Kewlivoke, S et rafon (999

CLOSED-LOOP OR OPEN-LOOP MODELS IN
IDENTIFICATION FOR CONTROL 7!

Pierre Ansay', Michel Gevers!, Vincent Wertz!
t Service d’Automatique, Université de Lidge, B28,

4000 Sart-Tilman, Belgium. ansay@montefiore.ulg.ac.be
CESAME, Université Catholique de Louvain, Bat. EULER,

1348 Louvain la Neuve, Belgium. [gevers, wertz]@csam.ucl.ac.be

Keywords : Closed-loop identification, Bias and Vari-
ance errors.

Abstract

In this paper we derive a generic indirect approach of
closed-loop identification in order to compare estimated
model of the closed-loop transfer function versus recon-
structed estimated model of the open-loop plant in terms
of asymptotic bias and variance considerations. We show
the impact of the sensitivity function on both estimates.

1 Introduction

Schemes for system identification, based on closed-loop
experiments, naturally arise when the ultimate objective
of the identification is to use the model for control design
(identification for control’).

Consider the settings shown in Figure 1, where P is a
linear plant to be identified, K, is a known linear con-
troller and v(¢) is an output disturbance signal. It is
assumed that the controller internally stabilizes the un-
known plant. The different approaches in closed-loop
identification are obtained by different parameterizations
of the input-output dynamics and the noise models. The
classification made here is similar to the one in [SS89],

e The direct approach: Ignore the feedback and iden-
tify an estimate of the open-loop plant using mea-
surements of the input u{t) and the output y{1).

¢ The indirect approach: Identify an estimate of the
closed-loop transfer function using measurements
of the reference signal r(t) and the output y(t)
and use this estimate to reconstruct the open-loop
model with the knowledge of the controller.
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Figure 1: The internally stable feedback loop formed by
true system and a stabilizing controller.

¢ The joint input-output approach: Identify both
transfer functions from 7(t) to y(t) and (¢} to u(t)
and use them to compute an estimate of the open-
loop model.

A detailed comparison of these three groups is found in
[FL98, Van97|, where the focus is on the analysis of the
statistical properties of these approaches. All these ap-
proaches have in common the same asymptotic variance
expressions of the resulting transfer function estimates
[GLV97], and if asymptotic bias expressions are consid-
ered, use can be made of a filter (equivalently a noise
model) that links the different approaches [FL98]. As
examples, the indirect approaches are direct approaches
that use a specific noise model (filter) that contains a
regulator [Ega97], while a joint input-output approach
can be formulated as a ‘multivariable’ indirect approach.
Under these considerations, we will limit our study to a
generic indirect method that proceeds as follows. The
closed-loop transfer functions from r(¢t) and e(t) to y(t)
are estimated using measurements of the reference »(#)
and the output y(t); it is an open-loop problem. Then,
the model of the open-loop plant is reconstructed using
the knowledge of the controller. This generic indirect
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method allows us to present the well known asymptotic
expressions of the variance and the bias of both models.

We show that in terms of asymptotic bias considera-
tions, the estimated model of the closed-loop transfer
function must be preferred to the reconstructed model
of the open-loop plant, when both estimates of input-
output and noise dynamics are needed for the design of
a new controller. In terms of variance considerations, we
show the role of the sensitivity function in the variance
distribution, whose impact on the reconstructed model of
the open-loop plant and the estimate of the closed-loop
transfer function is entirely different. We show that the
reconstructed model must be preferred if the controller
present during the identification experiment is close to
its optimum value. The discussion is illustrated by an
example.

