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Abstract

In (8] a new model validation method was proposed
that is based on the estimation of an unbiased model of
the model error which relates the inputs to the simula-
tion errors. In this paper, we extend this methodology
to closed-loop validation, i.e. the validation of an open-
loop model on the basis of closed-loop validation data.
We show that, perhaps surprisingly, the same model
may fail to be validated with open-loop data, while it
is validated by data collected in closed-loop. In addi-
tion, we show that the uncertainty sets generated by
models validated in closed-loop are much better tuned
towards control design, i.e. the controllers that sta-
bilize all members of such a set are less conservative
than those that stabilize all members of a set validated
in open-loop. Two examples illustrate the comparison
between both methods.

1 Introduction

The question of ‘what s o good model for control de-
sign’ has been addressed for years, mainly from the
identification point of view (see e.g. [1, 3, 4, 5, 2]). A
recurrent message in most of the publications on that
topic is that the identification should be performed in
closed-loop, and that the controller should be adapted
cautiously, leading to some iterative scheme.

Recently however, the fact that the same results could
be obtained by open-loop identification with appropri-
ate frequency weightings has been advocated in (7, 8].
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Prime Minister’s Office for Science, Technology and Culture and
funding of this research by the US Army Research Office, Far
East, the Office of Naval Research, Washington. The sclentific
responsibility rests with its authors.

An important, part of these publications is devoted to
the question of model validation. The main idea is that
when a model P of a system P, is given, one can use
the simulation errors to identify a model for the mod-
eling error, that is for the difference between P, and p.
This model error model is obtained with an uncertainty
region that can be used either

(i) to decide whether P is validated, or

(ii) as information that one should use when doing
control design.

Although this validation method is very appealing, we
believe that it is not really adapted to control design as
it is, because it does not take the closed-loop aspects
into account. More precisely, even if the model is ob-
tained in a way that is relevant for control design, this
open-loop validation procedure leads to uncertainty re-
gions that are not tuned for control design, leading to
very conservative controllers. Therefore, the validation
criterion should be modified to reflect the intended use
of the model.

In this paper, a new closed-loop oriented validation
method, adapted from the one presented in {8}, is pro-
posed, and its relevance for control design is established
and illustrated in a numerical example. We believe
that our validation scheme will prove to be useful for
the control-relevant validation of models in several it-
erative identification and control schemes; we refer the
reader to [3] for further details on such schemes.

The outline of the paper is as follows. In Section 2, the
‘standard’ validation method of {8] is briefly reviewed.
Section 3 shows how it can be adapted to reflect the
closed-loop aspects involved in control design. Some
engineering aspects are tackled in Section 4, and then
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the two methods are compared on the basis of a nu-
merical example in Sections 5 and 6. Finally some con-
clusions are drawn in Section 7.

2 Standard model validation

In this Section, we review the model validation method
presented by Ljung in [8] and we explain why it is not
tuned for control design.

Let us assume that the true system is the Single-Input
Single-Output (SISO) linear time-invariant system de-
scribed by

() = Polg)ult) + (),
&{vm = Holg)elt), (2:1)

where Py(q) and Ho(g) are unknown rational transfer
functions, with Py(q) strictly proper and Hy(g) stable
and stably invertible (the argument ¢ is the shift oper-
ator; we shall often omit it to simplify the notations).
The restriction to scalar plants is inessential, but no-
tationally convenient. Here u(t} is the control input
signal, y(t) is the measured output signal, e(t) is a zero
mean white noise signal with variance o2 and v(t) is a
process disturbance signal.

We assume here that one has obtained a model
Miy)=Pgu®)+ Higlelt)  (2.2)

of the system (2.1} which has to be validated in a way
that is relevant for control design, using a set of valida-
tion data ZV = {y(1),u(1), ..., y(N),u(N)} collected
on the system (2.1), regardless of how this model was
obtained.

