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Identification of Linearly Overparametrized 
Nonlinear Systems 

G. Bastin, R. R. Bitmead, G. Campion, and M. Gevers 

Abstract-Often, a dynamical model is nonlinear in the unknown 
parameters, but it can be transformed into an overparametrized linear 
regression model, where the components of the overparametrization 
vector are nonlinear functions of the smaller number of unknown 
parameters. We present an algorithm that directly identifies the un- 
known parameters, we characterize the convergence domains under two 
different sets of assumptions on the excitation of the signals, and we 
compute the corresponding convergence rates. 

I. INTRODUCTION-STATEMENT OF THE PROBLEM 
In many practical modeling and control applications, a partial 

prior knowledge of the structure and the parametrization of the 
system is available. A typical situation is where the only unknowns 
of the system are the values of a few physical parameters which 
enter linearly and/or nonlinearly in the model. In such a situation, it 
is clear that an approach to the parameter estimation problem which 
ignores the prior knowledge is questionable since it would necessar- 
ily result in an attempt to estimate more parameters than necessary. 
This is the reason why the issue of incorporating prior knowledge 
on the parametrization in the parameter estimation problem has 
recently received some attention. 

In the case where the unknown parameters enter linearly in the 
process model, the solution is obviously to reformulate the problem 
in the form of a linear regression limited to those parameters. 
However, the practical implementation is not trivial and is discussed 
in [l], [2], and [3]. 

In this note we consider the more complex situation where the 
unknown parameters enter nonlinearly in the model but can be 
embedded in a linear over-reparametrization to be made explicit 
short in (1.1). This issue has been previously discussed in a series of 
papers by Dasgupta, Anderson, and Kay [4] - [6] for single-input 
single-output (SISO) systems where the reparametrization is a poly- 
nomial function of the unknown parameters. Here we shall be 
concerned with multivariable nonlinear systems, where the 
reparametrization is any nonlinear function of the unknown parame- 
ters. 

The systems under consideration are assumed to be expressed in 
the following nonlinear regression form: 

where t E R , ,  y E R m  is a vector observation sequence, cp E R k  x 
R m  is a regression matrix made up of known signals, 8 E R "  is the 
unknown parameter vector, and p( . )  is a nonlinear mapping from 
R" onto a subset of Rk, with k 2 n .  

It is to be noticed that the vector constitutes an "over-repara- 
metrization" of the system which enters linearly in the model (1.1). 

The problem is to estimate 8 from measurements of y and c p ,  
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Outline of the Paper 

The paper is organized as follows. In Section 11, we state the 
technical assumptions on the problem structure which will be used 
subsequently in the analysis. These assumptions concern the struc- 
ture of the overparametrization mapping P ( 8 )  on the one hand, and 
the excitation content of the regressor ~ ( t )  on the other hand. On 
this basis, the difference between our approach and that of Dasgupta 
et al. [4]-[6] is emphasized. A gradient algorithm for the estimation 
of the parameters is presented in Section 111, and a Lipshitz condi- 
tion relative to the dynamics of the estimation error is established. 
The main convergence results are demonstrated under two different 
assumptions on the excitation content of cp,  in Sections IV and V, 
respectively. In each case an upper bound for the adaptation gain 
and a lower bound on the size of the convergence domain are 
calculated, and their connection with the structure of the over- 
parametrization mapping p( e )  is discussed. 

11. ASSUMETIONS 

In this section, we formulate a set of technical assumptions on the 
structure of the nonlinear reparametrization P(8)  and on the excita- 
tion content of the regressor cp(t). These assumptions will be used 
later in the analysis. 