2 Some preliminaries

We consider that the task is to design a controller for
some true system described by

G :y(t) = P(Qu(t) + H(g)e(t) (1)

where P(q) and H(q) are scalar rational transfer function
operators and H(q) stable and minimum phase, ¢~ ! is
the backward shift operator and e(t) is white noise of
zero mean and variance 02, The system is assumed to
be controlled by some initial controller

K :u(t) =r(t) — Ky(@)y(®). ()
The reference signal r(¢) is assumed independent of the
noise e(t). The internally stable feedback loop formed
by the true system (1) and the controller (2) is depicted
in Figure 1, while the equations that describe the closed-
loop system are

u®)| — [Se(@) Tuela)] |et)
where Sp(q) £ mljmvw is called the sensitivity trans-
fer function of the feedback system, Ty,(q) £ P(q)Sp(q),
Tye(q) 2 H(q)Sp(q) and Tie & - y(@)Tye(g). We also
consider the closed-loop system driven by the same ex-

ternal signals 7(t) and e(?) as in (3), formed by the same
controller K,(g) and the following model

G 1 y(t) = Plgu(t) +0(2) (4)

where 6(t) £ H(q)e(t). Here, the model may be consid-
ered as a nominal model, typically simpler than the true
system, that is selected for the design of the controller
K, (g) or as the to be identified model. The closed-loop
expressions for the output y(t) and the input 4(¢) are

{g(t)] _ [f,‘yr(q) iﬁ“ye@} [T“)] . ®

a@)] — [Sple) Tue(q)] le(®)
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where Sp(q) = is the nominal sensitiv-

1
14+P(4) Ky (q) . R
ity transfer function, Ty (q) = P(q)Sp(q), Ty(q) =
H(g)Sp(g) and Tue £ ~ K, ()T (q).

3 The prediction error method

We provide a brief review of the classical prediction error
method of system identification with some of the most
important analysis results. A model of the plant is to be
identified using a finite set of data ZV = {y(t),u(t),t =
1,2,...,, N} collected on the closed-loop system (3). The
data collection can be done in open-loop (K, = 0) or in
closed-loop. In prediction error identification one typi-
cally considers a general model structure of the form

y(ta 9) = P(Q: e)u(t) + ﬁ(Q? H)E(t), (6)

parameterized in terms of a parameter vector 8. Specifi-
cally, the corresponding one-step ahead prediction error
is,

€(t,6) = L(q’e){y(t) - P(q’ H)U(t)}, (7)

where L(g, 6) explicitly plays the role of the inverse noise
model H(g,6) for the model structure (6), but can be
extended to any stable transfer function without loss of
generality, possibly parameterized by the vector §. The
parameter estimates are usually obtained by the mini-
mization of a least-squares criterion function of the form,

N
1
TR0 = =Y e(t,0)%. ®)
N t=1
The parameter estimate is then defined as
Oy = argmin J5 (6). (9)
€Dy

where Dy is a predefined set of admissible values. In
turn, it produces estimated input-output and noise mod-
els P = P(6n) and H = H(fn), respectively. Under rea-
sonable conditions on the data and the model structure
(see [Lju8T]), 8 converges as N = oo to

8" = argmin J;4(9), (10)
0Dy
where
Ju(0) = lim BJG(6) = Ele(t,0))”. (1)

The Parseval identity allows one to obtain an expression
for the frequency distribution of the asymptotic model
error. Consider the prediction errors in {7). Then:
L[ 2 oy (2
Jia= oo [ dw|LE) P{I P = PO) " ¢u+ o} (12)
bt ¥

where ¢y, ¢, are the spectra of () and v(¢), respectively.
When the system @ is not in the model set, the estimated




transfer function has a biased frequency response. How-
ever, the bias term can be affected by manipulation of
the filter L(#). This shows the importance of selecting a
filter, or equivalently a particular noise model in (6).

Asymptotic variance expressions for the estimated trans-
fer functions P and H are available through the standard
expressions for open-loop identification [Lju87]:

n by (eiw)
N ¢u(e™)
£¢v(eiw)
N

o?

cov P(e) ~

cov H(e") ~ (13)
where n is the size of the vector 8, and n, N are sup-
posed to tend to infinity at appropriate rates. These
expressions say that the noise-to-signal ratios determine
how well P(e®) and H(e') can be estimated for each
frequency. Note that a novel high order expression for
the estimated transfer function P is derived in [HN98].

