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OPTIMIZATION METHODS FOR STEADY-STATE AQUIFER MODELLING
WITH SCARCE DATA.

G. Bastin and M. Gevers

Unité Automatique et Analyse des Systemes
Université Catholique de Louvain
Batiment Maxwell, Place du Levant
B-1348 Louvain-la-Neuve (BELGIUM).

In order to build a mathematical groundwaterflow model by
the usual parameter estimation methods, a large number of
measures are necessary, distributed over the whole spatial
domain of interest. In general, however, the available da-
ta are very much insufficient. Often the proposed methods
of certain parameters trough-
out the domain (such as piezometric head, or recharge rate).

assume a complete knowledge

In this paper we propose a systematic method which avoids

these drawbacks.

This finite difference method consists in

a two-step procedure : a preliminary estimation is made of
the piezometric heads and the heads of the botLom of the
aquifer in a subdomain of the grid where enough measure-
ments are available. These estimates are camputed using a
stochastic interpolation method. The resulting values are
then’ used as data in a second step, in which a quadratic
cost functional is minimized under the constraint that the
flow equation be satisfied. This cost functional is defi-
ned from physically plausible hypotheses on the aquifer
structure. The different steps of the method are described
and an application to the Dyle basin is presented to illus-
trate the method.

I. INTRODUCTION.
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(x,y) are cartesian coordinates

hix,y)
s(x,y)
K(x,y)
wix,y)

is
is
is

is
or

the piezometric head

the head of the bottom of the aquifer

the hydraulic permeability

Consider the two dimensional equation for steady state groundwaterflow in an iso-
i tropic unconfined inhomogeneous aquifer

(1)

the aquifer recharge rate (through the unsaturated zone}

discharge

rate.
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. In the last few years numercus papers dealing with the identification of such a
system have been published. See, for example |1] - |6} . In most cases (|1], |2],
lal. [5] } equation (1) is replaced by a finite difference equation . A square
grid is then superimposed on the studied domain, each elementary square having a
sidelength Ax = Ay. The grid has M nodes, with N interior nodes and M-N border
nodes. Certain border nodes can be fictitious |5|. The discretization of (1) on
this pgrid gives a set of N algebraic equations at the N interior nodes :

1 s - - 0% = -
5 j;i [KJ (hy=s,) + K, (hy di)][hj h] w0 =0, d=1,...,N (2)

The notation j¥i means that the summation is taken on J over the 4 nodes that are
adjacent. to node i, :

| II. DEFINITION OF THE MODELLING PRODLEM.

iWe call 9 the domain over which equation (1)} is defined. The domain @ contains the
"M nodes of the discretization grid, as woll as a certain number of measure points
of h,s and K, which usually do not coincide with the grid nodes. Let us introduce
i the following notations :

= {1, 2, «oo, N, L, M) is the set of indices of the grid nodes.
i The first N indices will be assigned to the interior nodes.

iIh is the set of indices of the piezometric head measure points. (3)

Is - is the set of measure point indices of the heads of the bottom of
the aquifer.

IK- is the set of the permeabi]ity measure points indices.{These measurements
are obtained through pumping tests).

The aquifer modelling problem can then be staled as follows

. ;Fidd numerical values for all components of the vectors

= (h,, «vuy D}

= (s )

= (K 3

= {W )

such that

s eesy &

s oeees K
soane, W

= 1= o |z
- Y
zZ2 =2 = =

1} thes=2 values are compatible with the available data
1i) the flow equation (2) is satisfied.

As the problem 1s posed now, a few comments are necessary .

2.1. The measure points of h, K and s will most often not caincide with the grid
nodes. It is therefore necessary to specify what is meant by "the model must
be compatible with the available data”. Most authors sidestep this problem
by assuming that some (IFf not all) components of h are known a priciri with-
out specifying how they have been computed. It turns out that these computa-
tions are not always obvious, particularly when the number of data points is

. small, as will be illustrated in tho example given at tho end of this paper.

