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Abstract

This paper highlights the role of the dual Youla pa-
rameterization in identification for control, when the
Youla parameters are used for control design. The well
known Hansen scheme is first modified in order to es-
timate the Youla parameters separately. The modifi-
cation naturally arises when the ultimate objective of
the identification is to use these estimates directly for
control design.

1 Introduction

The typical context in identification for control is where
it is desired to estimate a plant model, with the view
of designing a new controller that achieves better per-
formance on the true system while providing robust-
ness guarantees: see e.g. ([1]. The plant model is
estimated in closed-loop, i.e. with data collected on
the closed-loop formed by the feedback connection of
the unknown system and some stabilizing controller €.
Most closed-loop identification techniques have in com-
mon the ability to estimate approximate models of the
open-loop system on the basis of closed-loop data. The
identification in the Youla framework is one of these,
known in the literature as the Hansen scheme [2]. It is
based on the parameterization of all plants stabilized
by the controller €. The true system is parameter-
ized as a controller-based perturbation of some plant
model, defined by a Youla parameter. The identifica-
tion of this Youla parameter is an open-loop identifi-
cation problem. The new identified model is then ob-
tained as a Youla-parameter correction of the previous
model. Typically, in iterative identification for control
schemes, the open-loop models for both input-output
and noise dynamics are reconstructed from the closed-
loop estimated parameters, followed by the design of a
new controller on the basis of these reconstructed open-
loop models: see e.g. [3]. In this paper an alternative
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methodology is used; we parameterize the controller
such that its design is directly a function of the esti-
mated parameters of the closed-loop model in lieu of
those of the reconstructed open-loop model.

A quick description of our methodology is as follows.
We modify the Hansen scheme such that it allows to
estimate separately the dual Youla parameters: the
input-output perturbation of the plant model as well
as the disturbance dynamics are estimated separately
in an open loop framework. Finally, we relate these
estimates to a controller perturbation. The controiler
perturbation is obtained by parameterizing the set of
all controllers that stabilize the new plant model (Youla
parameters). We shall see that it is the knowledge of
the dual Youla parameters that allows us to design an
LQG controller with the optimization performed di-
rectly on the Youla parameters.

The initial setup to be considered is depicted in Figure
1. In this configuration, the external signals are r(t),
the known reference signal, and e(t), a white noise of
zero mean and variance o?. These signals are indepen-
dent. u(t) is the control input signal and y(¢) is the
observed output signal. The vector notation S : [P H|
is used to describe the true system, which maps the
inputs u(¢) and e(?) into the output y(t): see Figure 1.
P(q) and H(g) are proper scalar rational function oper-
ators and H(g) is stable and minimum phase. Here ¢!
is the backward shift operator (g~ 'u(t) = u(t-1)). Fi-
nally C : [C, C,] denotes a two-degree of freedom con-
troller, designed on the basis of a known plant model
S : [P H}, and this controller internally stabilizes the
system S.

2 The Youla Parameterization

In this section we briefly recall the Youla parameteriza-
tion of all controllers that stabilize a given plant model,
and the dual Youla parameterization of all systems that
are stabilized by a given controller.




Figure 1: The internally stable feedback loop formed by
true system S and the controller ¢

Theorem 1 [}/, [2] Let 3 and C have coprime factor-
izations $ © [Ny UplD;", C : [Tz NeD7', where
Ny, Dy, Up, Ng, Ds, T belang to RHeo, the set of all
stable proper rational transfer functions. Assume that
the following Bezout equation holds

®

This equation ezpresses both that the factors are co-
prime and that the feedback loop formed by the plant
maodel and the controller is internally stable. Then, the
set of all LTI two degree of freedom controllers that
stabilize S is given by

Cs ={Cse(T,Q): [T (Ne+ DsQ))(Ds — NpQ)™"
T,Q € RHoo with Ds — N;Q # 0}. )

Symmetrically, the set of all LTI plants stabilized by
the controller C is given by

Sp ={850(VU) : (Np + DeV) Ul(Dp = NoV) ™
U,V € RHowith Dy — NiV # 0}, 3)

NeNp + Dan, = 1.

