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Abstract

This paper focuses on the validation of a controller that has been designed from
an unbiased model of the true system, identified either in open-loop or in closed-loop
using a prediction error framework. A controller is said to be validated if it stabilizes
all models in a parametric uncertainty set containing the parameters of the true system
with some prescribed probability. This uncertainty set is deduced from the covariance
matrix of the parameters of the identified model. Our contribution is to embed this set
in the smallest possible overbounding coprime factor uncertainty set. This then allows
us to use the results of mainstream robust control theory such as the Vinnicombe gap
between plants and its related stability theorems.

1 Introduction

This paper is part of our continuing investigation of identification for control, as well as
controller design and controller validation based on identified models [6, 7, 8]. Here we
focus on controller validation on the basis of an identified model. We present a procedure
to ensure that a controller C, designed from an identified model, also stabilizes all sys-
tems in an uncertainty region where the true system G0 is known to lie with a prescribed
probability. Our procedure is based on the computation of uncertainty sets as required by
mainstream robust control theory (see e.g. [18, 13, 16, 19]) on the basis of ellipsoidal para-
metric confidence regions as delivered by prediction error identification theory (see e.g. [11]).

Robust control theory provides theorems about the stabilization of the true system but
with the assumption that the true system G0 lies in particular uncertainty regions such as the
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rests with its authors.
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so-called additive, (inverse) multiplicative or coprime factor uncertainties. The prediction
error identification theory developed in [11] gives us tools such as the covariance matrix of
the parameters of the identified model that allow one to construct a parametric uncertainty
region U containing the parameters of the true system G0 at a certain probability level that
we can fix at, say, 95 %. Such an uncertainty region takes the form of an ellipsoid in the
parameter space. However, such parametric uncertainty region U is not amenable to the
application of robust control theory. In order to apply the standard robust control results,
we show how to embed our parametric uncertainty region U into one of the standard uncer-
tainty regions, namely coprime factor uncertainty sets. Such sets present several advantages.
First, a coprime factor uncertainty gives a satisfactory representation of the uncertainty both
in high frequencies and in low frequencies (see [17, section 2.3.5]). Second, a coprime factor
uncertainty set can contain plants with different numbers of unstable poles. Third, such sets
can also be defined, via the Vinnicombe gap metric between two plants, as the set of plants
whose Vinnicombe distance to some nominal plant is less than a given number. A fourth
reason is that some powerful stability and controller design results have been developed for
this kind of uncertainty set (see [13, 16, 17]).

In an earlier paper [1] we have already developed a method for the embedding of an un-
certainty region in a coprime factor uncertainty set. This uncertainty region was composed
of ellipsoids at each frequency in the Nyquist plane. It was obtained from the paramet-
ric ellipsoidal uncertainty region U defined by the covariance matrix through a first order
approximation described in, e.g. [12, 8]. The two step procedure from the parametric uncer-
tainty region U to an overbounding coprime factor uncertainty set described in [1] introduces
both an error (by the first order approximation) and a conservatism (via the intermediate
uncertainty region in the Nyquist plane). The progress in the present paper is that we can
now embed the parametric uncertainty region U directly into the smallest possible coprime
factor uncertainty set by formulating this embedding as a convex optimization problem in-
volving Linear Matrix Inequality (LMI) constraints [2].

Our embedding approach differs significantly from the approach used in set membership
identification ([14] and references therein). In the set membership literature, a hard bound
assumption is made on the noise and a known upper bound is required on the pulse response
of the true system, leading to the identification of an uncertainty set around a nominal
model. In [9], a method to identify an additive uncertainty region with a stochastic noise
assumption is presented, but a known prior bound on the true system pulse response is again
required. Furthermore, the approach presented in [9] is restricted to linearly parametrized
models, such as FIR models. In our embedding approach, such assumptions are not required;
in particular, it applies to rational transfer function models.

In [17, Chapter 7], a parametric uncertainty region is also embedded in a coprime factor
uncertainty set. However, in this chapter, the parameters are assumed to vary in fixed inter-
vals, which contain the parameters of the true system. Nothing is said about the way these
intervals are obtained from data collected on the system, and, furthermore, the covariance
between the parameters are not taken into account as opposed to the method proposed in
the present paper.
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Paper outline. In Section 2, we briefly review how open-loop and indirect closed-loop
identification lead to ellipsoidal parametric uncertainty regions U , which define equivalent
uncertainty regions D in the space of transfer functions. In Section 3, the coprime factor
uncertainty that is used in order to embed our parametric uncertainty region U is presented.
In this same section, we explain how we can compute the size of this embedding set using
convex optimization problems involving LMI constraints. In Section 4, different stability
theorems related to the coprime factor uncertainties described in Section 3 are presented.
They are illustrated by an example in Section 5. Finally, in the last section, some conclusions
are given.

2 Identification and parametric uncertainty region

In this section, we briefly review the uncertainty regions delivered by classical prediction
error identification, assuming that unbiased models are used [11]. For the sake of later use,
we present separately open-loop and indirect closed-loop identification. We assume that
the open-loop true system is linear and time-invariant, with a rational input-output transfer
function G0:

y = G0u+ v

where v is additive noise.