; Let us fipally mention for completeness that in lB} a doubly cubic spline

function is used to interpolate piezometric heads between data points. The

method we use is to first compute estimates {ﬂil ie I} and{§i| 16 I,}

fram tha available data {hj[ith} and {si| i € Is} on two subsets I, and
! I2 of I using an interpolation method called "Kriging” [7|. This is an optimal
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linear stochastic spatial interpolation methad ; the main ideas are presen-
ted in the appendix., The subsets I, and I, are chasen in such a way as to in-
clude the grid points that are either cloSe to measure points or sufficient-
1y surrounded by measure points sog that their estimated values can be consi-
dered to be interpclated rather than extrapolated. To simplify the presenta-
tion of the methbod in this paper we shall consider that I, = I. In the ap-
plication that we present at the end of the paper, the measure points of s
are actually sufficiently scattered throughout the domain so that all grid
points can be considered to be well surrounded by data points. Let us finally
comment that Kriging is an "exacl" interpoclation method, i.e. the optimal
astimate in a measure point is the measure itself. It is in this sense that

~we can give a rigourous meaning to the condition that "the model must be

compatible with ybe data”.
Once the values {h,| i ¢ 1,} and (& | k &€ I,}  have been computed, we
consider these as data for the modelling prob?em, i.e. we inwosa that the

solutions hi and sy of the flow equation (2} coincide with hi and 5k for
ie 11. and K € I?‘respectively.

In most methods that have been proposed so far ([1], |3]-[86]) the vector W
is assumed to be complelely known. Such hypothesis is not acceptable when
W, represents the recharge rate, in a given node, through an unsaturated
liyer of several decamcters. We shall therefore consider the W, values to
he unknown. To simplify the presentation we shall assume that there are no
pumping stations in the aquifer. The introduction of pumpings does not at
all modify the proposed method, provided the pumping rate is known.

As the modelling problem is posed now, it has an infinite number of solutions
whatever the dimension of the sets I, and I,. This difficulty in the model-
ling of aguifers is well known and has led many authors te formulate addi-
tiocnal hypotheses. Chang and Yeh fSl, for example, reject all transmissivi-
ty values which are outside an a priori chosen interval, Garay, Haimes and
Das 141 use a second-order polynomial representation of the aguifer trans-
mnissivity. Emsellem and De Marsily |2| search for a spatial distribution of
transmissivities that is as uniform as possible. We shall develop a similar
idea in this paper. One could indeed consider thot the wost attractive and
at the same time physically plausible model is that of a homogeneous aguifer
with a uniform recharge rate. Such a model, however, is usually not compati--
ble with the data. We shatl try to approach such a madel as best as possible
by minimizing the following cost function

J=a C1 J1 + (1~} C2J2 (4)
C1 and C2 are normalization constants that will be specified later. J1 and
J,, are deflned as follows
2 2 2
8K 8K ,
32 [ ¢ ] ax ay
(5)
2 2
; S\ W
3= 00 (G e G ] dxdy

Actually we shall use a discretized version of these two functlions




~Begin her

N

o

IR

2.4,

“31 = 5 g (KJ-KiJZ
€T 3#i
C N , (6)
3, = 151 jéi (W H,)
JsN

The differences in the summations betweend and J,, are due to the fact that
the wi need only be defined on the interior puinfs t see eguation (2) .

As we mentioned at the beginning of this section, a set {K [i ¢ IK} of per-’
meabllity measurements are available. If the number of measurements is lar-
ge enouph, interpolated values of K can be computed at all grid points. But
if only a few measure points are available, as will be the case in the ex-
ample treated at the end of this paper, each measurement is transferred to
the closest grid point. The set of nodes for which an estimate K, is known

. i
will be denoted Is.

