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10 Riccati Difference and Differential Equations:
Convergence, Monotonicity and Stability

Robert R. Bitmead and Michel Gevers

10.1 Introduction

The muin theme of this Chapier will be the conmections betwcen various Ric-
cati equations and the closed loop stability of cantrol schemes based on Lingar
Quadratic (1)) optimal methods for contrel and estimation. Our presentation will
encompass methods applicable both for discrete time and continuous lime, and so
we discuss concurrently the difference equations (discrete time) and the differen-
tial equations (continuous time) — the intellectual machinery necessary for the one
suffices for the ather and so it makes sense 1o dispense with both cases in one fell
SWOOP.
Our strategy for the exploration of this subject is as follows:

o The connection between particular Riccati equations and their associated LQ
optimal control and estimation problems is established. This is done for
_ Finite horizon LQ optimal control and least squares state estimation,

— Infinite horizon LQ centrel and estimation,
— Receding horizon LQ contral and estimation.

¢ Asymptotic stubility problems are posed for infinite and reccding horizon vari-
ants of these closed loop systems.

o General Lyapunov stability methods for linear difference and differcntial equa-
tions are then presented in a form amenable to LQ applications using the Riccali
cquation.

« Convergence and manotonicity properties of Riccati equation solutions are then
treated.

¢ Siability inherent to the infinite horizon problems is investigated using the 1.ya-
punov methods. :

o We then expand proceedings using monotonicity methods to establish siability
for receding horizon LQ solntions.

¢ Two bref examples of the application of these methods are presented from
adaptive control, where receding horizon LQ conmrollers have gained consider-
able currency because of their computational simplicity, and harmenic analysis,
where Kalman filtering methoeds may be applied to reject noise in signals.
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The examples illustrate both the extent of applicability of these optimal meth-
wods and the facility of the tools connecied with so-called Fake Algebraic Riccati
Techniques, which are our central theme here,

10.2 Linear Quadratic Optimal Control Problems and Riccati
Equations

10.2.1 Discrete Time

Our focus here will be on the feedback conmol of the lingar syswm
J‘g+|=F-T{+GUp. [lUlJ

where r, is the n-vector state process and u, the m-vector control process. The
matices F and {7 are constant (and therefore the systemn (10.1) is time-invariant)
and have appropriate dimensions = x n and n x m.

We pose three LQ optimization problems distinguished by their criterion hori-
zons: finite horizon LO) optimal conwrel, infinite horizen LG opamal conmol and
receding horizon LG optimal control. Each of these problems involves the speci-
fication of a quadratic performance objective for the lingar system (10.1) - hence
'Linear Quadratic’. This is a mawure subfield of Conmol Systems and the reader is
referred o the excellent texis [1-7] for further material and derivation of the carlier
results.

In many circumstances it is desirable o consider time-varying systems and
time-varying LG oplimization crileria. This yields (expectedly) ime-varying contol
laws. Our study here is, in general, restricted 1o Lthe bebaviour of L) tdme-invariang
control lews and 30 we consider inibally an assortment of optimal control problems
with constant, nonnegaive definite weighting (penulry) matrices ¢ and £. This
time-invariance of weighting mamices will then be reluxed at certain instances
later connected with receding horizon problems. Throughout we will assume that
the control weighting mamix, R or R,, is positive definite and so is invertible.

Finite Horizon Linear Quadratic Optimal Control. Find the inpul seguence
{wdt =0,..., ¥ — |} which minimizes the criledon

Wl
JIN rg u) = I!{:Po:r,\r + Z {_erN_)_prJ. + u}‘h"v_)_l u)} . (14.2)
1=0

Here rp is the initial swmte, ¢J; i5 & séquence of nonncgative definite matrices
penalizing the excursions of the state from zero, 7, is a sequence of positive
definite matrices penalizing the conol energy, and Py is the nonnegative definite
penaity mamix on the terminal state ;.

10 Riccan Difference and Differential Equativns 265

The solution to this problem is given by a feedback conwol law as follows:

Uy—,; = —[GTPJ'_|G+ RJ_].]-IGTPJ_lFIN_J.

(10.3)
SR qan_y J=hoo N,
where the control gain, &, is given by
K, = AGTPG+ R;y'GTPF (10.4)
und P, is the solution sequence of the lellowing Riccati Difference Equarion (RDE):
P = FUPF - FEPGIGT PG+ RYGTRF 4 Qy {10.5)

solved forwards in § from the initial condition Fp.
We make several remarks conceming this problem and its solution.

o The conwol signal sequence, {u,}, is & causal feedback ol the sysiem state
sequence, {x;1.

o The feedback pain sequence, {1}, is computed from the Riccatt difference
equation {10.5) solution sequence, {f%]. which in trn is computed from Iy,
{1, {#;}, Fand 7 via the freraion of the RDE.

« Given the above matrices, ong iterates the RDE for the sequence {F,} from the
initial condition Py (which is the final stae penalty) effectively buckwards in
time relative to the evoiution of the plant state. Hence the peculiar indexing in
{10.3). These P, and their corespanding gains JV, may be precomputed s:'incc
they depend only on the model information and on the given penalty weightings.
This contrasts (o the state, r,, which needs to be measured on-line. Aliernatively,
the state oo can be precomputed but this then yields an open loop control law,

¢ The control sequence {u,} associated with the finite horizon LQ problem is
defined only over a fixed ime interval. [t is cusily demonstrated that the RD.E
has no finite escape properties and so the P, are wlways bounded. ‘Thus there is
no sensible notion of swbility which can be atributed to 1his LQ formulation.

¢ The minimal value of the criterion J{.¥, rp, u) is given by

JUUN pyut — rf Py

{nfinite Horizon Linear Quadratic Oplimai Contrel. We next consider a variant
of the finite horizon problem as we allow the horizon, N, 1o increase withour bound.
We now consider the case where the weighting matrices @, and £ are cunswllus,
¢ and R respectively, and examine the convergence of the finite horizon solution
o a time-invariant control law,

Specifically, we consider the problem: Find the input sequence gt =01,
which minimizes the crierion

Joelwg i) — \h_m JUN oot}

-l {10.6)
_ - 5
= .,\_11_1'!13C Z {r;Qr) +u; I}

e
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Let us study this problem briefly,

» [If [F, G] is u stabilizable pair, i.e., all modes of F which are uncontrollable are
associated with eigenvalues of magnitude strictly less than one, then a feedback
control law, uf = K*z,, exists which causes z, — Uast — ne.

# Evaluating the criterion J(N.zo,u]) for s = 0,... N, we see from the op-
timality property that this value of J{N, ro,27) exceeds the optimal value,
J*(N,zg,u}, whatever the particular choice of N Further, since u! causes
the closed-loop plant to be exponentially stable, J{.N,.0,u]) converges to
Jioc,mg, ni) as N — sc and this laner quantity is finite. Thus the sequence
of optimal costs, {J*(N, z0,u}|N = 1,2,...], belongs 1o a compact sct and
S possesses a convergent subsequence wlth a finite limit point, J3 (20). The
problem stationarity plus optimality combine to ensure the uniqueness of this
limit point.