4 The indirect approach

As mentioned, one motivation for performing closed-loop
identification is when the models are used for the purpose
of designing new controllers with higher performance. In
this section we focus on the indirect method because we
shall compare the statistical properties of the estimates
of Ty, and P. We first consider the identification of the
closed-loop transfer functions using measurements of the
reference signal r(¢) and the output y(¢). Recall that the
first step is an open-loop identification experiment: the
equations (6)-(12) are valid but with a model structure
(6) that takes the form:

y(t: 0) = Tyr (Q; G)T(t) + Tye (Qs O)C(t) (14)

The parameter estimates are obtained by the minimiza~
tion of the least-squares criterion function (8) with a set
of data ZN = {y(t),r(t)} collected on the closed-loop
system. Here €{t,6) are the prediction errors, which for
the model (14) can be expressed as

€(t,6) = L(q, ){y(t) ~ Tyr(g,O)r(®)}.  (15)

Let 8 be the estimated parameter vector that defines
the following estimated models of the closed-loop trans-
fer functions Tyr = yr(GN) and Tye = ye(BN)

In all indirect methods, a parameterization of Ty, and
Tye is needed in order to relate the closed-loop to the
open-loop parameters. In principle, we have to invert
the following algebraic relations

Tyrla) = 1 P(g)K,(q)
Tl = T K "

to recover P and H from ’f’yr and Tye. The equations
can be solved in many ways, using the knowledge of the
controller. In order to compare the bias and variance
distributions of the closed-loop and open-loop estimates,
it is natural to consider the following (Taylor-made) pa-
rameterizations

. _ f)((b 9)
Tor(0,0) = 14 P(q,0)K,
Tye(g,0) = — =29 (7)

1+ P(q,0)K,’

since the prediction error method allows arbitrary pa-
rameterizations. It is important to realize that as long
as the parameterizations describe the same set of P (and
H ), the resulting transfer function P (and B ) will be the
same, regardless of the parameterization [Lju97]). The
message is that a parameterization as in (17) is inherent
in all indirect methods, but the way it is computed does
not affect the statistical properties of the asymptotically
estimated transfer functions.

It then follows easily that the one step-ahead prediction
errors are given by

P - P(9)

(66) = LON ;o

Spr(t) + SpHe(t)}. (18)

Here the prediction errors are function of the sensitivity
function Sp. The impact of the sensitivity function is
illustrated in two following Sections.

4.1 Bias expressions

Consider the prediction errors in (15) and denote v (t) =
Tye(g@)e(t) = Sp(g)v(t). It follows that the asymptotic
expression for the cost criterion (11) becomes:

1 [ A
Jig = o dw | L) * {| Tyr — Ty (6) |* 61 + oy }

N (19)

where ¢, ¢,,, are the spectra of r(t) and vy (t), respec-
tively. If the goal of the identification is to find the open-
loop models, we can also consider the expression (18) for
the prediction errors and formulate the expression of the
cost criterion (11) as

1T P — P(6)
Jia = 5~ . dw | L(8) |* {| le
| Sp > ¢r + o }- (20)

Since (19) is an open-loop expression, the filter L(#) can
be the inverse of the parameterized closed-loop noise
model Tye(q, #), some fixed filter chosen by the user
in order to shape the bias frequency distribution or a
combination of these. Thus, the bias expression for
Tyr can explicitly be tuned to the frequency regions




which are of interest for the intended application of the
model. Moreover, if L(q,8) = Tye(g,8)"", the model
[Ty,‘(q, ) Tye(q, )] can be identified consistently (the
true plant G is in the model set).

The main heuristic motivation for performing closed-loop
identification is the presence of the sensitivity function
Sp as a filter in (20). The sensitivity function emphasizes
the frequency region where Sp is large and one expects
to obtain an accurate model fit in those frequency re-
gions: typically around the cross-over frequency where
the sensitivity reaches its maximum value and in high
frequency where the sensitivity is close to one. More-
over, a poor model fit occurs in low frequency where Sp
is low. The filter L must be fixed in order to provide
a consistent estimate of P for the situation that P is in
the model set because incorporation of a parameterized
noise model in L will result in a bias distribution that
hecomes dependent on the identified noise model as well
as on the spectrum ¢,. Moreover, in the presence of bias
there exists no simple choice of a fixed filter L that can
flexibly tune the expression (20).

Thus in identification for control and in terms of bias con-

siderations, the identification of models of the closed-loop
transfer functions must be preferred to reconstructed
models of the true open-loop transfer functions for its
flexibility and if both input-output and noise transfer
functions have to be identified for the design of a con-
troller.