Most of the model validation tests are based on some
statistics over the residuals (which are the difference
between the simulated and the measured outputs):

) = L{e) @) -90) 2.3)
- 1@ (v - Pl)u).

Here L(g) is any frequency weighting prefilter. To fa-
cilitate the notations, we shall assume that L(g) = 1.
Note, however, that a common choice of prefilter is
L(g) = H™'{(g), which makes the residuals £(t) equal
to the model’s prediction errors.

Two sources can be considered for the model residuals
e(t): one that originates from the input u(¢) and which
would be zero if the model P was a perfect representa-
tion of the plant Py, and another that originates from
the process noise. According to this separation, we can
write

e(t) = 8P(q) uft) + v(t) (2.4)

where
§P(q) = Po(q) — P(q) (2.5)

is the model error. The consideration of two distinct
sources for the model residuals is only relevant if the
disturbance v has nothing to do with the input . This
amounts to say that, in the probabilistic framework we
consider here, u and v should be mutually indepen-
dent sequences of random variables [9]. This requires
that the validation data be not collected in closed-loop,
which will often be the case if the intention is to use
the model for control design. Although this is an im-
portant drawback of the standard validation method,
we shall see in Section 4 that a proper choice of the
prefilter I can help solving that problem.

The validation procedure proposed in [8, 9] consists in
identifying an unbiased model P for 6P using a set of
data {e,u}. This model error model P is then given
within a confidence interval (at a certain level of prob-
ability, typically 95% or 99%)

— [ﬁ ~AP, P+ Aﬁ] , (2.6)

Here AP is a multiple (say 2 or 3 times, depending on
the probability level considered) of the standard devi-
ation of P. The model P is said to be validated with
this uncertainty region Z if 7 contains 0 at all frequen-
cies. Indeed, since T also contains §P (with the same
probability), this means that the bias error between Py
and P is dominated by the variance and that Po and
P belong to the uncertainty set P + T at the preset
probability level.

According to [8], the model P can be used for control
design even if it s falsified, provided that the model
error model P and its confidence interval Z be taken
into account. However, as shown in Section 6, such
a procedure may lead to control designs that are far
too conservative, in the sense that a good control de-
sign does not require a good knowledge of the system
at all frequencies, but rather around the crossover fre-
quency of PoCy, where Cy, is the feedback part of the
controller present in the loop. As already advocated in
[4], a small uncertainty around that frequency makes
it possible to cautiously increase the bandwidth of the
controller, leading to iterative identification and con-
trol design methods.

Therefore, it appears that another way of validating
a model should be considered, focusing on the closed-
loop relevant dynamics and using closed-loop validation
data.




3 Closed-loop model validation

In this Section, we present a new model validation
method that is directly oriented towards control de-
sign.

The motivation for closed-loop validation follows from
the fact that, as pointed out in [4], the model P should
be evaluated by how well it mimics the behaviour of
the actual system P, when both are connected with the
same controller; ideally the ‘to be designed’ controller.

Consider once again the true system Py and a model
P, and suppose that the input signal is determined by
a known two degree of freedom controller

ciult) = C@p() v o)
= Cr(grt) - Gyt
where 7 is an external reference signal which is assumed

to be quasi-stationary and uncorrelated with v. It is
further assumed that the controller C stabilizes Fp.

The true and the nominal closed-loop transfer functions
are then, respectively,

Po(g)Cr(a)
o = Tregaw Y
2 P(9)Cr(a) .
1 1+ P(g)Cy(q) #3)

The following closed-loop residuals are considered!:
ealt) = L{g) (y(®) — Jalt))
L(@ (v - T@r(®))

leading to the definition of the closed-loop model error
8T

(3.4)

eal(t) = L{g) (6T (q) 7(t) + So(q) v(t)) (3.5)
where 1

So(g) = ———re—r——
o= T RCy @
is the closed-loop sensitivity function and

§T(q) = To(g) — T(q) (3.6)

describes the mismatch between the actual and nomi-
nal closed-loop transfer functions (3.2) and (3.3).