» Singe J7 [ro) exists and s finlte and R :» 0, the optimal control law tends to
zero as ¢+ oc If [F,Q'Y?) is detectable then this implies that x, — 0, ie.,
asymptotic stability ts achieved. This aspect of infinite hortzon LQ control will
be more formally treated shonly.

Just as this optimal control problem is pesed as the limit of a finite horizon
LQ optimal control problem, so too is the solution the limit of the finite horizon
sulution:

u; = —(GTr. G~ Rj_lG""l\PmFrj‘

N _ (10.7

SRpr; j=02..., )
where the constant control gain, K, is given by

New=-IGTPC+R7CTPF (10 8}

and P iy the maxkimal nonnegative definite solution of the following Algebraic
Riceati Eguation (ARE):

Loy = FIPLF - FYPLGGT P G+ RGP F 4+ Q) 110.9}
Companng this with the earlier remarks on the RDE,

s The control law (14.7) is still a causal linear state variable feedback.

» The optimal cost is J* (g, u) = 2 Poora.

* The control gain is now constant over all time. Therefore the feedbuck law
plus the state process define a time-invariant closed loop for which asymprotic
stability questions may readily be posed.

» The ARE (10.9) usually pussesses many solutions, as may be seen by examining
the scalar cuse. Our requirement here is that the maximal nonnegative definile
solution be chosen.

s Under reasonable conditions on the LQ) problem toa be discussed luter, one has

that P — P 88 %+ oc. That is, the maximal solution is also the limiting
solution,
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e The leedback gain, K., is computed from the ARE solution, P, but now this
ARE solution is fixed in time. The ARE is an algebraic mawix equation, which
is typically solved by symplectic eigenvector methods. Cansiderable effort was
devuted to alternative procedures [8], [9] by which approximate ARE solutions
or large N RDE solutions were computed. This computational difficalty of
solving the ARE used to be rather burdensome in applications and so led to
the proposal of a mixed-mode LQ optimal conwol problem between finite and
infinite horizon, This we now discuss.

Receding Horizon Linenr Quadratic Optimal Centrol.  Historically speaking,
the computationzl solution of the ARE posed a serious problem for the application
of infinite horizon LQ control. Nowadays with better algorithms and hardware, this
is less the case or, 1o draw on Yasser Arafal!,

" est cadugue!

except in the important and recently resurgent field of LQ adaptive vontrol where
an instance of infinite horizor LQ control masquerading as finite horizon LQ con-
ol appears — Receding Horizan L@ Conirol. The numerical problem for infinite
horizon LQ control hinged on the ability 1o solve the ARE (a symplectic eigen-
vector problem) reliably, In the adaprive control context this solution needs 10 be
constructed at each adaptation step.

Receding horizon LQ control appears to he atibutable to Thomas [10] and
involves the following:

» Attime ¢ the plant is in state &, and an N-step finite horizon LQ optimal control
problem is posed. Find {a.4,ls = 0,..., ¥ — 1} which minimizes

JIN ru) = 2 n Poren + Z?I:_o‘ {I'E;jQ-’\‘—.r—N'HJ +”:tl-l—jRN'J'—"uf+f} .
(10.10}

¢ The feedback control signal v, only is applied.
e The N-step finite horizon problem is re-solved for time ¢ + 1 from state z441.

The appellation ‘Receding Horlzon' refers Lo the fact that at each time a finite
horizon problem is solved N staps into the future but that this horizen remains
N steps distant. In the adaptve control context this manslates into designing a
controlier with a fixed look-ahead or ‘prediction horizon’.

Being but an ¥-step finite horizon with a sliding initial condition, the control
solution here is given from (10.73) as

w— AGTPy G+ Ry )67 Py Fay
(10.11)
A
=y E
where Py_y is the A'th glement in the solution sequence of the RDE (10.5),
commencing with injtial condition .

1 Paris, May 1989,
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Predictably, some remarks are in order.

¢ The conirol law (10.11) is a causal linear state variable feedback. That is, the
optimat centrol may be written as a causal feedback of the state process. It may
also be writlen as an explicit {open-loop) function of time,

s The control gain, Ky _y, is constant, This is 5o in spite of the time variation of
the gain in the finite horizon solution, and is due to the fecession of the horizon.

s Computationally the solution of the receding horizon problem entails the itera-
tion of the RDE for /v steps.

. A major feature of this receding horizon solution iy that, with relatively little
increase in complexity, control constraints may be directly handled.

s Asympiotic stability questions arise here because, even though a finite horizon
problem is invelved, the control law (10.11) is applied on the infinite horizon,

¢ The LQ performance of the closed loop system is not easily related to the RDE
solution appiied, even with constant @ and R, except if & is taken very large.

¢ When the control horizon N is allowed 10 become large and @ and R are fixed,
we know (and shall scc) that Py_y — P., and the resolution of the closed
loop stability and LQ performance is easily inferred from the infinite horizon
L problem.

It is one of our aims here to focus on the stability and performance aspects of
receding horizon LQ schemes.

10.2.2, Continuous Time

We consider the linear, time-invardant, continuous-time system
£1E) = Ax(d) + Buit), i 10.12}

where w(¢] is the n-vector state process and «(f] an admissible ri-vector conrol
process. The marices 1 and B have appropriate dimensions. Again we pose three
L€) optunal control problems and provide solutions, although we do not dwell too
long where matters correspond fully with discrete time.

Finite Horizon Linear Quadratic Optimal Control.  Find the input function
{u(#,;}t £ {0.T)} which minimizes the criterion
JT, 2{0), ) = o T)7 P(Gai D) (10.13)

T
—fu {237 QUT - te(t) — WOV RIT = £)u(t)} 401014

This represents an integral version of the sum appearing in (10.2). The solution is
given by

wity = —R(I = 7' BY T — ()

. 10,1
SRT ity (10.13)
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where the conwol gain, (1), is given by

K(7) =Ry ot pir), {10.16)
and P(7) is the solution of the Riccati Differential Equation (also dencted RDE)
Piiy= ATP() + P(0)A - POBR)T'BTP() + Q) (10,17}

with initial condition P(0) = 0.
The similarity (o the discrete-ime case is mostly self-cvident and so many of
the carlier comments carry over matatls mutandis 10 continuous time. Thus

» The optimal control may be written as the cansal feedback of the state process
via control gain K(T — r), computed from P(T — r ), the solution of the RDE
{10.17) with iniial condition 7(0).

+ An asympiotic stability question is not sensibly posed with respect to this finite
horizon LQ problem,

e The optimal value of the performance criterion, J (T, z(0),u), is given by

JHT, 200, k) = (0T P(T)=(0).