4.2 Variance expressions

In this section, we present the asymptotic variance of
the resulting open-loop transfer function estimates when
they are obtained as function of the closed-loop esti-
mates, for the situation where the true system is in the
model set, and both plant model and noise model are es-
timated. Since all closed-loop identification approaches
give the same asymptotic variance in the case of lin-
ear feedback, see [GLV97], we present the result for the
generic indirect method presented previously.

Variance expressions for the estimated closed-loop trans-
fer functions T}, and Ty, are available through the stan-
dard expressions for open-loop identification [Lju87]:

cov Ty, (€) =~ %(ﬁ;“‘ - | Sp(e™) |2 ﬁ
3 Wy . n ¢vc; _ iy 12 ¢
cov Bye(e) = 050 = T Sp(e™) P 7 (21)

where n is the size of the vector 8, and n, N are sup-
posed to tend to infinity at appropriate rates. The feed-
back introduces the sensitivity function Sp. Thus for
a given noise to signal ratio 2%, the sensitivity function
will contribute to variance 1educt10n at frequencies where
| Sp i< 1, i.e. in low frequency. Thus one typically ex-
pects to obtain an accurate model fit of the closed-loop

transfer functions in low frequencies than in high fre-
quencies.

For obtaining variance expressions of the reconstructed
estimates P and H, use can be made of first order ap-
proximations, leading to

I", — f}:r ~ Tyr Ty-r - Tyr
1-T K, 1-TyK, (1 - Ty Ky)?
ﬁ — Tye ~ Tye + Tﬂe ye (22)

1-T, K,  1-TyuKy 1-T,K)? ‘
According to the definitions of Ty, and Ty in (3), we

obtain the following result:

cov P(e ) o~ WCOUTyT(eiW)

cov H(e!

uu) s WOOU Tye(ei‘”). (23)

If we combine equations (21) and (23), we obtain the
well known result

Pleiv) v .,..T.I.'...—l ¢_U
P NS P g,
n 1 ¢y

cov H(e™) =~ (24)

N|Sp(e™) o2
In closed-loop identification the role of the sensitivity
function (and the feedback) is essential. Compare the
two couples of equations (21) and (24): the sensitiv-
ity function contributes to variance reduction for the
estimates Tyr and Tye where the sensitivity function
| Sp |< 1, and has the opposite effect on the recon-
structed estimates P and H: it contributes to variance
increase at these frequencies.

e The sensitivity function contributes to variance
and bias reductions for the reconstructed estimates
P and H in the same frequency regions: see (20)
and (24), the errors are minimal around the cross-
over frequency and in high frequency.

o Most of the control designs have a sensitivity reduc-
tion objective. If the nominal closed-loop system
constructed based on the nominal model is far from
giving optimal performance, one can choose either
reconstructed estimates of the open-loop plant or
estimates of the closed-loop transfer functions to
improve the controller. In that case however, the
sensitivity function only affects the reconstructed
estimates in a narrow low-frequency band that is
not essential for the design of the controller. On
the other hand, if the controller is close to its opti-
mum, the sensitivity function is maximum around
the cross-over frequency and may greatly affect the
estimates Ty, and Tp..




e For a non-minimum-phase plant the sensitivity
function is constrained by the unstable zeroes: as
Sp is pushed down to one frequency range, it pops
up somewhere else (the water-bed effect). The role
of the sensitivity function is therefore emphasized.

¢ In terms of the errors on P — P, the sensitivity
function acts in the same way on bias and variance
errors.

Thus, in identification for control and in terms of vari-
ance considerations, it is preferable to use the recon-
structed models when the ultimate objective is to design
a new controller, especially if the controller is close to its
optimum.

5 An example

We have developed a simulation that illustrates the im-
pact of the sensitivity function on estimates T}, and P.

Frequency

Figure 2: Bode diagrams of the true sensitivity function S,
(solid), and the experimental expectation of the
covariance distribution of Ty, (dotted) obtained
by averaging the 100 Monte Carlo runs.