Once again, we shall assume in the sequel that the
preﬁiter L is 1. However, a possible choice would be

L(g) = H*(¢)8'(q), where

A

i
Y0 =17 P(g)Cyle)’

INote that the computation of these closed-loop residuals re-
quires that 7' be stable. In other words, P must be stabilized by
C, which is obviously a necessary condition for P to be closed-
loop validated with respect to this controller.

which makes the closed-loop residuals equal to the
closed-loop prediction errors.

We now apply the open-loop validation procedure de-
scribed in Section 2 to the model T of the closed-loop
transfer function Ty. Thus, an estimate T of the closed-
loop model error 0T is 1dent1ﬁed using a set of data
{ea,7}. T is then validated if the confidence interval
around T,

J=[P-aT, T+ af], (3.7)

contains zero at all frequencies. Based on the deriva-
tions of Section 2, this means that if 7' is validated with
an uncertainty set J, then Tp and T belong to the un-
certainty set T+ J. The important observation now is
that, if T is validated with an uncertainty set 7, then
P is validated with an uncertainty set Z, that can be
computed from J. We now show how to compute Ta.

Remark that (3.2), (3.3), (2.5) and (3.6) give the fol-
lowing relation between d71" and §P:

PyCy P,
1+PCy, 1+PC,

(P + 6P)C, Pc,
1+ (P+6P)C, 1+ PC,

o =

(3.8)

It is easy to compute a new estimate P, of 6P once an
estimate T of 87T has been obtained:
L. T+T
P+ Py= -——i'T'“"“‘:' (3.9)
- Cy(T'+7T)

B, is 2 model error model of P obtained from closed-
loop data. The derivation of a confidence interval Zy
around P, from J around T is straightforward, since
the covariance of the closed-loop model error models
are related to each other (first order approximation)

by
cov (Pcz) = [68};:1] cov (T) {3;;;‘}* . (3.10)

More precisely, if 7' is paramet;rlzed by a vector of pa-
rameters © = [0 - n} , the uncertainty around that
model will often be given under the form of the co-
variance matrix of ©. If this uncertainty has to be
represented by ellipses on the Nyquist plot of Py, the
formula to apply is

cov {?R (Pa),9 (ﬁc,)} -

oR 1551 an f“c;
EEN 26
) T | cov(©)
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It must be evaluated at each desired frequency.

It follows that if 7' given by (3.3) is validated with an
uncertainty set J defined by (3.7) then P is validated
with an uncertainty sef

Icl e [Pd - Aﬁcl, f)cl + A}BCI] ] (3'11)

where Py and AP, are defined via (3.9) and (3.10).

Note that the fact that a model is validated only means
that the variance error supplants the bias error. There-
fore, a model P may be open-loop falsified for some
data, set {e,u} because of its high bias at some fre-
quencies, but closed-loop validated for some data set
{ea,7} if the bias is reduced by the feedback at those
frequencies. This will be illustrated in a numerical ex-
ample in Section 5. Section 6 gives some insight into
the relevance of the closed-loop validation procedure
for control design through another example.

4 Engineering aspects

In this Section, we present the intuitive rules that we
have adopted for the choice of structure and order of
the model error model.

4.1 The structure of the model error model

In open-loop as well as in closed-loop validation, the
choice of a structure for the model error model should
always be done with great care. The main requirement
is that P (resp. T) must be an unbiased estimate of
8P (resp. 8T). Since the computation of these model
error models is done using standard open-loop predic-
tion error identification tools, we refer the reader to [6]
for guidelines.

4.2 The order of the model error model

Let np,, 7p, N, and g, denote the McMillan degrees
of Py, P, C, and Cy. It is straightforward to see from
(8.8) that the order of the model error 6T is

ner = Np, +1p + 2(Mc, +10,)- (4.1)

As the McMillan degree of Py is unknown, we propose
to choose the order of the model error model as

ng = 2(np + 10, +10,); (4.2)
while its delay should be chosen identical to that of T

If Cy(q) = 0, our validation procedure reduces to the
one outhned in Section 2. The order of the model error
model P is then taken as twice the McMillan degree of
P, and its delay should be that of P.