Infinite Horizon Linear Quadratic Optimal Control. Parallel (o the discrete
case, wo inroduce an infinite horizon, stationary LQ problem: Find the contrel
function {a{t][¢ € {0, 5¢)] which minimizes the criterion

ool 2(0), 1) = / {z(0F Quft) + wl(t) Ru(t)} ot (10.18)
0
(One may alternatively consider the case where T — oo in (10.13) s was done in
{10.6).) The solution is given by the feedback law
utt) = —R7BTPa(t) _
N (10.15)
SKu(t),
where the constant conirol gain, I, is given by
K—=-R'BYP, {10.20)

and P is the constant, maximally nonnegative definite solution of the (continuous)
Algebraic Riccat Equation (atso dencted ARE)

0=A"P +PA-PBRT'BTP 4 Q. {10.21)

Again the earlier remarks still apply especially those directed towards the asymp-
1otic stability problem. We shall address these shortly but firstly move on to consider
the receding horizon problem.

Receding Horizon Linear Quadratic Optimal Control. Because of the increased
reliance on digital computer solutions to control problems and the computational
difficulties associuted with the solution of the (comtinuous) ARE f[a Hamiltonian
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eigenvecior problem is involved), these continuous receding horizon problems are
perhaps cven more codugee thun their discrete counterparts. Nevertheless and given
some recent interest [11] in speeifying a continuous version of the Adaptive Gen-
eralized Predictive Control we complete our catalogue by providing an appropriate
specification.

& Atdme t the plant is in state 2(2) and a T-ahead finite horizon LQ optimal con-
trol problem is posed. Find {u(f +s}|s € (0, T)} which minimizes J{7, (), u)
defined by (10,13),

v Apply w(t) and then re-solve for the next instant .

Clearly, in parallel to earlier development, the solution t this problem is given
eyuivalently by

wlt) = —KCD) T T PLT ), (10.22)

with (7't the solution of the continuous RDE (I.17) at time I with injrial
condition P{{)) = Q.

The simlarity with the discrete case is upparent, especially inasmuch as the
asymplolic stability question is raised once again since (10.22) represents a time-
invariant control law to be applied on the infinite timescale, We shall address means
of resolving this very issue shortly but make the observation at this juncture that
the diserete finite horizon problem, and hence the receding horizon problem, ditfer
from the continuows versions in one key aspect, That is, the discrete finite horizon
LQ problem is a finite dimensional optimization over the space of all possible
N-step control rn-vectors, Le., 2Y*™, while the continuous version is an infinite
dimensional problem, The conclusion that we draw from this is that, in continuouy
time, receding horizon LQ strategies are likely to be less appealing than in discrete
time because of the inherent difficulty of incorporating constraints into the former

the ability easily 1w impose conditions on, for example, control signal magnitudes
or slewing rates i a major support for the use of receding horizon LQ controllers
in discrete-time adaptive conrral,

10.3 Linear Optimal State Estimation and Riccati Equations

The marerial prescuted so far has concentrated on connectiony between LQ oprimal
comrol problems in either continuous lime or discrete time and their respective
Riccan equations (10.5), (10.9), (10.17), (10.21). As is widely known, these state
control problems are dual to certain state estimation problems. Now we shail briefly
treat these state estimation, or Kalman Filtering, ideas.

The correspondence between LG control and least squares linear state cstima-
tion is swrict duality but, for our needs here of addressing the asymptotic stability of
LQ-based but suboptimal feedback control strategies (such as the receding horizon
LQ control), we shall find that certain issues arise differently in each circumslance.
These distinctions will be noted here,
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§0.3.1 Discrete Time

Wwe consider the following system
tp1 = Fury o Gy (10.23)
yy = Hip 1wy {1024}

where &, is the state {no longer assumed measurable), y, the measured output
process, and oy und v, are zero mean, white, mutually independent gaussian noise
processes with covariance

E(";':)(wj’ Ty - (% 3,) bes-

Qur goal is 10 predict optimally the state, ,, {rom output measurements {ys|3 =
I,...,¢ — 1} [rom the initial data that our knowiedge of w18 distributed as a
gaussian random variable with mean iy and covariance Zo. The least squares
sotulion, computed recursively, is the Kalman Predictor!

Fopr)y = Fgroy + Nelyy — Hig g} (10.23]
where the Kalman gain, I, 1s given by

Ry = FEHYHEHT + Ry, (10.26)
and £ is the solution of the discrete filtering RDE

S =FEF - FLLHUHEHT + ROTHEF + 0., £10.27)

solved forwards in fime trom initial condilions wg, Do, The state estimute is gaussian
and has the following moments,

E(im—l) = 'ty
E {(-"7: - i’r|t—1}($a - il‘a__:—l )f) = .

The formulation of infinite hozon Kalman filtering problems follows dizpctly
from here by allowing t — oo above. For stationary plants and noisc covanance
matrices () and 2, this infinite time or stationary solution is given by the following

'-‘E'r+1_t - Fi’qa—l - K('.‘h - Hi‘ﬂr—i) [10-28)
where the fixed Kalman gain, {{, is given by
K=FE H (H . H  + R)7', (10.29)

and X, 15 the solution of the discrete filiering ARE
Foo = FhouoF " - FELHT (HELHY + R HILF" + Q. {10.30)

Comparison of the control RDE (10.5) with the filtering RDE (1(.27) establishes
the duatity. The major distinction between the contel and filtering problems in
practical terms is that the RDE of the laner is iterated furwards in time as opposed
1o the reverse iteration of (F0.5). lssues of asymptotic stability of the closed loop
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coniral system wanslate inlo questions on the asymptotic stability of the undriven
filters

Fpnn = (- K H .
or, in the Statlonary case,
:E'!+1|t =8 - KHE -

We shall center our artention on these stability questions shortly.

10.3.2 Continuous Time

Since the passage from LQ cantol to lcast squares state estimation involves the
introduction of stochastic signals, in continuous time this is accompunied by the
nced also to convert to the 1t8 caleulus. The state is presumed to evolve according
jie]
dielt] = Fue(thdt & Gdwit) (10.31)
dylt) — Hultide — de(#), 110.32)
where conditions above apply except that now w(t) and »(¢) are mutually inde-

pendent Brownian Motions with intensities () and H(t) respectively.
The least squures optimal state estimate now is given by the Kalman filter

it = (F — K{OHYF(Hedl + K{f)dylt) (33)
Rty — Fit: HU R4 (10.34)
Dig) = FIits - B(FY - SOET R THE - O, {10.35)

with the obvious choice of initial condidons.
We shall not rewrn explicitly o this Itd formulation of this problem since our
rask will be 1o analyse the stability propertics of the unforced filter

dalty = F — Ky sindt,

which is equally weil treated by normal difterential caleulus.