The aquifer modelling problem is now reformulated as a constrained optimiza-

tion problem with a cost function

IK) = (1) €, 3 e c, (7)

The optimization is performed with respect to the parameters {Kil ie I}
and {wili ¢ I}. The constraints are

(1} h, = h, , iae X
i i 1
= §, » % =
(11} 84 i ie I( 12]
(I1I1) Ki = Ki , i€ 13
(1v) the groundwater flow equation (2) which we shall rewrite as follows
E’,i[‘f_hﬁ._?_} = - wi » i G I [8]

The normalization constants C1 and 02 are computed as follows

. 1

C, = —~—= , C, = - (9)

1 - =2 2 ~2 ‘

nKK nww
where nK and n, are the numbers of terms in the sums 31 and J7 respectively. .
J J. . -
The terms —  and e therefore represent the mean square deviation between
K W

neighbouring permeabilities and neighbouring recharge rates raspectively,

K and W are an approximate fmean, over @, of the permeability and the recharge
rate, respectively. These approximate values can be adjusted in the course

of the optimization procedure if so desired. The variable o, finally, is
chasen in the interval [0,1]'1 it is a weighting factor between the two terms
of the cost function.

4~
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map. n°1

-

L 159

L 457

b 155

- 453

- 454

443

- 443

; paint number 84, the head is
29 meters.

Lambert coordinataé in km.
Bottom of aquifer data points are
indicated : for example, at the

o3
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I map n°2 : The studied domain @ with :
- + grid points

% plezometry data points
A permeability data points.

The set 11 is contoured.
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3. THE PROPOSED ALGORITHM

The algorithm can be subdivided into two major parts.

Bl R e it R R S A ISl L A Ry Sy by St DA A R V-t i~ At by RSl

Estimates h, and &, over the whole spaotial domain (i € I} are computed first
" Lok 1 .
by "Kriging” (see Section 2.1)

X - the estimates éi are considered as constraints (II) and are therefore di-
rectly injected in eqg.(8)

- the estimates N, (i € I) are used as starting values of the iterative op-
timization procddure. The subset of estimates D, (i« I1) are constraints
(I} directly injected in eq. (8} :

Ths values 2. (i € I) are directly deducted from the data (see soction 2.4)

and are constraints ?IIIJ injected in (8) and in J,. E€stimates E. {ie1,

i 4 I,} are subsequently computed by minimizing J, without constfaints. These

estimates are easily obtained as the solutions of the following system of

equations i

8J

1 .
= I (K,~K,} =0  with i e, i¢ I
8K, g 9 : 3 {10)

and K, = K, for je I
and Ry = Ky for Je I,

’ ~
The set of all these estimates K, (i € I) are now used as starting values
- i
for the iterative procedure,

o e e i it e it w4 e e  aa L A S TA L

f A gradient method is used in order to minimize the following Lagrangian

-f L=d+ L X, (g +w,) 11)
seq 1P

» A
+ preliminary step : starting values h and K.

; . 1st step : compute wyom o gi(ﬂnﬁ], 1=1,....N
+ 2nd step : compute 6J/¢Swi , i=1,...,N oL
« 3rd step ¢ compute the Lagrange coefficients so that v 0, i=1,...,N
i
8J a0
Ai— "g;-’-: » 1--'1,.,.,N

. 4rth step : compute +»1€T1 and i ¢ I1

L
Ghi
b eten . ., S .
. 5th step : compute sk 1L €1 oeond i ¢ 13

1

. Bth step : compute the descent directions by the conjugate gradient method:

h .
dy » 1&I and 141
| d ., 161 and 1g1
; i! 3 3
f t - B, and 8, estimat We - d]
. 7th step : the new hi and 8, estimates are PR T n
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Table 1 : Piezometric data. Table 2 : Permeability data.