A .  Assumption on the Structure of p ( .  ) 

centered on 8*, onto a set BB E R k ,  with k 2 n, such that: 

2 exist and are continuous; 

A.1: The function p( .) maps an open ball Bo ER" of radius r ,  

P(0)  is a C2 function, i.e., its derivatives w.r.t. 8 up to order 

ap/at l  has full rank n on Bo. 
In particular, there exist finite constants k ,  > 0 and k ,  > 0 such 

that (unless otherwise indicated, all norms are 2-norms throughout 
the note) 

i =  1 ,  k j = 1 , n  V ~ E B ~ .  (2 .1)  

For vector functions p: R" + R k ,  we denote by a p / a e  the 

B. Notation 

k x n matrix whose (i, j) th element is 

(:)i,j-2. 
We also use the notations of Monsieur DieudonnC for the partial 
derivatives of order 1 and 2: 

C. Assumptions on the Regressor cp(t) 

We shall make a uniform boundedness and an excitation assump- 
tion about the regressor cp. The boundedness assumption is simply 
as follows. 

A.2: 

Ila(t)ll 5 %ax V t E R , .  
As for the excitation, we shall state here two alternative assump- 
tions, a strong assumption A.3 and a weaker assumption A.3'. Our 
convergence proof will follow two different routes and will lead to 
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two different convergence domains, depending on whether the 
stronger or the weaker assumption is used. 

A.3: There exists 6, > 0, T > 0, and to > 0 such that 

A.3': There exists 6, > 0, T > 0, and to > 0 such that 

r 6 , Z  v t >  to 

where 0* is the true value of 0 .  
The problem described by (1.1) could simply be viewed as a 

nonlinear regression problem, and handled by standard nonlinear 
regression techniques; see, e.g., [7]. However, with a general 
nonlinear regression model, not much can be said about the conver- 
gence domain and the rate of convergence. Here we have the added 
assumption that the problem has been reformulated as a linear 
regression problem, albeit with a larger number of linearly appear- 
ing pi that are nonlinear functions of the smaller number of 0;. 
This will allow us to make precise statements about domain and rate 
of convergence. This setup has been studied extensively by Das- 
gupta, Anderson, and Kaye in a series of papers [4]-[6] for the 
special case where the p i  are polynomial functions of the 8,. A 
simple example would be 0 = ( e l ,  0,) and P ( 8 )  = (e , ,  e,, 8:0,). 
Our algorithm estimates 0 directly, whereas in [4]-[6] P is esti- 
mated first as an unconstrained estimate and is subsequently modi- 
fied using a least squares criterion so that the constraints imposed by 
the polynomial functions @(e) are satisfied (e.g., p3 = P:P, in the 
example above). Our results extend those of [4]-[6] in two ways: 
first, P ( 0 )  is not restricted to polynomial functions of 8; second, 
because we do not estimate P ,  but the lower dimensional 0 ,  our 
persistence of excitation (PE) conditions A.3 or A.3' are much 
weaker than those of [4]-[6], where the whole vector p ( t )  was 
required to be persistently exciting. Here we only require P(8 ,  t )  
[respectively, P ( t ) ]  to be positive definite: its size, n X n, is 
typically much smaller than the dimension k X k of p(t)cp'(t). 
The penalty we pay for these extensions is that our results will be 
local, rather than global, but such is the nature of life. 

111. THE ESTIMATION ALGORITHM 

We consider the following estimation algorithm for 0 ,  the esti- 
mate of 8*  (we drop the time index for simplicity): 

where w > 0 is the adaptation gain, and $ denotes 

This is a gradient algorithm for the minimization of ( y ( t )  - 
(p'(t)p(8))2. In the next two sections, we shall analyze the conver- 
gence properties of 0 under assumptions A. 1 -A.3 (respectively, 
A.l-A.3'). Before we embark on this, we derive some useful 
bounds and expressions for the error equation, that will be valid 
under both sets of assumptions. 