10.4 Time Out

At this stage we have presented a collection of optimal control and optimal esti-
mation problems in which Riccutl difference equations, Riccati differential equa-
tioms amil Algebraic Riceati Bquations arise. We shall be addressing the issucs of
asymptoric stability of the associated closed loop and unforced systems in various
cireumstuances. These we summuarize here:
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1. Asymptotic stability of the stutionary infinite horizon LG closed loop,

241 = (F = G(GT PG + B)7 'GP F) 1y, {10.36)

#1) = (F — GR™'GT P(00)) 2(t) (10.37)
2. Asymptotic stability of the stationary infinite horizon Kalman filter,

f41 = (F— FOLHT(HILHT + R)"'H) &, (10.38)

Ht)y=(F - HTR' B(cc)H) £(1) (10.39)

3. Asymptotic stability of the infinite horizon Kalman filter with arbitrary initial
condition,

deq1 = (F - FOLHT(HEHT + RYVH) i, (10.40)

#t) = (F -~ HTRT'D()H) #(¢) (10.41)
4, Asymptotic stability of the receding horizon LQ closed loop, with fixed N

fip1 = (F = GGTPyG + R) 'GPy F) 14, {10.42)

i) = (F - GRT'GTP(N)) 2(t) {10.43)
5. Asymptotic stability of the Kalman filter frozen at a particular iteration,

fop1 = (F - FINHT(HENHT + R)7VH) 24, (10.44)

)= (F - HTRTIE(N)H) #(t) {10.45)

We remark here that this set of stability questions displays some of the appeal-
ing variety of possible optimal estimation and control problems. The time-varying
stability problem for Kalman filtering, problem 3, is noteworthy for the difficulty
of posing a sensible dual in LQ control. This has been advanced in [12] {Sec-
tion 5), however, by including a final state weighting in infinite horizon L.Q. For
the other pairs of problems, 1 & 2 and 4 & 3, duality means that the resolution
of the one element deals immediately with the other, This holds even though the
latter two problems are deliberately derived as suboptimal strategies. It is these last
twa problems which possess the more novelty because of their recent applications,
upon which we shall comment later.

10.5 Asymptotic Stability Methods for Linear Equations

The range of asymptotic stability problems raised above refers to lincar time in-
variant systems 1(2) and 4(5) and to the time varying system 3. We now present
some tools suituble for the study of these issues. This presentation will foliow the
development in {13].

We begin by stating the discrete time Lyapunov stability theorem.
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Theoretn HLL. Consider the vecior difference equation

ey — Frooy, (10.46)
with transition function

Dt + N.t) = Fpnden_y. . Fo1 Fo

Suppose there exists a positive definite matrix sequence, 0o > I 2 P 2 ol > 0
sueh that

Fl P Fya = P = -NNT, (10.:47)

for some matrix sequence, No, and all + Then (10.46) is stable in the sense of
Lyapunov.
if further the pair [Fy, N[| is uniformly completely observable, i.e., there exisis
constants T = 0.~ > 0, & > U such that for all ¢,
=t
com vl Y ENE 4 N NG Bt it 2 6L > 0, (10.48)
il
then (10.46) is exponentially axymptotically stable.

If By v a convtant, F, then Py, may also be chosen 1o be constuni, P, us may
be Ny, N, and the uniform observability condition (1048) may be replaced by
derectability of the pair [F, N1,

Finally, the condition of uniform compleie observability of [F,, N may be
replaced by the same condition on [F, - K, NI NT| for any bounded K, and the
seme conclusion holds,

We do not provide a proof of this theorem here since it s availuble in [13], except
for the final paragraph which is an easy extension. The key result to be drawn from
this theorem is that a detectability condirion arises in the assessment of stability
and that this is nceded to conclude the rate, The astute reader will have noticed
the similarity to the carlicr heuristic statements about infinite horizon L&) stability,
where such a condition was foreshadowed.

In continuows time the result is the lopical counterpart moduloe the need to
include regularization of the differential equation.

Theorem 10.2. Consider the vecror differential eqeation

&) = Fit)z(t), (10.49}
with F (- ) bounded and locafly integrable and with transition function (7,1} Sup-
pese there exists a positive definite matrix function a0 > 31 2 Pit) > of = 0
such thuat

PUIE(Y + FTi P = —v{xaTin {10.30)

Jor some matrix function, Nit}, and all 1. Then (10.49) is stable in the sense of
Lyapunov.
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if further the pair [F(t), NT ()] is uniformly completely observable, i.e., there
exisis constams T = 4, 7 > 0, ¢ = U such that for all t,

i+
oo >yl > f FT(r, ONPINT (r)B(r, ) dr = 81 > 0, (10.51)
t

then (10 49} is exponentiolly asympiotically stuble.

If F(t) is a vonstant, F, then P(£) may also be chosen te be constunt, P, as
may be N(t), N, and the uniform observability condition (10.51) may be replaced
by detectability of the pair [F, NT).

Finally, the condition of uniform complete vhservability of [F(t}, J\'T(t)] may
be replaced by the same condition on [F(1) — K{ONT(8), NT(t)] for bounded,
focally integrable K1) and the same conclusion holds.

Recall that detectability of [F, N'T] corresponds to the condition that any unobserv-
able maodes of this pair be strictly stuble. An algebraic test for detectability is that,
for any eigenvector » of F with eigenvalue A, ie. Fo = Ae, i NTv = 0 then
|A] < 1 {in the discrete case) or Re(A) < 0 (in the continuous case). Predictably,
the development will next turn towards the application of these stability methods
to the closed loop systems given by {10.36)-(10.45). This, in turn, will allow the
connection 10 be made between problem specificauon and closed loop stability.

The next stage in our weatment of LQ stability problems will be 1o address
the question of asymptotic stability for the stationary infinite horizon LQ optimal
control problems {10.36), (10.37) or the dual stationary filiering problems (10.38),
(10.39). As cvidenced carlier, we need only consider explicitly either the con-
trol problems or the filtering problems to infer stability properties for the other.
We begin with the discrete case and then present the conttnuous version. Before
launching fully into the analysis of siabilily, we recognise the pivotal role of the
ARE in these problems and consider firsily some properties of the Riccati eyuations
und their solutions.

10.6 Riccati Equation Solution Properties: Convergence and
Monotonicity

Now ig the juncture in which those results congerned with the convergence and
monotonicity properties of the Riccati equations will be presented. These results
will, admitredly, tend to appear somewhat peripheral to our thrust toward stability
but they provide the machinery underpinning the later work on stability, The issues
in this section are 0 describe some pertinent propertics of and conrnections between
solutions of the Riccati equations and, [urther, 10 examing some depenlencivs of
these solutions on purameters.
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19.6.1 Discrete Time

Infinite horizon LQ and Kalman filtering problems are associated with algebraic
Riceati equatons (10.9), (10.30} and we have already commented briefly on the
potential multiplicity of soluions, Indeed in specifying the desired solution we
have referred to the maximal nonnegative definite solution. We now examine some
properties of this solution,

Existence of Maximal Nonrnegative ARE Solulion,

Theoreme 1003, {12} Consider the ARE associated with an infinite horizon L0 con-
trol problen,

P=F'PF - FiPGGIPG+R)IGTPF 4+ 8 {10.52]
where
¢ F.7] is stubilizable,
e PV hus no unobservable modes on the unit circle,

o G=0and it =0

Then there exists a unigue, maximal, positive definitez symmetric solution P.