2.1 Open-loop identification

In the case of open-loop identification, we consider a uniformly stable model setMOL with
the following structure:

MOL = {G(θ) |G(θ) =
b1z
−1 + ...+ bmz

−m

1 + a1z−1 + ...+ anz−n
and θT = [a1 ... an b1 ... bm] ∈ Rk, k

∆
= n+m}

(1)
and an independently parametrized noise model.

We make the important assumption that G0 ∈MOL, and hence

G0 = G(θ0) ∈MOL for some θ0 ∈ R
k (2)

A model Gmod = G(θ̂) ∈MOL is then identified from experimental data [uid yid], as well
as an estimate of the covariance matrix Pθ of θ̂. It is well known that θ̂ is asymptotically
unbiased (since G0 ∈ MOL) and normally distributed [11]. The true parameter θ0 lies with
probability α(k, χ2ol) in the ellipsoidal uncertainty region

UOL = {θ | (θ − θ̂)TP−1θ (θ − θ̂) < χ2ol} (3)

where α(k, χ2ol) = Pr(χ2(k) ≤ χ2ol) with χ2(k) the chi-square probability distribution with
k parameters. This parametric uncertainty region UOL defines a corresponding uncertainty
region in the space of transfer functions which we denote DOL:

3



DOL = {G(θ) | G(θ) ∈MOL and θ ∈ UOL} (4)

Properties of DOL.

G0 ∈ DOL with probability α(k, χ
2
ol)

We have thus defined an uncertainty region DOL which contains both the model Gmod

and the true sytem G0 with probability α(k, χ2ol) (e.g. α = 0.95).

2.2 Indirect closed-loop identification

Let us now consider a controller K which stabilizes the true system G0. In indirect closed-
loop identification, we collect experimental data [rid yid] on the closed loop composed of the
true system G0 and the stabilizing controller K in order to identify a model Tmod of the
actual closed-loop transfer function T0 = (G0K)/(1 +G0K).

For the identification of the closed-loop transfer function, we consider a uniformly stable
model setMCL

MCL = {T (ξ) | T (ξ) =
c1z
−1 + ...+ clz

−l

1 + d1z−1 + ... + dpz−p
and ξT = [d1 ... dp c1 ... cl] ∈ R

f , f
∆
= l + p}

(5)
We again make the important assumption that T0 ∈MCL. Therefore

T0 = T (ξ0) ∈ MCL for some ξ0 ∈ R
f (6)

A model Tmod = T (ξ̂) ∈ MCL of the closed-loop transfer function can now be identified
using experimental data collected on the considered closed loop, together with an estimate
of the covariance matrix Pξ of ξ̂. Just as in the open-loop case, we can define an ellipsoidal
parametric uncertainty region UCL:

UCL = {ξ | (ξ − ξ̂)TP−1ξ (ξ − ξ̂) < χ2cl} (7)

From this set UCL, we can deduce the set of corresponding open loop plants G(ξ) defined
as:

DCL = {G(ξ) | G(ξ) =
1

K

T (ξ)

1− T (ξ)
and ξ ∈ UCL} (8)

The notation G(ξ) used in (8) denotes the rational transfer function model whose coefficients
are uniquely determined from ξ by the mapping

G(ξ) =
1

K

T (ξ)

1− T (ξ)
. (9)

The nominal open-loop model derived from T (ξ̂) is Gmod = G(ξ̂).
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Properties of UCL and DCL. The probability level linked to the uncertainty regions UCL

and DCL depends on the way the noise model of the closed-loop has been modelled [11,
Chapter 9]. If the closed-loop noise model has been independently parametrized, then the
following statements hold:

ξ0 ∈ UCL with probability α(f, χ
2
cl)

G0 = G(ξ0) ∈ DCL with probability α(f, χ
2
cl)

If the closed-loop noise model and T (ξ) have common parameters and if the noise model set
also contains the true noise model, then, denoting r (r > f) the size of the total parame-
ter vector (T (ξ) + noise model), the uncertainty regions UCL and DCL have the following
properties:

ξ0 ∈ UCL with probability α(r, χ
2
cl)

G0 = G(ξ0) ∈ DCL with probability α(r, χ
2
cl)

We have thus defined an uncertainty region DCL which contains both the model Gmod

and the true system G0 with probability α(f, χ2cl) or α(r, χ
2
cl) (e.g. α = 0.95).

3 The embedding coprime factor uncertainty set

In the previous section, it has been shown that an uncertainty region D can be constructed
in the space of transfer function models both with open-loop (DOL) and with indirect closed-
loop identification (DCL). This uncertainty region D contains both the true system G0 and
the model Gmod. We now say that a controller C, designed from Gmod, is validated if it
stabilizes all models in this uncertainty region D. Standard robust stability results infer the
validation of a controller (i.e. the robust stabilization) from the stability of the nominal
closed loop [C Gmod], and some measure of the size of the uncertainty region D, typically
centered on Gmod. Unfortunately, no such results exist for the uncertainty regions D defined
as above, and which result from prediction error identification. Indeed, robust control theory
provides theorems about the stabilization of the true system G0, but with the assumption
that G0 lies in uncertainty regions that are either an additive, or an (inverse) multiplicative,
or a coprime factor perturbation of Gmod. In order to use standard robust control theory,
we show how to embed the uncertainty region D into one of those particular uncertainty
sets. In this paper, we have opted for the coprime uncertainty set described in [17], for the
reasons presented in the introduction.