Note that a higher order for the model error model
increases the variance of its estimate, such that more
models are validated as this order increases, but with
a larger uncertainty region.

4.3 Standard validation with closed-loop data

As stated in Section 2, the standard ‘open-loop’ vali-
dation procedure can only be used if the input signal is
uncorrelated with the noise. Actually, since we identify
a strictly causal model error model, this requirement
can be relaxed, and all that is needed is that u(t) be
uncorrelated with the future noise v(t+1), v{t+2}, ...

Note that, in closed-loop, u{t) can be written as

 Clar(t) — Cylaptt).
= = G @R

(4.3)

We can formulate the following observations from (4.3)
for the standard validation of a model Pdirectly from
closed-loop data:

o If u(t) is white, then u(t) is only correlated with
v(t), v(t — 1), ... Otherwise, v(t) is correlated
with v(t + k) for some k > 0, and u(t) is then
correlated with v(t+k), v(t+k 1), ... To av01d
this problem, one can use a prefilter L = H -
which will make L{g)v(t) (almost) white, if His
a good model of the noise dynamics Hp.

¢ Assume now that v(t) is white, possibly after fil-
tering through L. If C, does not contain a delay,
u(t) is still correlated with v(t). In this case, Po
and P must contain a delay (for well- posedness
of the closed-loop), and consequently §P as well,
which ensures by (2.4) that ¢(t) only depends on
past inputs u(t—1), u(t—2), ... (which are uncor-
related with v(t)) and on the current noise sam-
ple v(t). Thus, if the feedback controller does
not contain a delay, a model structure with delay
should be chosen for P.

To summarize these observations, one can use the stan-
dard open-loop validation method of P with closed-
loop data provided an adequate prefilter is used. Re-
call however that the closed-loop validation procedure
presented in Section 3, which first validates T, allows
the input signal  to be correlated with the noise v (the
only requirement being that 7 and v be uncorrelated).

5 Numerical illustration I: closed-loop
validation of an open-loop unvalidated model

In this Section, we show that a model that is not val-
idated in open-loop may nevertheless be validated in
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closed- loop if its bias is reduced by the presence of the
controller. This example was first proposed by Schrama
in [10].

The true system is of order 8, while its model is of
order 5. Their expressions, and that of the controller
used for validation, are given in equations (5.1) to (5.3)
(see below). In this particular case, the controller (5.3)
was designed from the model (5.2). For simulation pur-
pose, all these transfer functions are discretized with a
sampling time of 0.05s. Hy is assumed to be 1. The
Bode diagrams of the system and the model, both in
open-loop and in closed-loop, are given in Figure 5.2.
Note that the important low-frequency open-loop bias
disappears in closed-loop.

Bode Diagrams.
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Figure 5.2: Bode plots of Py (—), P (~=), To, () and
()

Two experiments are carried out on the system:

1. The open-loop system P, (5.1) and its model P
(5. 2) are drlven by a white noise signal u,(t) with
variance 02 . A process noise v(t) (white noise
with variance 0. 5, uncorrelated with uq(t)) acts
on the output of P.

2. The real closed-loop system, defined by (5.1),
(5.8), (2.1), (3.1) and (3.2), and the closed-loop
model, defined by (5.2), (5.3) and (3.3), are
driven with a unit variance white noise reference
signal 7(t). A process noise v(t) (white noise with
variance 0.5, uncorrelated with 7(t)) acts on To.
The input signal of the true system is denoted

uq(t) and its variance o2 _.