This theorem specifies conditions necessary for the existence of a positive definite
maximal solution. If unobservable modes of | £, Q72 are permitted on the unit
circle then the strict positivity of P gives way only w nonnegativity. The stabi-
lizability condition is critical to the sense of an infinite horizon L problem. This
resull makes formnal that which iy heunstically measonable, We next consider the
extent ¢ which the (infinite hanzon) ARE soluton might properly be regarded us
the limiting value of the solution of the (finite horizon) RDE as the fintte horizon
Erows without bound.

Convergence of RDE Solution to ARE Solution.

Theorem LG4 Consider the ARE {1052 above and its maximal solution P, and
consider the ROE

Py = F'PE . FTRGICTERCH 0)TICTRE Q. (10.53]

Then, provided [F, G| iy stabilizable, It = 0, [F, QY iy detectable and P = 0,
Pr— FPast — e,

Notice here, once again, that the theorem statement reinforces those earlier heuris-
tics by which the validity of the infinite horizon solution was justified. The key
condition in this theoremn is that detectability on [F, Q1% is introduced. This is
stronger than the ‘1o unobservable modes on the unit circle’ condition of Theo-
rem 10.3. Allernative complementary theorems may also be developed which trade
such detectability strictions for more severe constraints on the initial condition ma-
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trix Py, typically that Py = P. For the moment, however, this form is best suited
10 OUr PUrposEs.

It is worth remarking here that very revealing examples of the sufficiency of
these theorem conditions may be simply developed by coasidering the scalar case
with unstable F' = 2, say. In this case, the ARE is a simple scalar quadratic equation
for which existence of real solutions and their positivity are easily examined.

Comparison of RDE Solutions. deSouza [14] has recently provided a lovely
extension of the results of Nishimura [15] and Poubelie (18], |17] on the compar-
ative properties between solutions of like RDE’s. An earlier version is attributed
to Clande Sumuon. The proof is by substitution into the RDE.

Lemma 10.1. [ 14f Consider two RDES (10.53) with the same F, G and H mairices
bur poysibly different Q's, Q' and QF respectively, Denvte their solution matrices
Pl and P? respectively. Then, the difference between the two solutions Py = P2—P)
sarisfies the following equaiion

P = FITRE - FITRGIGTPIG - 1) "GTAF +Q (10.54)
3,

P =FTPE - FTRGGTRG+ R)TGTRF +¢ (10.55)
wihere

Fl=F. GGG RTGTRF

Q=0
R —-G'PlG 1 R,

A wealth of useful results stems easily from this astute algebraic observation by
deSouza. For example,

Theorem 10.5. Lnder the conditions of Lemma 0.1, suppose that
ot = QR

and, for some ¢ we have
Pl =Py

then for alf b = 0

1 -, 2
Prow 2 Py

Proof, In (10.54) we have, under the theorem conditions, that £ £ 0, ¢, < 0 and

Pf‘ = (. Thus Pr < O and the result is established for & — 1, By induction the
theorem follows for all positive k.
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Note that the arbitrariness of the assignmenl of superscripts to solutions P} and
P? means that complementary results are directly established with, say, Pf+ P
FL .- This feature will be seen again in the immediately following results.

Monuotonicity Properlies of RDE Solutions, We are now in a position to apply
the deSouza Lemma 10.1 to derive far reaching monotonicity propertics of the
RDE solution which play s central part in stability analyscs to follow. We have the
following casende of results Howing from clever applicarion of the sbove lemma
to a single RDE solutdon sequence but with differing time indices.

Theorem 10.6, {16] If the non-negative definite solution P, of the RDE 110.53) iy
nonrincredsing ar one time, fe.,

Pyos Py | for some t,
then 1y is monotonically nonincreasing for all subsequent tmes,

Priegr < Peey Jforall k= 0

Proof Tdeniity P! with Py, PP with Pyyp, and take Q' = Q% in Lemma 101 or
Theorem 10.5 where now 6y = 0.

Theorem 10.7. [ 167 If the non-negative definite solution P, of the RDE (10.53) is
nandecreasing af one time, ie.,

P 2 P for some ¢,
then Py iy monotonically nondecreasing for alf subsequent times,

P 2Py Lforall >0

Proof. Wdenlify PI] with M1, I"{,2 with 7, and take (P — QF in Lemma 10.1 or
Thearem 10,5 where now ), — 0.

These two monotonicity theoreras describe the cffective sign definiteness of the
change i successtve solution values. The deSouza Lemma 10.1 may be equaliy
well applied t derive a similur property of second differences of the RDE solutions.

Theorem 10.8. [ 14} If the solution Ty of the RDE (10.53) has a nonpositive definite
second difference af me t, Le.,

P —2Pp+ 7 20,
then forali b = (),
Priwcr— 2P0 — Py 20,

Proof. Equzﬁiiun (102.55) states that AP, ET’PJ.H — P, satisfics an RDE with seate
weighting ¢, = 0 and control weighting &,, which 1s greater than the original F.
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Therefore AlY itself obeys the manotonicity properties of any RDE solution, One
then recogrises that

AP{-‘.[_APt:Pf+2_"2P£+\+P['

10.6.2 Continuous Time

The above results on discrete time Riccati equation properties carry over with
but little alteration to the realm of contiouous time. Indeed, the discrete case has
historically been the more difficult from which 1o extract hard results because of
issues such as wransition function noninvertibility ctc, We shall see, for example, that
the continuous version of the deSouza Lemma is very much more easily established
and that the history of monotonicity results is longer, going back ar least 1o Kailath
|18]. Because of this simplicity and similarity we shall atempt to be briefer.

Existence of Maximal Nonnegative ARE Solution.

Theorem 10.9, Consider the ARE associated with an infinite horizon LQ control
prablem,

0 ATP4+P4-PRR'BTP+ (10.56)
where

o 4, B] is srabilizable,
o [4, QY% has no unobservable modes on the imaginary axis,
e Qx0and R >0,

Then there exists g unigque, maximal, positive definite symmetric solution b,

Convergence of RDE Solulion to ARE Solulion.

Theorem 10.10. Consider the ARE (10.56) above and its rmaximal solution 2, and
consider the RDE

Pity= ATPt) + PYA - PIOBR'BTP) 1 Q {10.57)
Then, provided [A, B) is siabilizable, R > 0, [A, Q”Z] iv detectable and Fp = 0,

Pr—=Past »oo

Comparison of RDE Solutions, Monotonicity. Poubelle [17] now replaces deS-
ouza as the fount of all wisdom as we move to continuous time. Here the central
results pivor about the following lemma.

Lemma 10.2 {17} Consider F(t}, the solution of the RDE
P6)= ATPY « P()A — P(OBRIBTP) + 6
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with initial condition P{() > 0 and denote the closed loop matrix
Alty=A-BR'BTP(1).