Without loss of generality U can be taken as a unit,
i.e. its inverse also belongs to € RH .

3 The Hansen Scheme

We consider that the plant S is unknown and that the
designer has selected some model S, typically much
simpler than the true system, and has designed a con-
troller C on the basis of that model that stabilizes S.

Invoking Theorem 1, there exist U,V € RHo with U
a unit such that the true plant S can be expressed as

(4)

The dual Youla parameters, U and V, are the values
that correspond to the true plant and represent the
plant perturbation with respect to S. The pleasing
aspect is that the identification of these parameters can
be achieved in a standard open loop framework (see
e.g. [2]). We present an alternative method for the
estimation of these parameters, also in an open loop

Ss¢(V,U): [(Np+DeV) UJ(Dp - NeV)™.
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Figure 2: The internally stable feedback loop formed by
the true plant Sg.s(V,U) and the controller €

framework. Consider the feedback system represented
in Figure 2, by replacing in Figure 1 both the controller
C and the plant S by their factorizations in Theorem
1. The equations that describe this closed-loop system
are given by

8] - [mmn ][9] o

Let us introduce the auxiliary signal ¢(t), defined in
Figure 2. From closed loop equations (5), with the Be-
zout equation (1) holding, the transfer functions from
signals w(t) = Ter(t) and e(t) to g(t) are obtained as

follows:
q(t) = Dpy(t) — Npu(t)
= Dp|(Np + DeV)Ter(t) + DsUe]
— Np|(Dp — NaV)Ter(t) ~ NeUey)

= [NeNp + DeDy)VTsr(t)) + [NeNp + DeDp)Uey
= Vuw(t) + Uelt). (6)

Since w(t) is known, and since w(t) and e(t) are uncor-
related, the identification of V and U from the signals
w(t) and g(t) appears as an open loop identification
problem. Classical open loop techniques, as e.g. de-
scribed in [5], can be used.

This result is somehow dual to that obtained in the
Hansen scheme, where the identification of the parame-
ters V and U is obtained from auxiliary signals 2(¢) and
z(t) in Figure 2, with 2(t) = Vz(t) + Ue(t). The sig-
nals z(t) and z(¢) can be constructed from the known
signals u, y and . The difference with the Hansen
scheme is that here we generate the signals from the
controller rather from the plant.

The second step in the Hansen scheme is to reconstruct
the open loop model. Given estimates (7, V,of U and
V, respectively, we can compute an estimate of the
plant Sg.4(V, U} as

850V, 0) ¢ (N + DsV) O)(Ds— N:V)™2 (7)




4 Estimation and Validation

In prediction error identification one typically considers
a general model structure of the form

q(t,0) = @

parameterized in terms of a parameter vector . The
parameter estimates are obtained by the minimization
of a least-squares criterion function of the form,

V(g,8)w(t) + Ulg, 0)e(t),

VHORSES Ze(t 8)%,

=1

®)

with a set of data ZV = {g,w} collected on the closed
loop system via (6). Here €(t,8) are the prediction
errors, which for the model (8) can be expressed as

= L(g,0){q(t) - V(g,Dw(t)},

where L(g,0) is any stable filter. Since the two. esti-
mated Youla parameters belong to RH,, there is no
constraint on the model structure in (8): we are able to
apply the standard (open loop) prediction error analy-
sis. Moreover, the fact that w(?) is a user-defined refer-
ence signal allows us to estimate the Youla parameters
U and V separately. Indeed, consider the following two
identification experiment setups with their correspond-
ing prediction errors

€(t,0) (10)

i

o Let L(q,ﬂ) = U(g,0)"! and w(t) = 0 V¢
1,...,N. Then (10} becomes

eu(t: 0) = 0(‘1) e)ulq(t) y

where g(t) is generated from the signal y(t), u(t)
collected on the closed-loop system with a zero
reference signal: r(t) =0,t=1,...,N.

e Let L(g,8) = L{g) be any stable filter and w(%)
any sequence of input data. Then (10) becomes

eo(t,6) = L@){a(t) - V(g,0)w(®)}-

The minimization of the criterion (9) with the predic-
tion errors €, (,8) and a set of data ZJY = {g,w = 0}
provides an estimate U = U(g,6") of U, while the
minimization of the criterion (9) with the prediction
exrors €,(t,6) and a set of data Z}' = {g,w} provides
an estimate V = V(g,8") of V.