Denoting e" = 0* - 0 ,  and replacing $ by its expression (3.2), 

we have 

PPpT[fi(e*) - p ( e ) ] .  (3.3) 

Let 0 , , 0, be any two points in Bo. Then 

where R(0,  - 0 , )  contains all higher order terms. Using (3.2), 
(3.3), and (3.4) with 0, = 0* and O 1  = 0 ,  we can rewrite the error 
equation as 

e" = - U + @ ,  t )$ ' (e ,  t)e" - 

We denote 

(3.6) 

and we now derive a Lipszhitz bound for f ( t ,  e"). 
Lemma 3.1: Let f ( t ,  0)  be defined by (3.6) and let e", = 0* - 

e, ,  8, = 0: - e,, with e , ,  0, E Be. Then, under assumptions A . l ,  
A.2, f(t, 8) satisfies the following Lipschitz condition (we drop the 
dependence on t for simplicity): 

II f ( e " 1  ) - f(&) II 5 W P ! L  k3 II 6 - e", II 

k ,  = k , r [ 2 k , k d x  + k , & n r ] .  

(3.7) 

(3.8) 

with 

Proof: 
a) 

+ [ ( ;)02 - ( :)o,]gl. (3.9) 

Consider first the sum of the first three terms of (3.9). The ith 
component of that vector is 

with v;E[O, 11. Using A.l  and ll(8, - 8,)ll 5 2 r ,  it follows that 
the 2 norm of that vector is bounded by k,rJknl l (8 ,  - 8,)Il. As 
for the last term of (3.9), we have the following. 

w i thy i jEIO, l ]  f o r i =  l ; * . , k a n d  j =  l ; * - , n .  

Therefore, using A. 1 

where the subscript F denotes the Frobenius norm. Hence, 

lpz(e",) - R ( B ; ) I )  I 2 k , r J k n 1 1 ( 8 ,  - e,)ii. (3.11) 
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b) It now follows from (3.6) that and, therefore, by (3.3) 

Now the ith element of R(6)  is 

Its norm is bounded by k 2 r 2 & .  Therefore, using A . l  and A.2, + (3.10) and (3.11) give the desired result. 

IV. CONVERGENCE RESULTS UNDER A. 1 TO A.3 

In this section we shall derive a bound on the initial error ((0) for 
which asymptotic convergence of O(t )  to O* will be established 
under the assumptions A.l -A.3 with an additional constraint of 
slow adaptation. The slow adaptation is required to replace the PE 
condition of assumption A.3 by the stronger condition that $(e ,  t )  
is persistently exciting for all 8 in Bo. We first establish that 
preliminary result. 

Lemma 4.1: Consider the estimation algorithm (3.1) with the 
assumptions A.l -A.3.  If e( t )EBo VtER,, and if 

= Ilell 5 wkfkp;, ,r .  (4.7) 
Hence, the 2-norm of each of the last two terms of (4.5) is bounded 
above by 

1 /2 w k Z  k: k ,  vi,, &rT2.  

Since O(t + T )  E & ,  it follows from assumption A.3 that the first 
matrix is bounded below by 6,Z. The result then follows from 

Before stating our main result, we need the following technical 

Lemma 4.2: Consider the linear time-varying system 

(4.1). + 
lemma which has been proved in [8 ] .  

x = - w $ $ T x  x ( 0 )  = xo (4.8) 
with w > 0, X E R " ,  and where $ satisfies the PE condition (4.2), 
then I x(  t )  I 5 Ke-"' I xo 1 ,  where 

1 
K ( w )  = /x, .(a) = --log(1 2T - y ( w ) ) ,  

1 - ?(U) 

2a1w 
(4.9) 

= (1 + n f f 2 a > ' .  
+ 

Consider now the function 

W ( w )  = - 4.) - - - - log11 - y ( w ) ]  
W K (  2wT 

for w L 0, with y(w)  defined by (4.9) and a, = a , (w)  defined by then 

a I ( w )  = 6 ,  - w k ~ k , k 2 & p i a , r T 2  > 0 (4.3) (4.10) 

It is fairly easy to see that W(w) has the form depicted in Fig. 1. 
With k ,  as defined in (3.8) and assuming that k3pkax 5 6,/ T ,  we 
define for later use w2 as the unique value of w for which 

(4'4) 

Proof: The upper bound a, I follows immediately by A. 1 and 

a2 = kk;p;,,T > 0 .  

A.2. Integrating by parts twice successively we can write 
W ( 4  = k3Pk .  