Thaen P(t) satisfies

Bity= P(1)[4 - BR'BTP(t)| + [4 — BR 'BTP()TPi1) (10.58)
— Pt + AT(HPO). (10.59)
Further, P(1) satisfies
P(e) ~ Pit)(A - BR'BTP()] + [4 - BRTVBT P Pt (10.60)
— 2P BT P B
= PlOAM + AT Py - 2B BT PIOB L) {10.61)

Froof. By differentinting successively (10.17) and then differentiating (10.58).

The two higher order versions of the RDE (10.58) and (10.60) are themsclves
RDEs of sorts, In particular, their aliernative descriptions {10.59) and (1(.61) are
deliberately displayed as Lyapunov equations. We have the following simple resull
concerning the solution of such equations.

Lemma 10.3. Consider the time-varying Lyapunov equation
Siey = SCIM{FY 4+ W08ty - Wi, S(0y = 5. (10.62)
Denote by €01, 7} the transition mairiy associated with M(t). Thin the solution of

(10.62) is given by

'f ) ! B
)= @‘{_!,U__I.qusﬁ'::f,_ﬂ}-'r] ¢l W e Bt T (10.63)
0

One inmnediately derives the following monotonicity theorems.

Theorem 10.11. [f the mun-negaiive definite solution Pit) of the RDE (10.357) is
HORIRCreasing ar one time, f.e.,

Piti =0, for sume i,
then F(t) is monotanically nonincreasing fur ali subsequent times,
Pilt4ai<0  foralls =0
Pronf. Since F(t) is the solution of the RDE (10573 by Lemma 10.2, Pt} sat-

isfics (10.59), which is a Lyapunov equation with zero driving term. Appealing o
Lemuma 103, we huve

Pitgs)= @04 s, P05, 2.
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Theorem 10,12, If the non-negative definite solution P(t) of the RDE (1057} is
nondecreasing af one tme, ie.,

PE)2 0 forsomet,
then P(t) is monotonically nundecreasing for aff subsequent tmes,

Pt+s120 foralls >0,

Theorem 10,13, if the solution P(t) of the RDE (10.37) has a ponposirive definite
second derivative at time ¢, Le, P(t) <0, thenforaff s > 0, P(t +4) < 0.

Proof. Write ¥ {t) = -2P()yBT P{1B (1), which is clearly nonpositive definite,
then (10.61) is a Lyapunov equation and has a solution (¢} which 1y given by

Bltds) = ¢?'(f+s.t)ﬁ{¢m(e+a-,s)+f a1, W) Bt ) dr

The result follows.

101.6.3 Summary

With (his section we have derived and presented a combination of convergence,
comparison and monotonicity results for AREs und RDEs in discrete and contin-
uous time, which will provide the technical machinery with which to assault the
asympiotic stability problems when coupled to the Lyapunov stability techniques
of the preceding section. These monotonicity results are delightfully general and,
nawrally enough, reflect the structural properties of optimal control and estimation
problems, The truly remarkable feature of these results and their associates is thal,
despite the proclaimed similarity beiween continnous time and discrete time and
the duality between filtering and contrel, distinet merhodologies of proof are often
required from each of these specific areas o establish readily many results,

10.7 Stability in Infinite Horizon LQ Problems

Qur treatment here will concentrate on the infinite horizon stationary discrere LG
and Kulman filtering stability Problems 1 und 2, (10.36) and (10.38), and their con-
tinuous variants, (10.37) and (10.39). Addinonally, we consider also the stability
of the time-varying infinite horizon Kalman filter Problem 3 (10.40) and (10.41).
Thereafter, in the next section, we shall move on to deal with the receding hori-
zon Problems 4 and § (10.423-(10.45). Some tools, such as the recasting of the
RDE/ARE as o Lyapunov eguation will be common and so we commence with
this aspect.
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We will appeal dircctly to our earlier Lyapunov analysis 1o derive the follow-
ing results using » stundard device of rewriting the RDE or ARE as a Lyapunov
eguation. Denote the LQ gain by

Wi= (G"PG+ R)TCTRE {10.64)
Then the RDE (10.5) may be written, following some simple arithmetic, as
Py — FUPF - FTRGGT PG + R)TIGT B F 4+ @
= (F+GE;)'P(F 4+ GEy) + KR, + Q.
The astute reader will have picked (10.65) as a Lyapunov equation, with P; serving
the role of the clement with the same symbol in the stability theory for linear
equations. This we shall explait.

In continueus time we have the equivalent version of the RDE or ARE. Denote
the LG control gain

Kiti= =Rty 'BTP). {10.66)
MNow rewnte the RDE as

Pl = ATP(H) - P14 — PIOBRIOTTETPI) — Q)

(10.65)

P . o {10.67;
= (A + B P | P A~ DR + KT ()RE (). /
10.7.1 Discrete Problems
Our root problem here is 10 examine the asymplotic stubility of
wrpr = (F = GIGT PG + Ry GTPLF) (10.68]
where P 1s the maximal nonnegailive definite sotution of the ARE,
Py =FlPoF — P PocGIG P 4+ R "GPP+ Q. {10.69)

Theorem 10,14, Conyider the time-invariant lincar vector difference equation (10.68}
representing the closed loop of an infinite horizon 1.0 controlled system, wheare P
is the meuximuf nonnegutive definite soliion, P, of the ARE (10.69). Subject 1o the
conditions:

s [F G is stabilizable,

POV is derectable,

v (P 0and B> 40,

then (10.08) i exponentially asymptotically stable,

Proof. From the theorem condinons and Theorem 10.3, we see that the ARE pos-
sesses a positive definite muximal solution, P. Recognising the correspondence
between (10.68) and (10.46) in Theoremn 10.1, comparing the writing (10.65) of
the ARE as a Lyapunov equation and then invoking Theorem 10,1, we see that,
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provided [F = GK o (KL RK,. + (M7 is a detectable pair, (10.68) will be
stable, Since

. 172 5m
KRIRK.+@Q=(KLRY? QU (RQJIS“’) ,

and

12 g
b Gle = FH(GRY 0 (T f ),

detectability of [F,'/?" suffices o prove stability.

This is the fundamental discrete infinite horizon stbility result which shall form
the basis of our successive analysis, The key feature is that through the writing
of the ARE as a Lyapunov equution (10.65) invalving the closed loop mattix of
{10.68), the positive delinite ARE solulion P now serves to define a quadratic
Lyapunov function. The critical theorem condition is the detectability requirement
— the other conditions are better associated with the well posedness of the LQ
problem. It is this detectability which shall reappedr as pivotal to the development
of the receding horizon results.

10.7,2 Continuors Problems
We now consider the asymptotic stability of

i) = [F = GR™'GP(oo)) 2(t) (10.70)
where P{=>ch is the maximal nonnegative definite solution of the ARE,

0= AT Piae) + Plao)d — Pleo)ORT' B Ploc) + Q. (10.71)

Theorem 10,15, Consider the time-invarign: linear vector differential equation
{10.70) representing the closed loop of an infinite horizon LQ controlled system,
where o) Is the maximal nonnegaiive definite solution, P, of the ARE (10.71).
Subject to the conditivas:

o PG is stabilizable,
o [F.Q'2) is detectable,
o Pr0andl =0,

then (10.70) ix exponentially asympiotically stable.