Note the simplicity with which one can generate the
informative data about the noise model U, which is es-
timated in closed loop. Observe that U defines the true
noise transfer function H, but we shall see that it is the
parameter U and not H that is needed for the deriva-
tion of the controller. A particular choice of the filter
L can be selected such that the identification criterion
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Figure 3: The Modeling error experiment setup

(9) matches asymptotically a performance degradation
criterion: see e.g. [6]. This is the main heuristic moti-
vation for performing closed loop identification. With
the two estimates U and V, a new plant model is con-
structed according to the parameterization in (7). Let
us introduce the auxiliary signal §(t), as defined in Fig-
ure 3. Compare Figures 2 and 3; the auxiliary signal
is now constructed from the signals y(¢) and u(t) using
the new model (N + DV )(Dj — N 3V)~1 for P instead
of the initial nominal model NyD;'. The transfer func-
tions from the same signals w( tg a.nd e(t) to g(t) are
obtained as follows:

4(t) = [Dp — NeV1y(t) - {NﬁDJf}ut
= [Dpy(t) — Npue] ~ [Ncyt+Déut]
= Vuw(t) + Ue(t) — Vw(t)

= {V - V}w(t) + Ue(t). (11)
The signal §(t) contains the modeling error represented
by {V — V} and the noise term Ue(t). The model
error {V -V} can be estimated with e.g. a FIR model
or a non-parametric model to reveal whether specific
dynamics have been neglected in the model. As we shall
see in the next section, it will be used in the control
design for guaranteeing stability.

5 Plant and Controller perturbation

In this section, we consider controller perturbation,
and we use design schemes that relate the estimated
parameters to a controller perturbation: see [7} and
[8]. Consider the parameterization of the true system:
Sg,¢(V,U). According to Theorem 1, the set of all LTI
controllers that stabilize the true system is given by

Cs ={Cs,0(T,Q) : [T (Ne+ DpQ)|(Ds — NpQ) " :
T,Q € RHy with Dz — NpQ # 0}, (12)
where Ny, = N3+ D,V and Dy, = Dy—N;V. The closed

loop system composed of the plant model Sg.4(V,U)
and any member, Cg.+(T,Q), of the set of stabilizing




Figure 4: The set of all stable closed-loop systems for the
true plant,

()

Figure 5: The true plant in feedback with the set of
model-based controllers.

controllers is represented in Figure 4. The equations
that describe this closed loop system are given by

[y(t)]
u(t)
Here, the Youla parameter T' influences only the track-
ing part, while Q influences only the disturbance rejec-
tion part. The controller belonging to the controller set
Cs of stabilizing controllers for the true plant cannot
be implemented because the true V is unknown. The
best one can do is to replace V by an estimate V, lead-
ing to the model-based control design of Figure 5. The
closed-loop system is no longer guaranteed internally
stable for any parameter () in RHo; it is internally
stable if and only if V — V and Q together define a
stable unity negative feedback loop: see [9].

=l Bl

In [8] the Youla framework was used to design LQG
controllers with the optimization performed directly on
the Youla parameters T' and @. Consider the following
LQG control criterion

N
Jga = Jim 43yt )~ @ + M (14)
t=1

where d is the delay and X the weighting on the control
effort. It is assumed that the true plant S is known.
Consider the closed-loop system composed of the true
plant and any member of the set of all stabilizing con-
trollers in {12). As can be seen in [8], using Parseval’s
Theorem, we get an expression for the disturbance re-
jection contribution of the LQG index as,

1
Jar = 5~

"
' Dé - NpQ 12 +A 1 Né +DpQ l2 d’u)
2 Jo

(15)

where ¢,, is the spectrum of the noise model Ue(t). A
similar expression is given in [8] for the tracking cost.
The stable minimizing @ can be computed analytically,
by means of spectral factorizations and projections, as
follows:

Q =—-A"HA*Bly, (16)

where

AA* = Np P+ | Dy )] | U 2 0?
B = [AD;N;: ~ N;D4| | U |2 o°.