Our main result under assumptions A.l -A.3 is now as follows. 
Theorem 4.1: Consider the estimation algorithm (3.1) with the - 

assumptions A. 1 -A.3, and the additional assumption. 
A.4-  r is chosen small enough so that, with k ,  defined by (3.8), 

(4.11) 

Let the adaptation gain w be chosen such that w < w 2 ,  with w2 
defined by W(0,) = k3p;, (see Fig. I) ,  and let 

61 
k3&ax 5 - * T 

- lfiT( J]'( ;) ' r r ' d o )  (g ) d7. (4.5) Then 
(4.12) 

1 The time derivative of a/3/aO can be expressed as follows: exp(-h(w)t))18"(0)11 5 r  v t 2 0  

(4.13) 
7 "( dt 2) ae = i = l  5 [o , :p(e> o;np(e)~ei 

where and is therefore bounded as follows 

By assumption A. 1 we have Proof: Equation (3.5) can be rewritten as 

Ilp(el) - p(e2)ll 5 k , f i I P l  - 8211 e =  -w$$Te"+f(t,tT) (4.14) 
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2 
kg (Pm 

' W ( 4  [hence, the second term in (4.13)] provided the initial condition is 
within a ball of smaller radius r / K ( w ) .  The effect of w on the 
radius of the initial condition ball and on the speed of convergence X 
can be seen from Fig. 2. 

2) The condition (4.11) can always be satisfied by choosing r 
small enough, i.e., which implies that e(0) must be closer to the O * .  
However, it is interesting to note that the richer (o is (i.e., the larger 
6, / T is; see the PE condition A.3), the larger the convergence 
radius r is allowed to be. 

3) Finally, we note that if @(e) is linear, k, = k 3  = 0, y(w)  > 0 
for all U, X = - 1 /2Tln (1  - y(w)), (4.11) is always satisfied, 
and the classical exponential convergence results of the linear 
regression case are recovered, without any constraint on ( 1  O(0) 11 
or w. 

Fig. 1. 

where f(t, 0) = 0 and f(t, e") satisfies the Lipschitz condition 
(3.7). It f o ~ ~ o w s  from (4.12) that there exists a positive Constant 
€..> 0 such that 

l l e " ( O ) I l < ( ~ - E ) ~ .  

We demonstrate by contradiction that 

~ l e " ( t ) ~ ~  < ( r  - E )  v t .  

Suppose there exists a finite t , > 0 such that 

Ile"(t)II < r - E 

Then, it is clear that 

0 5 t < t , ,  lle"(t,)l( = r - E .  (4.15) 

Ile"(u)Il < r ,  v u ,  o 5 u 5 t , .  

Hence, since w < w, 5 U,, J /  satisfies the PE condition (4.2) with 
al(w) defined by (4.3). Therefore, the homogeneous equation 

e" = -wJ/J /Te" (4.16) 

is exponentially asymptotically stable, and 

Ile"(u)ll 5 K(w)e-''u'uI1e"(0)II u E  [o, t , ]  

V. CONVERGENCE RESULTS UNDER A l ,  A2, AND A3' 

In this section, an analysis, parallel to that of Section IV, will be 
carried out under the weaker assumption A3' on the persistency of 
excitation of the regressor. Roughly speaking, assumption A3' re- 
quires that the regressor p( t )  must be sufficiently rich only for the 
true system, that is if the parameter is exact (0 = e*), while 
assumption A3 requires a sufficient richness for all the models 
corresponding to all the admissible parameter values (i.e., VO E Be). 
Clearly, A.3' is a weaker requirement on (o(t) than A.3, and A.3 
implies A. 3'. 