The variance of the input signal in the first experi-
ment is chosen equal to that in the second experiment:
o’ 2 A data set of 1000 samples is collected

Uol o“cl

during each experiment and used to identify a model
error model B of order 10 (experiment 1) or 7' of order
18 (experiment 2). The latter is then used to compute
P, asin (3.9). In each case, an ARX structure is cho-
sen to reduce computational burden. The orders were
chosen in accordance with the rules given in Section 4.

Thus, we end up with two model error models P and
P, which are given with their respective 99% confi-
dence regions Z and Z,. Their amplitude Bode dia-
grams are depicted in the lower parts of Figures 5.1
(a) and (b). According to these plots, the model is
validated with closed-loop data using the closed-loop
validation procedure proposed in Section 3, since the
uncertainty region around P, contains 0 at all frequen-
cies: see Figure 5.1 (b). However, it is not validated
with open-loop data using the standard open-loop val-
idation procedure. A very natural explanation to this
is that for the closed-loop model, the variance error ex-
ceeds the bias error at all frequencies, which is clearly
not true for the open-loop case. This is an important
observation, which actually means that a biased model
(typically, 2 model of order less that the system’s) can
be validated in closed-loop (the validation has been
done here with the ‘to be designed’ controller, which
is the ideal case when control design is of concern).

The upper parts of Figures 5.1 (a) and (b) show the
amplitude Bode diagrams of P, Pand P+ P(C;), the
latter being a refined approximation of Fy. Since I
is the confidence region of P(c;), that of 15+}5(c;) is given
by P+I(d), it is also shown on the plcture Recall that
validation, i.e. 0 € T(a), implies that Pe (P + Z(ery)s
which is only true in closed-loop (Fig. 5.1 (b})). In that
case, Py is also contained in this uncertainty region at
almost all frequencies.

Note that in the absence of noise (v(t) = 0}, the model
would not be validated in open-loop, nor in closed-loop,
since the variance of P(y would then be zero.

6 Numerical illustration II: a glimpse on
closed-loop validation for control design

We have shown that a model may be validated accord-
ing to our new closed-loop validation procedure even
though it is not validated in the classical open-loop
way. Now, we explain why this new validation test has
relevance for control design.

6.1 Problem setting
We have taken a ‘true system’ that has the following
ARX structure:

(1—1.4¢"140.45¢" %) y(t) = ¢~ (1+0.25¢ ) u(t)-+e(t),
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30 55 + 3020 55 + 30538 s + 40373 5% + 41972 5 + 12467

(5.1)

(5.2)

P = 12602357 + 321.750 + 26859 85 + 10412 54 + 3091.4 5% + 11032 s? +- 306.81 5 -+ 986.86
p . 0001638 5 — 0.13261 s* + 38.769 5° + 2250.9 5% + 1447.4 5 + 4753.2
B 5 + 11.397 5% + 156.58 53 + 604,42 s2 + 42.466 s + 337.84
37.375 5% 4 528.48 5 + 5625
Cr = Cy =

s? +110.01s + 1741.6

Py {conl.), P {dashed) and P + P~ (mixed) + conlidence region of P~

Model arror model P~ with uncentainly region (opan—loop validation)

(a) Open-loop validation

(5.3)

2y (cont.), P (dashed) and P + P~ , (mixed) + conlidence region of P,

Model error model P, with uncertainty tegion (closed-loop validation)

(b) Closed-loop validation

Figure 5.1: Amplitude Bode diagrams. Upper plots: Py ), P (==, Py 15(64) (=) and p + Z{ey (filled). Lower plots:

Brety (—) and Ty (filled)

with e(t) white noise of unit variance.
The controller is a simple unit gain output feedback

controller:
u(t) = (t) - y(t)

with r(t) white noise of unit variance, unconelated
with e(t).