Proof Parallels the discrete case with (he appeal 10 Theorem 10.2 using the (10.67)
reformulation of the ARE.
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1(.7.3 Asymptotic Stability of the Time-varying Kalman Filler

We reat anly the discrete case here since the cononuous version is identical in
form. Consider the troe-varying Kalman filter

Gt = (F - FLLAYHEHT + B)7 H) &, (10.72)
wilh &y being the solution of the filtering RDE (10.27)
T — FEFT P 0TI HT + R IHSFT + Q.. (10,73

We have the following.

Theorem 10.16, Consider the time-varying difference equation (10.72) representing
the time-varying Kalman filter operating from initial condition, Ty > Q. Subject to
the conditions:

o [F HRTYY) is uniformiy observable,

s F (‘):’r 2] ts uniformiy controllable,
o (> 0and Ry » 0

then {10.72) iy exponentially asymptotically stable.

FProvf. Under the theorem conditions, the RDE solution X, is a positive definile
matrix sequence bounded above and below. The filtering version of (10.63)

S = i F - KHWE(F -KHY +KRE + ¢, (10.74)

then admits direct appeal to Theorem 10.1 for asymptotic stability of (10.72) to
follow from the uniform chservability of the pair [FT,Q:’IE]. This corresponds to
the stated controllability condition.

The upshot of this vection hag been to enunciate the conditions for the asymp-
tatic stability of infinite horivon ctosed loop optimal solutions. The key featres,
stabilizability and deteciability essentially, concur with those presaged earlier in our
heuristic developnent, We next wrn (o deal with sofficient condidons for receding
haorizon stability,

10.8 Stability in Receding Horizon LQ Problems

Reeall frum our discossion in earlier sections that the genealogy of receding hori-
zon LQ problemns is the application of finite horizon LQ methods in the infinite
hanzon contexl, with an aim to achieving computational savings. In stationary cir-
cumstances, i.¢., € and IE constant, with sufficiently large value of horizon ¥, the
RDE Convergence Theorem 10.4 and the ARE Swability Theorem 10.14 combine
to produce an obvious asymptotic stability result.
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Theorem 10.17. Consider the receding horizon LQ closed loop system
i = {(F = QG PG+ R)TIGT P F) 2y, {10.75)

where Py s the N™* rerm in the solution sequence of the RDE (10.5) with constant
weighting matrices (¢ > 0 and R > 0 with initial condition Py > Q. Then, provided
(¥, G) is srabilizable and | F, Q' is detectable, there exists an My such that (10.75)
is exponentially asymprotically stable for all N = No.

While this result gives hope for the eventual stability of receding horizon based
contral systems, it delivers no guide to selection of a suitable . To study the
stability of receding horizon closed loops with arbirary & we inbroduce a new
tool.

10.8.1 The Fake Algebraic Riccati Equation

Guided by the ease of establishing stability for infinile horizen LQ controllers di-
rectly from the ARE we harken back to the RDE and attempt to have it masquerade
as a fictittous or frozen or fake ARE. The RDE (1().5)

Pipi=F'EF - FTRGIGTRG + Ry)T'GTRF + Q;,
is a recursion for P piven P;. We rewrite this as
P, = F'P,F - FIP;GIGT PG + By)T'GY P F + 4, (10.76]

Q;=Q+P; = P (10.77)
Here (10.76) appears no longer 1o be a recursion for ;4 but rather to be an
algebraiv equation for ;. Specifically, we have recast the RDE so that P; satisifes
an algebraic Riccati equation with the original value of R; but with a different
value of ¢} given by (100.77).

The comtinuous version of this construction yields

0= ATPH + P{1)A - PIOBROT BT P + Q1) {10.78)

QUty =@ - P(1). (10.79)

We shall not focus too greatly on continuous time where the resulls do not de-
viate significantly from their discrete time counterparts. These above clementary

modifications 10 the RDEs will play a critical role in the stability arguments to
follow.

10.8.2 Receding Horizon Stability via FARE and Monaotonicity
The RDE reformed as an ARE (10.76) or (10.78) is known as the Fake Algebraic

Fiecati Equation (FARE). Relerence 10 the infinite horizon stability Theorem 10,14,
irmnediately yields the following receding horizon stability result.



234 R.R. Bitnead and M. Gevers

Thevrem 10,18, Consider the receding horizon L0 closed loop system (10.75) with
P being the solution of the FARE (10.76) (the RDE ({0.5}). Provided:

o [F, 7] is stabilizable,
s Qn>land Hp >0,
. [F, Q‘{z] iy detectable,

then (10.73) iy exponentially asymproiically stable.

Proof. The FARE with )~ = Qand Ry o> 0 1s an ARE with these ¢ and 17 which
iy associated with an infinite horizon LQ problem with such weighting matrices.
Accarding to Theorem 10.14, the closed loop of this arificial infinite horizon
prublem is asymptotically stable. But this closed oop is, in fact, also that of the
original receding horizon problem.

The means of achieving the stability of these receding honzon control loops 1s
o recast them so that they appear as infinite horizon problem solutions. This, in
itself, iy not too surprising a feature and does not indicate wo great a leap forward
except that the construction required for ARE solution is replaced by a simpler
test on the FARE. A closer analysis of @, and {}t) indicates further beneficial
properties. Recall,

(?:=Q+Pr—Pt-rl
Qitl = — P
We may now pose and answer spme questions conceming the potential de-
tectability properties of these ¢J.
Lemma 10.4. Suppose that (F, (/2| is deteciable. Then
Pom €Py = Qu2Q = FQW isdewecable.
aF, in continions rime,

P00 = Q@ = CEOVN iy deecrable.

This result establishes the connection between nonincreasing solutiong of the RDE
and { F, (J'?] detecrability. All that remains is Lo invoke the monotonicity properties
of the RDE already derived in Theorenis 1.6 and 1(L1 pertaining to the constant
weighting RDEs (10.53) and (11.57). This we now do.

Thearem 10.19. Consider the discrete vime closed loop (10.75) derived from a
receding horizon LQ problem with constant weighting matrices, (¢ 2 Oand R = 0,
and horizon N. Suppose that [F, G| Is swbilizable and [F, Q]-"'z;: is detectable. Then
if. for some Ny,

Fago1 £ P,

{10.75) & exponentially asymprorically staffe far aay N = N
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Theorem 10.20. Consider the continuous time closed loop derived from a receding
horizen LG problem with consranr weighting matrices, ) > O and R > 0, and
horizon T,

HE) = (F — CRTWGTPUY) aft). (10.80)
Suppase that [F, ) is stabilizable and [F, Q1% is derectable. Then if, for some Ty,
BTy <0,
{10,800 is exponentially asymptotically stable for any T > T.