From assumptions A.2 and A.3', it follows directly that: 

with a1 = 6 ,  and a2 = kk:(oLT. 
The error equation (3.3) is rewritten as follows: 

where 
with K(o) and a(w) defined by (4.9). Since w < w 2 ,  it also follows 
that 

< 1  ( o k  k3 K ( 
4.) 

wher: U&, k 3  is the Lipschitz constant of the perturbation term 
f(t, 0) (see Lemma 3.1). It then follows from the total stability 
theorem (see, e.g., [9]) that, for u E  [O, tl1 

- 
Let O 1  (e* - el) ,  = (0* - e,) with O , ,  O 2  €Be_ Then, under 
assumptions A . l  and A.2, it can be shown that f,(t, 0) satisfies the 
following Lipschitz condition: 

exp ( -X ( ">~) I Ie " (O) I l  IIf i (e"i)  - f i ( ~ z ) I l  5 w(o&~k411ii - $211 (5.4) 
1 

with 
677 

II e"@) II 
d m  

1 w 9 L k 3  

Ile"(.)Il 5 

< r - - E  k, = k, r [3k1k& + k2d%nr ] .  ( 5 . 5 )  

According to Lemma 4.2, we define the following quantities: 
where 

2 a , o  

1 
J W '  X(0)  = - - log(1  - y(w) )  - 

2 T  

This is in contradiction with (4.15). Hence a, (w)  = - - log(1  2 T  - ?,(U)). ( 5  4 
(4'17) Consider now the function 

W l ( w )  = ~ w K , ( w )  - 

Ile"(t)(I < ( r  - E )  v t  1 o 
and the theorem follows. 4 

_ -  - log [ l  - y,(w)] .  
Commen ts: a, ( w) 
1) The total stability theorem essentially says that if the perturba- 

tion term f(t, 0)  is Lipschitz and if the homogeneous equation 
(4.15) is exponentially stable, then the perturbed O(t)  remains 
within a ball of radius r ,  and its norm decreases with a slower rate 

2wT 

(5.7) 

W,(w)  has the form depicted in Fig. 3. With k4 as defined in (5.5) 
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T"r" 
0 

(b) 
Fig. 2. (a) Size of allowable initial condition versus adaptation gain. (b) 

Convergence rate versus adaptation gain. 
(b) 

Convergence rate versus adaptation gain. 
Fig. 4. (a) Size of allowable initial condition versus adaptation gain. (b) 

where 

1 k4 (5.11) 
d m '  A,(#)  = ---log[l - Y l ( 4 1  - 

2T 

0 3  

Fig. 3 .  

and assuming that 

we define o3 as the unique value of w for which 

w l ( w 3 )  = k 4 ' P k '  

Theorem 5.1: Consider the estimation algorithm (3.1) with the 

A4': r is chosen small enough so that, with k ,  defined by ( 5 . 5 ) ,  
assumptions A1 -A3', and the additional assumption A4'. 

Let the adaptation gain w be chosen such that w < w 3 ,  and let 

II J(0) II < r m. ( 5 . 9 )  
Then 

11i( t )  11 + 0 exponentially fast, i .e. ,  

(5.10) 

Proof: Follows straightforwardly from the total stability + theorem. 
Comment: In this case the effect of w on the radius of the initial 

condition ball and on the speed of convergence A, is seen from 
Fig. 4. 

VI. DISCUSSION AND CONCLUSION 

We have followed two different (but fairly parallel) ways for the 
analysis of a parameter estimator for a class of nonlinear regression 
problems. The reader might believe that this is redundant and that 
one way is better than the other. This is actually not the case, as is 
shown by the following argumentation. 

Suppose that the regressor q( t )  is given (from an experiment on 
the system) and that it is sufficiently rich in the sense of both A3 and 
A3'. Then it follows from the analysis that the radius r of the 
admissible domain Bo for the parameter estimates must be chosen 
such that 

first analysis (A3): 6 , ( r )  2 k3(r )pkaXT (6.1) 

second analysis (A3') : 6, L k4( r )qkaxT (6.2) 

with 6, (r )  5 6, and k 3 ( r )  5 k 4 ( r ) .  
k3 ( r )  and k4(r )  can be viewed as a measure of the degree of 

nonlinearity in the parameterization ( k 3  = k ,  = 0 when P ( 0 )  is 
linear function of e) .  They are both monotonically increasing with 
r .  6 , ( r )  and 6, are a measure of the regressor richness. 6 , ( r )  is 
monotonically decreasing with r .  