3.1 Coprime factor uncertainty and the Vinnicombe distance

Since Gmod will be used as our nominal model for control design, the embedding coprime
factor uncertainty regions that we now construct will be centered at Gmod. We first consider
a normalized coprime factor description of Gmod: Gmod = ND−1, where N and D belong
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to the ring of rational proper stable transfer functions1 and are such that NN∗ +DD∗ = 1
[13]. The coprime factor uncertainty set of size ε described in [17] is the set of all plants Gin

which can be written as a perturbation of [N D] with a perturbation ∆ =

[
∆N

∆D

]
∈ L∞

such that ‖ ∆ ‖∞≤ ε:

G(Gmod, ε) =
{
Gin | Gin =

N +∆N

D +∆D

, ‖ ∆ ‖∞≤ ε and η(Gin) = wno(D +∆D)
}
.

(10)
Here η(G) denotes the number of open right half plane poles of G, and wno(G) denotes
the winding number about the origin of G(s) as s follows the standard Nyquist D-contour
indented into the right half plane around any imaginary axis poles and zeros of G(s).

An alternative expression, easier to handle than definition (10), was proposed in [17]:

G(Gmod, ε) = {Gin | δν(Gmod, Gin) ≤ ε} . (11)

where δν(Gmod, Gin) is the Vinnicombe distance [16] between Gmod and Gin defined in (12)
below. Expression (11) shows that the coprime factor uncertainty set is a ball of systems,
centered at the model Gmod and whose radius is equal to ε.

δν(Gmod, Gin) =


 maxω κ(Gmod(jω), Gin(jω)) = maxω

|Gmod−Gin|√
1+|Gmod|2

√
1+|Gin|2

if (13) is satisfied

1 otherwise
(12)

The condition to be fulfilled in order to have δν(Gmod, Gin) < 1 is :

(1 +G∗modGin)(jω) 
= 0 for all ω and

wno(1 +G∗modGin) + η(Gin)− η̃(Gmod) = 0.
(13)

where G∗(s) = G(−s), η̃(G) denotes the number of closed right half plane poles of G, while
η(G) and wno(G) have been defined above.

If these last two conditions are satisfied, then the distance between two plants has a simple
frequency domain interpretation (in the SISO case). Indeed, the quantity κ(Gmod(jω), Gin(jω))
is the chordal distance between the projections of Gmod(jω) and Gin(jω) onto the Riemann
sphere of unit diameter [16]. The distance δν(Gmod, Gin) between Gmod and Gin is therefore,
according to (12), the supremum of these chordal distances over all frequencies.

These definitions also hold in discrete time via the use of the bilinear transform s =
(z− 1)/(z+1) [17, page 259]. In the sequel, we will use a discrete time formalism since this
formalism is used in the identification methods of Section 2.

1We consider here only scalar transfer functions.
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3.2 The worst case Vinnicombe distance

Expression (11) shows that to embed an uncertainty region D into a coprime factor uncer-
tainty set G(Gmod, ε), one only has to find the smallest size ε such that D ⊂ G(Gmod, ε). In
order to compute this smallest overbounding coprime factor uncertainty set, we introduce
the notion of worst case Vinnicombe distance δW C(Gmod,D). This corresponds to the
largest Vinnicombe distance between the model Gmod and any plant inside the set D.

Definition of the worst case Vinnicombe distance.

δW C(Gmod,D) = max
GD∈D

δν(Gmod, GD) (14)

Another important quantity is now defined: the worst case chordal distance. Its
computation is the result of a convex optimization problem involving LMI constraints as
will be shown in Section 3.3.

Definition of the worst case chordal distance at Ω. At a particular frequency Ω, we
define κW C(Gmod(e

jΩ),D) as the maximum chordal distance between the projection on the
Riemann sphere of Gmod(e

jΩ) and the projections on the Riemann sphere of the frequency
responses of all plants in D at the same frequency:

κW C(Gmod(e
jΩ),D) = max

GD∈D
κ(Gmod(e

jΩ), GD(e
jΩ)) (15)

This last quantity can now be used to give an alternative expression of the worst case
Vinnicombe distance, by making use of the following proposition.

Proposition 1 [17]. Given a metric space Λ, the set of all rational transfer functions R,
a mapping Λ → R : λ → Gλ, continuous in the graph topology and a pathwise connected
closed subset U of Λ with λmod ∈ U → Gmod, then

max
λ∈U

δν(Gmod, Gλ) = max
Ω

max
λ∈U

κ(Gmod(e
jΩ), Gλ(e

jΩ)) (16)

2

Lemma 1. The worst case Vinnicombe distance δW C(Gmod,D) defined in (14), can also
be expressed in the following way using the worst case chordal distance:

δW C(Gmod,D) = max
Ω
κW C(Gmod(e

jΩ),D) (17)

where κW C(Gmod(e
jΩ),D) is defined in (15).

Proof. This lemma is a direct consequence of Proposition 1 and of the definition of the
worst case chordal distance. Indeed, the mappings between the parametric sets U (UOL or
UCL) and the corresponding transfer function sets D (DOL or DCL) are continuous in the
graph topology since they can be expressed in the µ setup of Doyle [17, 3]. Therefore, the
assumptions of Proposition 1 are fulfilled. We can thus write, for a set D of transfer functions
such as DOL or DCL, that
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δW C(Gmod,D) = max
Ω

max
GD∈D

κ(Gmod(e
jΩ), GD(e

jΩ))

Using the definition (15) of the worst case chordal distance, this last expression is equivalent
with (17). 2

The notion of worst case Vinnicombe distance and worst case chordal distance having
been introduced, the smallest embedding coprime factor uncertainty set that embeds the
uncertainty region D is now defined.