F Well's Piezometric head Datum . Well's Permeability
i number | {meters above number meters/day
i sea level)

69 B4.98 21.10.75 69 13.99

70 . 116.086 21.10.75 70 4.96

71 63.34 12.11.75 e c

72 87,14 12.11.75 /5 3.50

73. 89.16 12.11.75 79 13.82

74 89.69 12.11.75 ,

75 107.48 12.11.75 80 3.72

76 109.85 12.11.75

77 97.21 12.11.75

78 113.88 13.10.75

. Map n®3 : Bottom of the aguifer b¥ Map n°4 ¢ Piezometry by Kriging
! Kriging (isovalues x 104 {isovalues x 102 meters
i meters above sea level). above sea levell,




+ N+ AY

g Rk -cd. = - g (LR = - gl )
an g =Ky -Tdg enwy =~ g lh KD = -g (0.

A nearly optimal gain 1 is computéd by first expanding g, {1} around
. , . o T, i
. the previous value w:.L up to the first order term in t.
J is then approximated by a quadratic function of 1, whose minimum
T is chosen as the gain. )

X

Fay
» 8th step : compute new estimates hi -1 d’

g0 1eTandidT,

s ox K . _
K=t d), iéelandi ¢ I,

. go to 1st step,

Remark. .

It should be noted that in our method, and in contrast with most other me-
thods proposed so far, the boundary conditions need nolt be known and the
flow equation (2) does not have to be solved tor either h or K at each ite-
ration of the optimization algorithm. We only need to compute the residuals
W, of the equation, all other quentities being known. This is an important
computational advantage, which is due to the hypotheses we have chosen and
to the use of the Lagrangian method.

4. A PRACTICAL EXAMPLE

The method has been applied to the identification of a rectangular portion of the
"8ruxellien” aguifer in the Dyle river basin (Belgium). The studied domain con ba
located on map n°1 and is represented on a larger scale on map n°2. The discreti-
zation grid has been superimposed on the domain. It contains M=68 nodes, with
N=42 interior nodes (Ax = Ay = 500 meters).

et e

- head of the bottom of the aquifer : 35 measure points (see map n°1). Most
‘of these measures have been made ond provided by the Service Géologique de
Balgique.

- plezometric head : ten wells (see map n°2) have heen measured on a more
or less regular basis since 1971, Figure 1 shows the evolution of the pie-
zomelric head in 4 of those wells, as a matter of illustration. In the ex-
ample we present here, we have used the data obtained in november and de-
cember 1975 (see table 1).

- permeability : five pumping tests (see map n°2) were made by Lapania EB|.
and horizontal permeability coefficients were computed by Dagan and Boulton
methods (see table 2).

The set of indices defined in (3) are now as follows
1=1{4, 2, ..., 68} with N=42

th = {89, 70, 74, 72, 73, 74, 75, 76, 78}

Ik = (68, 70, 75, 79, B0}

Is = {81, ..., 115)

T o v v - 0 ot At ot Wt vt o B e oy - A o 41t s v o o o ®

a ‘ °~ - » -
1} The estimates (51, vees gSS} and {h1, vens aSB} are computed by "Kri

ging” with the hypothesis that both the drift and the variogram are line-
ar. The resulting estimated values are presented on maps n°3 and 4. The
subset I1 has been chosen as I, = {3, 4, 8 to 12, 15 to 30,35, 36, 42}
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‘Map n°S : Algorithm starting values of Map n°6 : Optimized piezometry for
: permeabllity (x10 meters/day) a = 0.5,

Map n®7 : Dptimized permeability for Map n®8 : Optimized recharge rate
a = 0.5, _ {x10 cm/year).
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2} The sat I3 contains those nodes that are closest to permeability measure
points : I = (3, 21, 23, 29, 681, The estimotes K, (L ¢ I, 1 ¢ I) are

then computed (see section 3.1). The results are presented on map n°s,

4.3. Results of the iterative optimization procedure.

TN e kb >y - 7 A5 b mr = v o o B 2m b et e am v o

The procedure has been experimented with different values of o ranging

from 0.2 to 0.9. In all cases we have used an approximate mean permeability

K of 8 m/day and an approximate mean recharge rate W of 25 cm/year (see

2.4). The procedure stops when, for 10 siccessive iterations, the relative

variations of the cost J between 2 suceessive iterations is less than 5.10 .
" The results are presented on figures 2, 3, 4 and 5 ; they call for the fol-

lowing comments.