The model under test is the following:

b 0.9288 + 0.2604¢™* -1
T 1-1.3068¢~1 + 0.4534q*2q

Two data sets are collected on the system. The first
one, ZX% = {r(t), uc(t), ya(t)}, contains 1000 sam-
ples of data collected on the system in closed-loop, r(t)
being white noise of unit variance uncorrelated with
e(t). Tt will be used to check if the model is closed-loop
validated. The second one, Z}%° = {uu(t),vai(t)},
contains 1000 samples of open-loop data. Here, uoi(t)

is a white noise sequence uncorrelated with e(t), and
with a variance equal to that of uy(t). This data set
will be used for the open-loop validation test.

6.2 Relevance for control design

The signals of the open-loop data set and P are used to
identify a model error model P of order 4. An output-
error structure is chosen for P since we are not inter-
ested in the noise dynamics. The signals 7(t) and yq(t)
of the closed-loop data set are used to identify a model
error model T. An output-error structure of order 4
(since no, = na, = 0) is also chosen. P,; is computed
from T. All model error models are obtained with their
99% confidence regions.

Figure 6.1 (a) shows the Nyquist diagrams of P, p
and P + P with its uncertainty region P +Z (ellipses).
Recall that P is validated if its Nyquist diagram passes
through the ellipses. Clearly, it is not the case.
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(a) Open-loop validation (b) Closed-loop validation

(¢) Enlargement of (a) (d) Enlargement of (b)

Figure 6.1: Nyquist diagrams of Py (—), P(—)and P+ P(cg) (—) with confidence ellipses
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According to [8], one can nevertheless use P for control
design, provided that P and Z be taken into account.
Figure 6.1 (c), which zooms on the central part of Fig-
ure 6.1 (a), shows that P and 7 do not give a very pre-
cise knowledge of the system Py around the crossover
frequency (the circle of modulus 1 is depicted), al-
though P is locally validated at that frequency. There-
fore it seems obvious that the standard validation cri-
terion is not suitable for control design, even though it
informs about the quality of the model at the frequen-
cies that are the most important for control design®.

Let us now consider the same Nyquist plots when the
model error model is built according to our new val-
idation procedure. Figure 6.1 (b) shows the Nyquist
diagrams of Fy, P and P + P, with its uncertainty
region P + I (ellipses). Figure 6.1 (d) is an enlarge-
ment around the crossover frequency. Although the un-
certainty ellipses are much larger at most frequencies,
they are tight around the crossover frequency, and they
capture the real Py. Consequently, a larger gain mar-
gin and a finer (less conservative) controller tuning will
be allowed.

7 Conclusions

A new method has been proposed for model validation,
which takes account of the closed-loop properties of the
model rather than of its open-loop quality. The valida-
tion criterion is an expression of the matching between
two closed-loop transfer functions: on the one hand,
the true transfer function Tg, built by the interconnec-
tion of the plant Py with the controller C; on the othel
hand, the nominal one 7', made up by the model p
and the same controller. This criterion can then be
reformulated in terms of I:': rather than 7', giving an
insight into the quality of P as a representation of Py
in a closed- loop framework.

A numerical example has shown that the classical ap-
proach to model validation may lead to very conser-
vative uncertainty regions, and that it is therefore not
suitable for control design. On the contrary, the new
one leads to uncertainty regions which are shaped for
that purpose. This remains true when the model is
biased. This is a typical case often encountered when
the purpose is to design a low-order controller (from a

2Indeed, this test — comtrary to usual tests based on corre-
lation plots of the residuals — gives more than a yes/no answer
to the question of validation. Actually, one can see that the
model is locally validated in a limited range near the crossover
frequency. This validation test allows thus to assess the quality
of a model at each frequency, which may prove useful if the model
is intended to be used in a certain frequency band outside which
no precision is required. The same property hoids of course for
the closed-loop validation test.

low-order model) for a more complex system.

- The fact that a biased model can be validated clearly

shows that the notion of validation cannot be separated
from the intent of the model, nor from the experimental
conditions. It is very natural to say that the quality
of a model should always be evaluated with regard to
its application. The closed-loop validation method is
nothing but a formal application of that point.
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