Theorem 1 (smallest embedding coprime factor uncertainty set). The worst case
Vinnicombe distance δW C(Gmod,D) defined in (14) is the smallest size ε of any coprime
factor uncertainty set (11) such that D ⊂ G(Gmod, ε). Therefore, the smallest coprime factor
uncertainty set which embeds D can be described as:

Gemb(Gmod,D) = {Gin =
N +∆N

D +∆D

| δν(Gmod, Gin) ≤ δW C(Gmod,D)}. (18)

where [N D] is the normalized coprime factor description of the model Gmod.

Proof. All the plants in the uncertainty region D lie in the set (18) since the Vinni-
combe distance between the model Gmod and any plant in D is smaller than (or equal to)
δW C(Gmod,D) by the definition of the worst case Vinnicombe distance (14). Furtermore, a
coprime factor uncertainty set of size ε < δW C(Gmod,D) would not contain all the plants
of D since there exists a plant in D whose Vinnicombe distance to the model is equal to
δW C(Gmod,D). 2

We now define a pointwise (i.e. frequency by frequency) version of the coprime factor
uncertainty G(Gmod, ε) defined in (11). This set B(Gmod, f) [17] will be called “pointwise
coprime factor uncertainty set” in the sequel. It is centered at the model Gmod and its size
is defined by the frequency function f(Ω).

B(Gmod, f) = {Gin | κ(Gmod(e
jΩ), Gin(e

jΩ)) ≤ f(Ω) and δν(Gmod, Gin) < 1} (19)

Just as was done for G(Gmod, ε), we can define the smallest pointwise coprime factor uncer-
tainty set such that D ⊂ B(Gmod, f) using the notion of worst case chordal distance.

Corollary 1. If δW C(Gmod,D) < 1, then the worst case chordal distance κW C(Gmod(e
jΩ),D)

defined in (15) is the smallest size f(Ω) of any pointwise coprime factor uncertainty set (19)
such that D ⊂ B(Gmod, f). Therefore, the smallest pointwise coprime factor uncertainty set
which embeds D can be described as:

Bemb(Gmod,D) = {Gin | κ(Gmod(e
jΩ), Gin(e

jΩ)) ≤ κW C(Gmod(e
jΩ),D) ∀ Ω

and δν(Gmod, Gin) < 1}
(20)
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Proof. All the plants in the uncertainty region D lie in the set (20) since, for all Ω, the
chordal distance between Gmod(e

jΩ) and the frequency response at Ω of any plant in D is
smaller than (or equal to) κW C(Gmod(e

jΩ),D) (see (15)) and since δW C(Gmod,D) < 1.

Furthermore, a pointwise coprime factor uncertainty set such that f(Ω0) < κW C(Gmod(e
jΩ0),D)

for a given Ω0 would not contain all the plants inside D, since there exists a plant GD in D
such that

κ(Gmod(e
jΩ0), GD(e

jΩ0)) = κW C(Gmod(e
jΩ0),D) > f(Ω0).

2

Since the true system G0 lies in the uncertainty region D (with probability 0.95), it also
lies in the coprime factor uncertainty set which embeds this uncertainty region D as well as
in the pointwise embedding set (20). Therefore,

G0 ∈ Gemb(Gmod,D) (21)

G0 ∈ Bemb(Gmod,D). (22)

Since the true system is now included in the coprime factor uncertainty set Gemb(Gmod,D),
we can apply the different tools of mainstream robust control theory in order to design
a controller that stabilizes all the plants in Gemb(Gmod,D), and hence G0, or to test the
robust stabilization by a particular controller for all systems in this same set. This last
point is developed in Section 4. In Section 4, it will also be shown that the pointwise set
Bemb(Gmod,D) can also be used to test the robust stabilization, leading to less conservative
conditions. First we show how to compute the uncertainty sets defined in (18) and in (20).

3.3 Computation of the smallest embedding coprime factor un-

certainty set

We have defined in (18) the smallest coprime factor uncertainty set Gemb(Gmod,D) that
embeds all models in an uncertainty region D that results from open or closed loop identifi-
cation. This definition relies on the worst case Vinnicombe distance δW C(Gmod,D) between
the model and all members of such set D. This worst case Vinnicombe distance is itself com-
puted from the worst case chordal distance κW C(Gmod(e

jΩ),D) as shown in (17). In (20), we
have also defined the smallest pointwise coprime factor uncertainty set Bemb(Gmod,D) that
embeds D. Its definition also relies on the worst case chordal distance κW C(Gmod(e

jΩ),D).
It remains to find a procedure for the computation of κW C(Gmod(e

jΩ),D) at each frequency.
This is the object of the present section.