1) The values of o which are less than 0.2 must be rejected because they lead
to negative recharge rates wi in several nodes, which is not admissible.

2} In all cases we have obtained a riegative permecability at node n®16. This
indicates that the constraints are too stringent. In order to have a
plausible solution, we have therefore replaced this permeability by the
average taken over the four neighbouring permecabilities.

3) The mean square deviation between permeabilities at neighbouring nodes
(see fig., 3) is very insensitive to the value given to a. Indeed it va-
ries between 3.47 m/day for a = 0.3 and 4.2 m/day for o = 0,9,

4) Similarly the computed mean recharge rate (seo fig. 5) is almost totally
insensitive to the value of a ; it is in all ceses close to 27 cm/year.
It is interesting to mention that, using a global rainfall-riverflow
model, Hultot, Dupriez and Laurent [9] have estimated the mean recharge
rate of the "Bruxellien” aquifer at 27.12 'cm/year. This value, which is
remarkably close to ours, has been obtained through a totally independent
method.

| 5} On the other hand {he mean square deviestion between recharge rates at

. neighbouring nodes (see fig. 4) is extrenely sensitive to the value given
to a. The individual values W, at the nodes must therefore be interpreted
with great caution. However thie model does give us an idea of the global

i trend of the recharge rate distribution.

Finally, the computed maps of piezometry, permeability and recharge rate

for a = 0.5 are presented {see maps h°8,7,8)}. Let us note that all the maps
TQVT been drawn by a X-Y plotter linked to an automstic cartography program
101.

APPENDIX : INTERPOLATION BY KRIGING.

'We give here a very short and incomplete presentation of the Kriging method. For
‘more informations, see reference [7].

[ ,

Let u=(x,y) be a point and z(u) a real fuhction in a twodimensional space. The
value of this function is known at n data points : z, = z(u1},...,zn = z(un].

%The function z is viewed as a realization of a stochastic process Z(u)} which is

ithe sum of two terms
| Z(u} = m{u) + Y(u) (A1)

1

.where m(u) 1is the mean, also called the drift, of the pracess : m{u) = E|Z(u)] ;
and Y{u) is a purely random component. The half-variance of increments is called

i
!
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Some additional hypotheses are made :

1) The drift varies slowly in space and is of the form :

mlu) = a, o : (A2)
121

where the functions flfu) are chosen a priori.

- 2} The variogram Yij is Znd order stetionary, i.e. it depends only on the

euclidean distance dij between the points uy and u,

Yij =Y (dij] _ . (A3)

“In the application developed in the prescnt paper, we consider the following par-
ticular case :

= first order drift : mix,y) = a, + agx + a.y (A4)
- 315 i g : . = [
linear variogram YlJ a dij (A5)
gThe constants a,, a1, a?. o are unknown.
{Now let us define the linear estimator of z¢
a n . '
Z, = % )\, 7, (AB)
i g1 i i
. The coefficients Ai are chosen so that this estimation is unbiased and minimum
- variance.
: N n
1} unbilased : E(Z,} = L Ai E (Zi] = £ (Zo)
. i=1
(ao, iy, a2}_being unknown, the Ai must obey the following equalities
n n n
Iood, =1, ¥ A, X, = Xg LAy, =y, (A7)
1=1 * g1 1 g=q +E
2) minimum-variance :
n n
VAR |2, = z,] = @f I A Agd (with A, = ~1) (A8)
i=0 j=0

i

iminimizing VAR [20 - zof with the constraints (A8), one computes the Ai .
EThen the optimal linear estimate of z, is :

! n

! 2, = L X, z (A9)
! g 1A
|

{‘ '

Y
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