = d
.

It is easy to show that the solution is given by (11). The expression of Y (x̂) is then

obtained by simple substitution. �
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Proof of Proposition 1

Recall first that:

J̄λ(ρ) = min
η

Jλ(η, ρ) subject to M(1, η) = 1

where

J0(η, ρ) =
1

N

N∑
t=1

(T (z, ρ)r(t) − M(z, η)r(t))2 .

Define:

φ(t) = [ L1(z, a) , . . . , Ln(z, a) ]T r(t)

φ̃(t) = [ Ln+1(z, a) , . . . . . . . ]T r(t) .

Then J̄0(ρ) can be rewritten as:

J̄0(ρ) = min
ζ

1

N

N∑
t=1

(
φ(t)T ζ − φ̃(t)T g̃(ρ)

)2
subject to UT ζ =

1 − a

K
ST g̃(ρ) (12)

where ζ = [ η1 − g1(ρ), . . . ηn − gn(ρ) ]T , U = [1 1 . . . 1]T and S = [1 1 . . . . ]T .

The minimizing argument, ζ̂(ρ), is obtained by Lemma 1 as:

ζ̂(ρ) = A−1
(
BT g̃(ρ) + λ̂(ρ) U

)

λ̂(ρ) =
CT g̃(ρ)

UT A−1U

where

A =
1

N

N∑
t=1

φ(t)φ(t)T

B =
1

N

N∑
t=1

φ̃(t)φ(t)T

C =
1 − a

K
S − BA−1UT .

The J̄0(ρ) is then obtained by substituting ζ̂(ρ) to ζ in (12):

J̄(ρ) = g̃(ρ)T

[
CCT

UT A−1U
+ S

]
g̃(ρ)

S =
1

N

N∑
t=1

φ̃(t)φ̃(t)T − BA−1BT .

�
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Proof of Proposition 3

Using Proposition (2) we can write

M̄(z)step(t) − T (z, ρ)step(t) = [q1(t) q2(t) . . .] V

[
m̄ − ḡ(ρ)

g̃(ρ)

]
,

from which we obtain:

JMR(ρ) =
1

N

[
m̄ − ḡ(ρ)

g̃(ρ)

]T

V T

⎡
⎢⎢⎣

q1(t)
q2(t)

...

⎤
⎥⎥⎦ [q1(t) q2(t) . . .] V

[
m̄ − ḡ(ρ)

g̃(ρ)

]
.

The proof is then completed using:

∞∑
t=1

qi(t)qi+j(t) =

⎧⎪⎨
⎪⎩

α j = 0
β j = 1
0 j > 1

,

for the proof of the above equations see [6]. �

Proof of Proposition 5

The result of Proposition (4) for the case a = 0 holds exactly also for a finite N (see [6]).

Hence, we have that - for a = 0 - the following holds

η̂(ρ) −
[

g1(ρ)
g̃(ρ)

]
=

⎛
⎝ ∞∑

k=n+1

gk(ρ)

⎞
⎠

⎡
⎢⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎥⎦ .

By substituting the above expression in J0(η, ρ) we obtain that J̄0(ρ) = J0(η̂(ρ), ρ) is

given by:

J̄0(ρ) =
1

N

N∑
t=1

⎛
⎝

⎛
⎝ ∞∑

k=n+1

gk(ρ)

⎞
⎠ z−n step(t) −

∞∑
k=n+1

gk(ρ)z−k step(t)

⎞
⎠

2

.

In order to prove the proposition, we have to show that:⎛
⎝ ∞∑

k=n+1

gk(ρ)

⎞
⎠ z−n step(t)−

∞∑
k=n+1

gk(ρ)z−k step(t) =

⎧⎪⎨
⎪⎩

0 t < n

step(t) − T (z, ρ)step(t) t ≥ n
.

For t < n the above equation is obvious. As for t ≥ n, notice that:

T (z, ρ)step(t) = g1(ρ)step(t − 1) + . . . + gn(ρ)step(t − n) +
∞∑

k=n+1

gk(ρ)z−k step(t)

=
n∑

k=1

gk(ρ) +
∞∑

k=n+1

gk(ρ)z−k step(t) t ≥ n

= 1 −
∞∑

k=n+1

gk(ρ) +
∞∑

k=n+1

gk(ρ)z−k step(t) t ≥ n

17



and the Proposition is then proved. �

Proof of Proposition 6

Using Proposition (2) we can write:

M(z, η̂(ρ))step(t) − T (ρ)step(t) =
n−1∑
i=1

⎛
⎝ n∑

k=i+1

−η̂k(ρ) + gk(ρ)

⎞
⎠ qi(t) +

⎛
⎝ ∞∑

k=n+1

gk(ρ)

⎞
⎠ qi(t)

+
∞∑

i=n

⎛
⎝ ∞∑

k=i+1

gk(ρ)

⎞
⎠ qi(t) .

Since Proposition (4) give us an explicit expression for gk(ρ) − η̂k(ρ), we have

M(z, η̂(ρ))step(t) − T (ρ)step(t) =

⎛
⎝ ∞∑

k=n+1

gk(ρ)

⎞
⎠ pn(t) +

∞∑
i=n

⎛
⎝ ∞∑

k=i+1

gk(ρ)

⎞
⎠ qi(t)

= [qn(t) + pn(t) qn+1(t) . . . ] V g̃(ρ)

in which pn(t) is given by:

pn(t) =
n−1∑
i=1

ciqi(t)

ci = 1 − 1 + a

1 − a2n

∞∑
k=i+1

(
(−a)n−i + (−a)n(−a)k−1

)
=

(−a)n−i − (−a)n+i

1 − a2n
.

Therefore, we obtain that J̄0(ρ) is given by:

J̄0(ρ) =
1

N
g̃(ρ)T V T

⎡
⎢⎢⎣

qn(t) + pn(t)
qn+1(t)

...

⎤
⎥⎥⎦ [qn(t) + pn(t) qn+1(t) . . . ] V g̃(ρ) .

The following equations are obtained after some simple but cumbersome calculations:

∞∑
t=1

pn(t)2 =
a2 − a2n

(1 − a)2(1 − a2n)
∞∑

t=1

(qn(t) + pn(t))2 = α − a2

(1 − a)2

1 − a2n−2

1 − a2n

∞∑
t=1

(qn(t) + pn(t)) qn+1(t) = β .

Using such equations the limit expression of J̄0(ρ) can be finally obtained. �
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