We show that the computation of the worst case chordal distance κW C(Gmod(e
jΩ),D) can

be formulated as a convex optimization problem involving Linear Matrix Inequality (LMI)

constraints [2]. An LMI is a matrix inequality of the form F (ζ)
∆
= F0 +

∑q
i=1 ζiFi ≤ 0, where

ζ ∈ Rq is the variable, and Fi = F T
i ∈ R

t×t, i = 0, . . . , q are given. Several algorithms
that have practical efficiency have been devised for solving these problems, see [15]. The
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LMI problems can be solved using the free ware code SP [15] and its Matlab/Scilab interface
LMITOOL [4] or the available commercial Matlab Toolbox, LMI Control Toolbox [5].

Given that the parametrizations of the transfer functions defining the (open loop) set DOL

and the (closed loop) set DCL are different, the LMI problems will be specific to each case.
Our computational procedure for κW C(Gmod(e

jΩ),D) is such that the ensuing uncertainty
set Gemb(Gmod,D) (resp. Bemb(Gmod,D)) will be the smallest possible uncertainty set (resp.
pointwise coprime factor uncertainty set) that embeds all models in D .

3.3.1 Worst case chordal distance for open-loop identification

With open-loop identification, a model Gmod = G(θ̂) is obtained together with a covariance
matrix Pθ (see Section 2.1). The true system G0 lies in the uncertainty region DOL defined
by (4) and (3) with a prescribed probability.

For ease of formulating the LMI problem, the model structure defined in (1) is rewritten
at frequency Ω as follows:

G(θ,Ω) =
b1z
−1 + ...+ bmz

−m

1 + a1z−1 + ...+ anz−n
=

Z2θ

1 + Z1θ
with z = ejΩ (23)

with

• θT = [a1 ... an b1 ... bm] ∈ Rk, k
∆
= n+m

• Z1 = [e−jΩ e−2jΩ ... e−njΩ 0 ... 0] ∈ Ck

• Z2 = [0 ... 0 e−jΩ e−2jΩ ... e−mjΩ] ∈ Ck

Theorem 2 (open-loop). Consider the parameter estimate θ̂ and its corresponding co-
variance matrix Pθ, with G(θ̂,Ω) and DOL defined in (23) and (4)-(3). The worst case chordal
distance κW C(G(θ̂,Ω),DOL) at frequency Ω is equal to

√
γopt where γopt is the optimal value

of γ in the following standard convex optimization problem involving LMI constraints:

minimize γ
over γ, τ

subject to τ ≥ 0 and(
Re(a11) Re(a12)
Re(a∗12) Re(a22)

)
− τ

(
R −Rθ̂

(−Rθ̂)T θ̂TRθ̂ − χ2ol

)
≤ 0 (24)

with

• R = P−1θ

• a11 = (Z∗2Z2 − Z
∗
2xZ1 − Z

∗
1x
∗Z2 + Z

∗
1x
∗xZ1)− γ(Z∗2QZ2 + Z

∗
1QZ1)

• a12 = −Z∗2x+ Z
∗
1x
∗x− γ(Z∗1Q)

• a22 = x∗x− γQ

• Q = 1 + x∗x and x = G(θ̂,Ω)
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Proof. First note that this optimization problem is convex since the LMI constraint is
linear in its variables γ and τ . Therefore, this problem can be solved with the Matlab LMI
Control Toolbox.

If we denote the frequency response of the identified model G(θ̂,Ω) by x, and that of any
plant G(θ,Ω) by y(θ), then a convenient way to state the problem of computing the worst
case chordal distance at some frequency Ω is as follows (see (15)):

minimize γ such that κ(x, y(θ))2 ≤ γ for all y(θ) ∈ DOL

The expression κ(x, y(θ))2 ≤ γ has to be transformed into an LMI. This can easily be
done as proved in the following expressions.


 |x− y(θ)|√

1 + |x|2
√
1 + |y(θ)|2


2 ≤ γ ⇐⇒

x∗x+ y(θ)∗y(θ)− y(θ)∗x− x∗y(θ)− γ(1 + x∗x)(1 + y(θ)∗y(θ)) ≤ 0⇐⇒

(
y(θ)
1

)∗ (
1− γ(1 + x∗x) −x

−x∗ x∗x− γ(1 + x∗x)

)(
y(θ)
1

)
≤ 0 (25)

Now, y(θ) is replaced by its expression (23). By pre-multiplying (25) by (1 + Z1θ)
∗ and

post-multiplying the same expression by (1 + Z1θ), we obtain:(
Z2θ

1 + Z1θ

)∗ (
1− γ(1 + x∗x) −x

−x∗ x∗x− γ(1 + x∗x)

)(
Z2θ

1 + Z1θ

)
≤ 0 (26)

which is equivalent to the following constraint with variable γ and with Q = 1 + x∗x:(
θ
1

)∗ (
a11 a12
a∗12 a22

)(
θ
1

)
≤ 0 (27)

with

a11 = (Z∗2Z2 − Z
∗
2xZ1 − Z

∗
1x
∗Z2 + Z

∗
1x
∗xZ1)− γ(Z∗2QZ2 + Z

∗
1QZ1)

a12 = −Z∗2x+ Z
∗
1x
∗x− γ(Z∗1Q)

a22 = x
∗x− γQ

Since θ is real, it can be shown that (27) is equivalent with

σ(θ)︷ ︸︸ ︷(
θ
1

)T (
Re(a11) Re(a12)
Re(a∗12) Re(a22)

)(
θ
1

)
≤ 0 (28)