Here A is the minimum phase, stable spectral factor of
relative degree zero. The operator * denotes complex
conjugate, and the operator |.]5; denotes the stable part
of the operand.

6 Example

We apply the procedure to a simulation example, us-
ing an LQG control criterion. We show that the pro-
cedure allows one to derive a controller whose opti-
mal performance cost is close to that obtained with
the true plant. The true plant § has an ARMAX
model structure § = A~![B C}, with o = 0.01. It
has poles at ¢ = —0.0030 + 70.9119, 0.8082 £ 70.5605
and 0.9837 £ 70.1491, zeros at ¢ = 1.1865 + §0.7993,
0.4624 =+ 70.2838 and 0.4307. The roots of the observer
C are at ¢ = 0.95, 0.80, 0.80, 0.60, 0.60, 0.30, and the
DC gain is 0.4897. The sampling period T, = 0.05
second. The design parameter A of the LQG con-
trol cost (15) is set to 0.1. We first design a full
order optimal LQG controller for the true plant and
compute the optimal performance cost Jg, = 1.9695.
Now we identify a model for the plant in order to de-
sign a model-based LQG controller. We first seek a
model that produces a stabilizing controller for the true
plant. We perform an open-loop identification experi-
ment with a reduced order ARMAX model structure of
order 2 in order to capture the first resonant frequency
of the true plant. The input signal is white noise with
power spectrum ¢, = 10, and 2000 samples are used.
The nominal estimated plant model § = A~'[B (],

* where B(g™!) = 0.0201 * (1 — 0.5395¢71), A(¢™!) =
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1-1.967¢" +0.9898¢~2 and € = (1 — 0.8¢™1)2. The
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Figure 6: Bode diagrams of the transfer functions P
(solid), P (dotted) and P, (dashed, but indis-
tinguishable from P).

designed LQG controller, with the same design parame-
ter as the full order controller, stabilizes the true plant.
It serves as a nominal stabilizing controller C. We per-
form the coprime factorization such that (1) is satisfied
and with the following constraint | Np |2 +X | D; |*= 1.
This constraint is used for performance considerations:
see [10} for a complete discussion. Now we estimate

s b P el

Figure 7: Amplitude Bode plots of the true dual Youla
parameter U (left,solid) and the 6" order esti-
mate U (left,dotted). Amplitude Bode plots of
the true dual Youla parameter V' (right, solid)
and the 4t* order estimate V' (right, dotted).

a Youla parameter correction for the first model us-
ing the closed-loop identification technique described
in Section 3. The dual Youla parameter is estimated
using a zero reference signal. A 6* order estimate is
selected. The amplitude Bode plots of the dual Youla
parameter U and its estimate U are presented in Fig-
ure 7. The true dual Youla parameter V is of order
12, see its plot in Figure 7. It contains the two reso-
nances that are missing in the model P. We select a
4%* order model structure for the estimate V in order
to capture the two missing resonances. The excita-
tion signal 7(¢) used in the identification experiment is
taken to be white noise with power spectrum ¢, = 10;
2000 samples are computed. The amplitude Bode plots
of the Youla parameter V and its estimate V are pre-
sented in Figure 7. From these estimated Youla param-
eters, a plant model Py is derived as in (7). As Figure
6 shows, the amplitude Bode plot of the new plant
model is almost indistinguishable from that of the true
plant. An LQG controller is computed based on the
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estimated Youla parameters V and U as in section 5.
This controller stabilizes the true plant. The designed
performance cost is Jges, = 1.9808, i.e. it is the LQG
cost calculated from the closed loop system formed by
the model and the LQG controller, while the achieved
performance cost is Jycp = 1.7806, i.e. it is the LQG
cost calculated from the closed loop system formed by
the true plant and the controller. The achieved perfor-
mance cost is close to the optimal performance cost.

7 Conclusion

In identification for control, the ultimate objective is to
use the estimated model for control design. We have
shown how the knowledge of the two dual-Youla pa-
rameters U and V allows us to directly design the LQG
controller with the optimization performed directly on
the Youla parameters T' and Q.
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