These lwo theorems rely upon the montonicity properties of the RDE to establish
that €} of the FARE always produces [F,(3'/?] detectable and, thereby, a stable
closed loop. The theorem statements rely upon the monotonic nonincreasing aspects
of the RDE solutions. As a consequence of this, if £ 1s always noninereasing and
converges 1o i constant nonnepative definite value, P, then clearly ong must
salisly P; » P, for all j and @5 exceeds @ for all ;.

To admit the application of FARE results in a similar fashion in the circumstance
of I’; < P, One may appeal 1o the second difference results on the RDE solution,
Theorems 10.8 and 10.13, to ensure that @ never is permitted to become nanpositive
delinite even though @j = (. Specifically,

Theorem 10.21. {I4] Consider the discrete time closed loop (1075} derived from a
receding horizon LQ problem with constant weighting matrices, 3 > Gamd R > Q,
and horizon N. Suppose that, for sume Np!

o [F, G is stabilizable,

s Gn =0

(F,QNE is dewectable,

L ])l\'-ﬂ 12 77 ZP:'\-'u-rl + P!\'o = 0,

then (100.75) is asymyptotically scable for any N > Ny,

Prugf. We appeal to Theotem 1.8 10 show that the final theorem condition above
implies that the sccond difference of Py is nonpositive for N = Nyg. This, in rn,
implies that the first difference, Py sg — Py, 18 nonincreasing for such N, Thus
{2 is a nondecreasing function of A,

The continnous version is older but similar,

Theorem 10.22, {17} Consider the continuous time closed loop (10.80) derived
from a receding horizor LQ problem with constant weighting matrices, Q > Q and
= 0, and horizon T. Suppose that, for some 1p!

iF, G i stabilizable,

QTo) 2 0,

[F. QUtu}'/*} is dewectable,

PF(Ty) =0,

then (10.75) i asymptotically stable for any T' = T,
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We have now wended our way through an expanse of results on the stability of LQ
optimal control and filtering systems combining: Lyapunov stability, monotonicity
propertes of RDEs, the FARE etc. The key obscrvation has been to use the FARE
coupled with monotonicity argumenis to establish sensible stability requirements for
the receding horizon LQ strategy. Further, more technically demanding variations
on this theme are contained in the recent book [20]. We shall now present two
examples of the application of these methods,

10.9 Examples

10.9.1 Stability of Generalized Predictive Control

Generalized Predictive Conwol (GPC) is & very popular process control design
procedure due (inter afia) to Clarke, Mohtadi and Tuffs [19]). This conmol design
especially has been successful in the field of Adaptive Control where many practical
applications have been reported. At the heart of GPC is a receding horizon LQ
problem. At time ¢ the LQ} criterion

N Nu
=3 wloswers + 3> ulyjuers {1081}
L+ )
subject to {uey; = 0lj = Ny +1,..., N}, is minimized and v, is applied. Here
N i the prediction horizon, N, is the conwmol horizon and A > U is a control
weighting.

For the case N, = N, the GPC formulaticn may be viewed as receding horizon
LOQ with

Q=H'H, Po=HTH, R=\.

After identifying the GPC specification as receding horizon LQ, one appeals to the
foregoing theory 10 determine stability of the controlled system. It is here that one
strikes a snag — The above choiced for ¢}, R and Py do not admit simple affirmation
of stability. Indeed, by inspection, one may replace the inital condition Py = H*'H
by the equivalent initial condition P_y = & Thus £, > P_; and, by Theorem 10.7,
P; is then destined always to increase. This makes it more problematic (o ensure
that @; > 0. [t is then not surprising that GPC exhibits difficulties in assuring
designed closed loop stability. Further modifications to GPC are evaluated in [20]
using some more technical monotonicity devices.

Given that the GPC receding horizon LQ conwrol meets stability difficulties be-
cause the F; sequence is always monotonic nondecreasing, onc might ask whether
other general strategies have more success in foreing P; to decrease. In [20], wch-
niques which cffectively select Py infinite are examined using methods of this
chapter.

10 Riceau Difference and Differcnual Fquaticms 289

10.9.2 Harmonic Analysis in Noise

It is frequenily the case in many signal processing problems that onc wishes to
evaluate or estimate the harmonic components of a (slowly varying) perindic signal
in noise. Here we shall consider the case where the period of the signal is known.
In such circumstances, onc may wrile a signal model for the measured signal, vy,
as [ollows.

24l = Frg + Gy (10.82)
e = Hig + v, (10.83)

where , i3 a vector of harmonic cosine and sine terms,

. block diag cosk®  sinké i
F"IKB{L-—I,Z,__..,W‘Z—I(—sinkG coske)}t*’( b

H={1/y2 1 0 1 0 ... 1 0 —1/y0)",

w, and v, are independent noise processes with covariances { and R. Note that F
here has all of its eigenvalucs on the unit cirlce. This formulation is examined in
{21]. We consider two cases; the mattix €} is zero, and the matrix ¢} is nonzerc.
Harmonic analysis is identically equivalent to state estimation for this model.

When there is no state noise in the model (10.82) (@ = 0), the above set
of equations describes a truly periodic signal corrupted by noise. If one aitempls
to set up the Kalman filter to estimate the state z; optimally, then the limiting
covariance X.. for the problem is zero, and thus the limitng Kalman gain is zero.
"This concurs with the inwitive solution o optimal estimation of a purely periodic
signal in noise, i.e., average the answers over many periods. When F hus all its
cigenvalues on the unit circle and @ = 0, the stability results of earlier fail because
{F, (1% possesses many uncontrollable modes on the unit circle.

One techniyue to force stability into the solution of such problems is to set the
input noise variance 6} to a nonzere value arbitranly, There are many other methods
as well, see [2]. The summary choice of nonzero ) still oblipes the designer to
solve an ARE for a positive definite X', to design the Kalman filter. An alternative
approach explored in [21] is 1o select a positive value ¢ and determine a Kalman-
like gain

K= FPeJHT"HedHT + )7,

associated with a £, = «f. The question then arises: Does such a choice yield
filter stability?
The answer is affimnative because, by consroction of the FARE

el — FeIFT 4 pet HY(HdHY | Ry HFT = (),

one easily establishes that ¢ > 0 for any e > 0. As a side remark, we mention that
these filters degenerale to the Discrele Fourier Transform when ¢ — co.
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10.10 Conclusion

We have led the reader through a tutorial development of the stability properties
of Linear Quadratic feedback conmol systems and least squares state estimation in
several guises: continuous and discrete time; finile, infinite and receding horizon.
Our aim has been 1 reveal the connections berween Lyapunov stability theory and
the Riscati equations, The additional disclosures hav~ then stemmed from these
connections when coupled 10 properties purely of the Riccati equations themselves,
namely convergence and monotonicity. ‘These new tools provide simple stability
tests for large classes of receding horizon LQ probiems which are tinding increasing
practical application. The novelty here is the construction and application of Fake
Algebraic Riceati Technigues.
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