11



This last expression is equivalent to stating that the square of the distance κ(x, y(θ))
between x = G(θ̂,Ω) and y(θ) = G(θ,Ω) is smaller than γ. This must be true for all
θ ∈ UOL. Denoting R = P−1θ , this is equivalent with

(θ − θ̂)TR(θ − θ̂) < χ2ol (29)

which is equivalent to

ρ(θ)︷ ︸︸ ︷(
θ
1

)T (
R −Rθ̂

(−Rθ̂)T θ̂TRθ̂ − χ2ol

)(
θ
1

)
≤ 0 (30)

Let us now summarize. The problem of computing the worst case chordal distance
κW C(G(θ̂,Ω),DOL) is equivalent to finding the smallest γ such that σ(θ) ≤ 0 for all θ for
which ρ(θ) ≤ 0. By the S procedure [10, 2] , this problem is equivalent to finding the small-
est γ and a positive scalar τ such that σ(θ)−τρ(θ) ≤ 0, for all θ ∈ Rk which is precisely (24).

To complete this proof, note that the worst case chordal distance at Ω is equal to
√
γopt

where γopt is the optimal value of γ. 2

3.3.2 Worst case chordal distance for indirect closed-loop identification

With closed-loop identification, a model Tmod = T (ξ̂) of the closed-loop transfer function is
obtained together with a covariance matrix Pξ (see section 2.2). An open-loop model G(ξ̂) is
derived by the mapping defined in (9). The true system G0 = G(ξ0) lies in the uncertainty
region DCL defined by (8) and (7) with a prescribed probability. The model structure T (ξ)
at frequency Ω can therefore be rewritten as follows:

T (ξ,Ω) =
c1z
−1 + ... + clz

−l

1 + d1z−1 + ... + dpz−p
=

Z3ξ

1 + Z4ξ
with z = ejΩ (31)

with

• ξT = [d1 ... dp c1 ... cl] ∈ R
f , f

∆
= l + p

• Z4 = [e−jΩ e−2jΩ ... e−pjΩ 0 ... 0] ∈ Cf

• Z3 = [0 ... 0 e−jΩ e−2jΩ ... e−ljΩ] ∈ Cf

Theorem 3 (closed-loop). Consider the parameter estimate ξ̂ and its corresponding
covariance matrix Pξ, with T (ξ̂,Ω), G(ξ̂,Ω) and DCL defined in (31) and (8)-(7). The worst

case chordal distance κW C(G(ξ̂,Ω),DCL) is equal to
√
γopt where γopt is the optimal value of

γ in the following standard convex optimization problem involving LMI constraints:

minimize γ

over γ, τ
subject to τ ≥ 0 and(

Re(a11) Re(a12)
Re(a∗12) Re(a22)

)
− τ

(
W −Wξ̂

(−Wξ̂)T ξ̂TWξ̂ − χ2cl

)
≤ 0

with

12



• W = P−1ξ

• a11 = (Z∗5Z5 − Z
∗
5xZ6 − Z

∗
6x
∗Z5 + Z

∗
6x
∗xZ6)− γ(Z∗5QZ5 + Z

∗
6QZ6)

• a12 = −Z∗5x+ Z
∗
6x
∗x− γ(Z∗6Q)

• a22 = x∗x− γQ

• Q = 1 + x∗x, x = 1
K

T (ξ̂,Ω)

1−T (ξ̂,Ω)
, Z5 = Z3/K and Z6 = Z4 − Z3

Proof. Using the expression (31) of T (ξ) and the mapping (9) from T (ξ) to G(ξ), we get:

y = G(ξ,Ω) =
(Z3/K) ξ

1 + (Z4 − Z3)ξ
=

Z5 ξ

1 + Z6ξ
with Z5 = Z3/K and Z6 = Z4 − Z3 (32)

The expression for y has the same structure as in Section 3.3.1. Denoting x = Gmod(e
jΩ) =

G(ξ̂,Ω), the LMI problem can then be stated as:

minimize γ such that κ(x, y)2 ≤ γ for y ∈ DCL

The proof now follows the same procedure as that of Theorem 2 by replacing θ by ξ, Z1 by
Z6 and Z2 by Z5. 2

3.3.3 Summarizing theorem

The methods for computing the worst case chordal distance having been presented for the
two types of identification, we now summarize the results of this subsection in the following
theorem and its corollary.

Theorem 4. The size of the smallest coprime factor uncertainty set embedding the uncer-
tainty region D is given by the worst case Vinnicombe distance δW C(Gmod,D). This quantity
can be computed as follows:

δW C(Gmod,D) = max
Ω

√
γopt(Ω)

where γopt(Ω) is the solution at frequency Ω of the LMI based optimization problem of
Theorem 2 if the model has been identified in open-loop, or of Theorem 3 if this model has
been identified in closed-loop.

Proof. This theorem is a direct consequence of Lemma 1 and of Theorems 1, 2 and 3. 2

Corollary 2. If δW C(Gmod,D) < 1, then the frequency function f(Ω) defining the size of
the smallest pointwise coprime factor uncertainty set B(Gmod, f) that embeds the uncertainty
region D is given by the worst case chordal distance κW C(Gmod(e

jΩ),D). This quantity can
be computed at each frequency as follows:

κW C(Gmod(e
jΩ),D) =

√
γopt(Ω)

where γopt(Ω) is the solution at frequency Ω of the LMI based optimization problem of
Theorem 2 if the model has been identified in open-loop, or of Theorem 3 if this model has
been identified in closed-loop.