Assume that the true system G is described by the fol-
lowing OE model:

B(q)
A(g)

y(t) = u(t) + e(t), (25)

of order 6, e(t) is white noise with variance o = 1. The
poles are at ¢ = —0.0030 £+ j0.9119, 0.8082 % j0.5605
and 0.9837 & 70.1491, the zeros at ¢ = 1.1865 £ 70.7993,
0.4624 £ 70.2838 and 0.4307, and the DC gain is 0.4897.
This is a stable and non-minimum phase plant with sin-
gle delay. The sampling period used in the simulation is
T, = 1. The excitation signal r(¢) used in the iden-
tification experiment is taken to be white noise with

power spectrum ¢, = 10, and 1000 samples are com-
puted. The stabilizing controller is a proportional con-
troller u(t) = k(r(t) —y(¢)) with k = 3, close to the max-
imum gain that guarantees closed-loop stability. Since
the plant is non minimum phase, and the controller is
close to its maximum value, we expect to obtain large
variations in the sensitivity function Sp: indeed, see in
Figure 2 the amplitude Bode plot of the sensitivity func-
tion. The advantage of using a proportional controiler
is that the order of the closed-loop T, and open-loop P
transfer functions are the same: the reconstruction (16)
is therefore easy and the consistency of the reconstructed
model is guaranteed.

The first step of the example is to perform an ‘open-
loop’ identification experiment that estimates Ty, from
the data r and y, with a full order OE model structure, of
order 6 in order to analyze the effect of the sole variance
errors. The experiment was run 100 times, in order to get
conclusions that would not depend on a particular noise
realization. In Figure 2, we have compared the Bode
plots of the true sensitivity function S, and the experi-
mental expectation of the covariance distribution of the
model ’f'yr obtained by averaging 100 Monte Carlo runs.
Observe the two curves in 2: the covariance distribution
curve follows the variations of the sensitivity function
curve, especially above 0.2 rad/s. In Figure 3 we have
compared the Bode plots of the true closed-loop transfer
function Ty, and the experimental expected model Tyr
obtained by averaging 100 Monte Carlo runs. The two
curves in Figure 3 are close to one another where the sen-
sitivity function is low. This clearly shows the impact of
the sensitivity functions as expected in theory.

In the second step of the design, we perform the recon-
structions of the expected open-loop model P as well as
the experimental expectation of the covariance distribu-
tion of P via (15). The two reconstructions are again
obtained by averaging the 100 Monte Carlo runs. Ob-

Frequency

Figure 3: Bode diagrams of the true input-output closed-
loop dynamics Ty, (solid) and the experimen-
tfa,i expectation of the estimated transfer function
Tyr (dotted).




Frequency

Figure 4: Bode diagrams of the inverse of the true sensi-
tivity function S, (solid), and the experimental
expectation of the covariance distribution of the
reconstructed model P (dotted) obtained by av-
eraging the 100 Monte Carlo runs.
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Figure 5: Bode diagrams of the true input-output closed-
loop dynamics P (solid) and the experimental ex-
pectations of the reconstructed transfer function
P (dotted).

serve the Figure 4: the experimental expectation of the
covariance distribution of the reconstructed estimate P
i large (resp. low) where the inverse of the sensitivity
function is large (vesp. low). In Figure 5, the Ampli-
tude Bode plot of the expected open-loop model P is
displayed. The model P can not capture the three reso-
nances of the true plant because the inverse of the sensi-
tivity function reaches its minimum value at these three
frequencies. This clearly shows that since the role of the
feedback is to reject some frequencies, the reconstructed
open-loop model can not capture these frequencies.

6 Conclusions

In identification for control, the ultimate objective is to
use the estimates for control design. In this paper we
have compared control designs based on open-loop trans-
fer function estimates versus closed-loop estimates. In
terms of bias considerations, we have shown that models
of the closed-loop transfer functions must be preferred to
reconstructed open-loop models when both estimates of

P and H are needed for the design of a new controller. In
terms of variance considerations, we have shown the role
of the sensitivity function in the variance distribution,
whose impact on open-loop and closed-loop estimates is
entirely different. We have presented a simulation that
reveals the importance of the sensitivity function in the
variance distribution for both estimates of T}, and P.
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