It is clear that no definite conclusion can be drawn from (6.1) and 
(6.2) regarding the respective sizes of Bo arising from the first and 
the second analysis. Either way could yield a larger Bo depending 

II 1 
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on the particular structure of the nonlinearity in specific applica- 
tions. 
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Lower Summation Bounds for the Discrete Riccati 
and Lyapunov Equations 

Nicholas Komaroff and Bahram Shahian 

Ahtract-Lower eigenvalue summation (including trace) bounds for 
the solution of the discrete algebraic Riccati and Lyapunov matrix 
equations are presented. These are tighter than or supplement existing 
results. 

I. INTRODUCTION 

Consider the discrete algebraic Riccati equation (DARE) 

P = A‘PA - A’PB(Z + B’PB)-’B‘PA + Q, Q = Q’ L 0 

(1) 

where A ,  P ,  Q E R ” ~ ” ,  BeRf lXr , ( ’ ) ,  Z and (20) denote the 
transpose, the unit matrix, and positive semidefiniteness, respec- 
tively. When B = 0, (1) becomes the discrete algebraic Lyapunov 
equation (DALE). 

P = A‘PA + Q .  (2) 
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The above equations are of central importance in signal processing 
and control theory [l]. Knowledge of ranges of the magnitudes of 
the solutions to (1) and (2) gives design information about systems 
governed by these equations, and provides a starting point for 
numerical solution algorithms. Such ranges are given by bounds on 
eigenvalues of the solution P ,  and on their summations and prod- 
ucts-see [2] for a summary and some applications. 

Lower bounds for tr ( P ) ,  the trace of P ,  have recently been 
obtained in [3]-[6], and for summations of eigenvalues in [5] .  In 
this note we derive summation lower bounds, that include the trace, 
for the eigenvalues of P in (1) and (2) that are tighter than, or 
supplement those in [3] - [6]. Our results are expressed by Theorems 
2.1 and 2.2, and corollaries. 

In what follows, hi( X )  denotes the ith eigenvalue of a matrix 
X, i = 1,2; . . , n. All eigenvalues are ordered such that their real 
parts are nonincreasing 

R e h , ( X )  2 R e & ( X )  ... 2 ReX,,(X).  

The abbreviation RHS (LHS) means right- (left)-hand side. 
The following theorems and lemmas shall be used. 
Theorem 1.1 [7, p. 2461: Let symmetric matrices X ,  Y be 

positive semidefinite. Then 

with equality when k = n. This theorem is due to Horn, 1950. 
Lemma 1.1 181: Let ai ,  bj be nonnegative real numbers such that 

a, I b , ,  ala2 I b , b , , ; . . ,  a, e . .  a, 5 b,  e - .  b,,. Then for any 
real exponent s > 0 

k k 

a; s b;, k = 1 ,2 ; . . ,  n. (4) 
1 1 

Theorem 1.2 [9]: Let matrices X ,  Y L 0 and 1 5 i, j 5 n. 
Then 

A;+,-”( X Y )  L Xi( x ) X ; (  Y ) ,  ( 5 )  

X ; + , - , ( x y ) I ) \ , ( X ) X j ( Y ) ,  i + j ~ n +  1 .  (6 )  

Theorem 1.3 181: Let X be any arbitrary n by n matrix. Then 

I X j ( X )  l 2  I X j ( X ’ X ) ,  k = 1 , 2 ; . - ,  n. (7) 

i + j L n + 1 

k k 

1 1 

Theorem 1.4 [8]: Let A be an arbitrary n by n matrix. Then 

1 1 

with equality when k = n. Because of the equality when k = n 

(9) 

Theorem 1.5 [7, p .  2411: Let X ,  Y be symmetric n by n 
matrices. Then 

C X , ( X +  Y )  5 [ X i ( X )  + X j ( Y ) ] ,  k =  1 , 2 ; . - , n .  
k k 

1 1 

( 10) 

This theorem is due to Fan, 1949. 
Theorem 1.6 17, p .  2451: Let X ,  Y be symmetric n by n 
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