13



Proof. This corollary is a direct consequence of Corollary 1 and of Theorems 2 and 3. 2

4 Stability

In the previous section, we have shown how to embed an uncertainty region D arising from an
ellipsoidal parameter confidence region into the smallest possible (pointwise) coprime factor
uncertainty set. The Vinnicombe stability results [16] can now be applied to this (pointwise)
coprime factor uncertainty set.

Before presenting the Vinnicombe stability results, let us first recall the considered prob-
lem. From the nominal model Gmod(z), a controller C(z) is designed. This controller stabi-
lizes Gmod and achieves satisfactory performance with this model. However, this controller
is not guaranteed to stabilize the true system G0. We are therefore looking for robust stabi-
lization conditions.

4.1 Min-Max type condition for robust stability

First we recall the definition of generalized stability margin for a closed-loop system made
up of the negative feedback connection of a plant G and a controller C [17].

Definition of the stability margin.

bGC =

{
minΩ κ(G(e

jΩ),− 1
C(ejΩ)

) if [C G] is stable

0 otherwise
(33)

where κ(G1, G2) was defined in (12). Note that 0 ≤ bGC ≤ 1.

A main result of [16] is the following sufficient but not necessary condition to guarantee
the stabilization of G0 by C.

Proposition 2 [16]. Consider a model Gmod and a controller C that stabilizes Gmod with
a stability margin bGmodC . Then C stabilizes G0 if

G0 ∈ {Gin | δν(Gmod, Gin) < bGmodC}. (34)

2

In an identification context, the true system G0 is unknown, but we have shown that it
lies, with probability 0.95, say, in the coprime factor uncertainty set Gemb(Gmod,D) defined
by (18), where D is the uncertainty region defined by the parametric confidence region.
Therefore, the following result can be stated.

Theorem 5. Let Gmod be an identified model and let D be a set of parametrized trans-
fer functions containing Gmod and the true plant G0. Then, a sufficient condition for the
stabilization of the true system G0 by a controller C, which stabilizes Gmod with a stability
margin bGmodC , is to verify that:

14



δW C(Gmod,D) < bGmodC . (35)

Proof. According to expression (21), G0 lies in Gemb(Gmod,D) defined in (18). Therefore,
by (35), δν(Gmod, G0) ≤ δW C(Gmod,D) < bGmodC and the stability then follows from (34). 2

The condition (34) of Proposition 2 is rather conservative, since δν(Gmod, Gin) =
maxΩ κ(Gmod(e

jΩ), Gin(e
jΩ)) while bGmodC = minΩ κ(Gmod(e

jΩ),− 1
C(ejΩ)

). Thus, it is a min-
max type condition.

4.2 A less conservative condition for robust stability

In [16], a pointwise (i.e. frequency by frequency) and therefore less conservative version of
the classical condition (34) is presented.

Proposition 3 [16]. Consider a model Gmod and a controller C that stabilizes Gmod. The
stabilization of the true system G0 by the controller C is guaranteed if

G0 ∈ {Gin | κ(Gmod(e
jΩ), Gin(e

jΩ)) < κ(Gmod(e
jΩ),−

1

C(ejΩ)
) ∀ Ω and δν(Gmod, Gin) < 1}

(36)
2

Using this pointwise version of the robust stability result of Vinnicombe, and replacing
the constraint (35) on the worst case Vinnicombe distance by a pointwise constraint on the
worst case chordal distance, we can now state our main stability result for identified transfer
functions.

Theorem 6 (main stability theorem). Let Gmod be an identified model and let D
be a set of parametrized transfer functions containing Gmod and the true plant G0. If
δW C(Gmod,D) < 1, then the stabilization of the true system G0 by a controller C (that
stabilizes Gmod) is guaranteed if

κW C(Gmod(e
jΩ),D) < κ(Gmod(e

jΩ),−
1

C(ejΩ)
) ∀ Ω ∈ [0, π] (37)

Proof. According to expression (22), G0 lies in Bemb(Gmod,D) defined in (20). Therefore,
by (37), κ(Gmod(e

jΩ), G0(e
jΩ)) ≤ κW C(Gmod(e

jΩ),D) < κ(Gmod(e
jΩ),− 1

C(ejΩ)
) ∀Ω and the

stability then follows from (36). 2

Remark about the conservatism. The condition (37), even though much less conser-
vative than (35), is still a sufficient but not necessary condition for the stabilization by C of
all plants in D. The remaining conservatism has two different reasons:

• the embedding of D into a larger set Bemb(Gmod,D).
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• the fact that, outside the set defined in (36), there may still exist systems stabilized
by C.

5 Example

Let us now illustrate the presented results. For this purpose, an example of controller valida-
tion for a model identified in closed-loop is considered. Following the procedure presented in
the previous sections, an unbiased model T (ξ̂) of the true closed-loop transfer function T (ξ0)
is identified. Then, the worst case chordal distances at each frequency between the plant
G(ξ̂) corresponding to T (ξ̂) and all the plants in the uncertainty region DCL are computed by
solving the convex optimization problem of Section 3.3.2. With these chordal distances, the
main stability theorem of Section 4.2 is then used in order to validate a controller designed
from G(ξ̂).

Identification step. Let us consider the following true system G0 with an Output Error
structure:

y =

G0︷ ︸︸ ︷
z−1 + 0.5z−2

1− 1.5z−1 + 0.7z−2
u+ e

where e is a unit-variance white noise. The sampling time is 1 second.

We perform a closed-loop identification of an unbiased T (ξ̂) with a controller K = 0.5
in the loop. This controller stabilizes G0. We choose an ARMAX model structure since it
is the structure of the actual closed loop [K G0]. The number of collected data is equal to
1000. This identification yields:

y(ξ̂) =

T (ξ̂)︷ ︸︸ ︷
0.5238z−1 + 0.2256z−2

1− 1.0041z−1 + 0.951z−2
r +

1− 1.4556z−1 + 0.6743z−2

1− 1.0041z−1 + 0.951z−2
e

As the noise model of an ARMAX model structure is not independently parametrized,
the size χ2cl of the uncertainty region UCL containing the parameters of the true closed-loop
transfer function with probability 95 % is equal to 12.6. Indeed the size r of the total pa-
rameter vector of our ARMAX model structure is equal to 6 and α(6, 12.6) = Pr(χ2(6) ≤
12.6) = 0.95.

The model G(ξ̂) corresponding to T (ξ̂) is equal to

Gmod = G(ξ̂) =
1

K

T (ξ̂)

1− T (ξ̂)
=

1.0476z−1 + 0.4511z−2

1− 1.5279z−1 + 0.7254z−2

The set DCL corresponding to the uncertainty region UCL is now embedded into a (point-
wise) coprime factor uncertainty set in order to use the related stability theorems.
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Computation of the worst case chordal distances. Using Pξ, the estimated covariance

matrix of ξ̂, the worst case chordal distance κW C(Gmod(e
jΩ),DCL) at each frequency can be

computed with the optimization procedure of Section 3.3.2. It yields the solid line presented
in Figure 1, where the worst case chordal distance is compared with the actual chordal
distance κ(Gmod(e

jΩ), G0(e
jΩ)) between Gmod and G0.
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Figure 1: Worst case chordal distance κW C(Gmod(e
jΩ),DCL) (solid) and actual chordal dis-

tance κ(Gmod(e
jΩ), G0(e

jΩ)) between Gmod and G0 (dashdot) at each frequency

Stability test. Let us now consider two different controllers C1 and C2 which have been
designed from the stable model Gmod and which stabilize it. The first controller C1 results
from a model reference control design with the specification that the static gain must be equal
to 1. The desired closed-loop transfer function is chosen equal to Tm(Gmod) = (1.1z−1)/(1+
0.1z−1). The second controller C2 is a simple proportional controller. These two controllers
are:

C1 =
1.1z−1(1− 1.5279z−1 + 0.7254z−2)

(1− z−1)(1.0476z−1 + 0.4511z−2)
and C2 = 0.605

We want to verify that these two controllers also stabilize the true system G0. Therefore,
we use Theorem 6 of Section 4.2 since it is the least conservative one. For these two con-
trollers, we compute the pointwise stability margin ρ(Ci, Gmod,Ω) of the designed closed-loop
composed of Gmod and Ci:

ρ(Ci, Gmod,Ω) = κ(Gmod(e
jΩ),−

1

Ci(ejΩ)
)

In order to validate these two controllers, these pointwise stability margins have to be
compared at each frequency with the worst case chordal distance. As can be seen in Figure 2,
the controller C1 is guaranteed to stabilize the true system since we have:

κW C(Gmod(e
jΩ),DCL) < ρ(C1, Gmod,Ω) ∀Ω
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The same can not be said for C2 as can be seen in Figure 3. Therefore, this controller
is not guaranteed to stabilize the true system. In fact, C2 does indeed destabilize the true
system as can be seen in the corresponding closed-loop transfer function which has two
unstable poles of modulus equal to 1.0012.

G0C2

1 +G0C2
=

0.605(z−1 + 0.5z−2)

1− 0.895z−1 + 1.0025z−2

0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Omega

Figure 2: Comparison of worst case chordal distance κW C(Gmod(e
jΩ),DCL) (solid) and point-

wise stability margin ρ(C1, Gmod,Ω) (dashdot) at each frequency

6 Conclusions

In this paper, we have considered the robust stability problem of guaranteeing the stabiliza-
tion of a true system by a controller designed from a model of this true system that has
been identified either in open-loop or in closed-loop with prediction error methods. The
proposed approach is to verify that the designed controller stabilizes all the plants in a set of
parametrized transfer functions in which we can guarantee the presence of both the model
and the true system with a certain probability level. This set of parametrized transfer func-
tions is deduced either from the covariance matrix of the parameters of the plant model
or from the covariance matrix of the parameters of the model of the closed-loop transfer
function.

In order to use the Vinnicombe stability results, we have embedded this set of transfer
functions into the smallest possible (pointwise) coprime factor uncertainty region. To per-
form this embedding, we propose attractive tools taking the form of convex optimization
problems involving LMI constraints. The pointwise version of the Vinnicombe stability the-
orem adapted to our particular problem has been presented and illustrated by an example.
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Figure 3: Comparison of worst case chordal distance κW C(Gmod(e
jΩ),DCL) (solid) and point-

wise stability margin ρ(C2, Gmod,Ω) (dashdot) at each frequency
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