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This paper presents a new methodology for enhancing
generalised predictive control (GPC) in order to robus-
tify the closed-loop system in the face of neglected
dynamics. This methodology consists of two distinct
steps. In the first step, a nominal controller is obtained
by minimising the GPC tracking performance index; in
the second step, the robustness of the controller with
respect to model uncertainties is enhanced via a simple
choice of a Youla parameter. The overall controller is
shown to yield a better compromise between closed-
loop performance and robust stability than is obtained
with existing methods.
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1. Introduction

Generalised predictive control (GPC) is model based.
It uses an estimated model of the process which has
the form of a CARIMA model, 4(g ')Ay, =
B(g Y)Au,_, + C(g e, relating past outputs to
past inputs and an estimation of the correlation of
the noise via the C polynomial. This polynomial has
focused a lot of attention because it represents a
trade-off between rapid elimination of disturbances
and robustness to measurement noise and un-
modelled dynamics.

Estimating C is rarely successful because the con-
tribution of the noise is usually time varying.
Therefore, in the GPC derivation, C is used as a
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fixed observer for the prediction of the future outputs
[7]. In the absence of modelling errors, Clarke and
Mohtadi [3] have shown that the C polynomial solely
affects disturbance rejection properties of the closed-
loop system and has no effects on the tracking
response. Later, McInthosh et al. [6], Robinson and
Clarke [9], Soeterboek [11] and Yoon and Clarke [12]
introduced the problem of robust design to model
uncertainties involving the selection of the C filter
as its key element and suggested some design guide-
lines for the selection of C. We shall refer to these
methods for robust design of GPC as C-design
methods. They all proposed C = (1-pg™")",
C = A, or a combination of these two expressions.
They showed that usually one of these expressions
yields a maximum robustness to model uncertainties
for a particular value of x and n. Despite these efforts
and results for the special cases where GPC gives
either mean-level or dead-beat closed-loop action
[6], no systematic selection of C was proposed [12].
An alternative approach to predictive control
robustification is found for the first time in
Kouvaritakis et al. [5], where use is made of a
Youla parametrisation to robustify the closed loop
with respect to unstructured unmodelled dynamics.
They obtained a systematic procedure for solving
the problem via the minimisation of an H,, norm,
whose sole purpose is to obtain stability in the pres-
ence of plant uncertainties. A similar approach can
be found with all details in Hrissagis et al. [4]. The
objections to this technique are that it requires an
accurate model of the plant uncertainties and that
the minimisation of an H,, norm can be time con-
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suming in a receding horizon framework, especially in
the case of an unstable plant.

The purpose of this paper is to propose a systema-
tic procedure to obtain robustness margins for closed-
loop stability in the presence of modelling errors. Our
results rely on the relationship between the C-design
method and the Youla parametrisation method estab-
lished in Kouvaritakis et al. [5] and later clarified in
Yoon and Clarke [12]. With this relationship GPC
design can be split into a two-step procedure. We
first design an optimal tracking GPC controller
from a deterministic model, i.e. with C =1, and
then enhance the controller by a proper and simple
choice of a Youla parameter. We compare the per-
formance of the resulting controller with that
obtained by the classical C-design method, as well
as the SGPC-design method proposed in
Kouvaritakis et al. [5], and show that our resulting
controller yields a better compromise between robust-
ness and closed-loop performance than was achieved
with previous methods, even when only a partial
knowledge of the noise is known. This new scheme
is not limited to open-loop stable plants. The discus-
sion is illustrated by examples.

2. Two-Step Design of GPC

In GPC, the plant model is chosen to be

-1
Al = Blg o + S0, (1

Suppose also that there exists an exact representation
of the true plant:

Q.

where 4, B, C, Ay, By and C; are polynomials in the
backward-shift operator, e, is white noise and
A =1-g"". The presence of A in the denominator
of the noise model is to allow for the rejection of step
disturbances, since A represents the internal model of
a step. For the sake of simplicity, we assume that the
system has a unitary dead time. The objective of GPC
is to compute the vector of controls by optimising a
quadratic cost function such as

Ao(g ")y = Bo(g " ur_y +

N,V Nu
Ji= Z (Ve — rt+j)2 + AZ Au:tz"l‘j*l (3)
Jj=1 j=1

with the constraint Awu,,y ; =0, for 0 <j < N,—
N, — 1. Suppose that it is possible to obtain a stabil-
ising controller for the model (1) by proper choices of
the control horizon N,, the prediction horizon N,, the
control weighting A, and a fixed C polynomial. This

controller can be represented as a standard two
degree of freedom controller:

Aﬁ(q_l)“t = T(q_l)rt+Ny - E(q_l)yt (4)

(see for example, Bitmead et al. [2] for details). Let us
now choose the model

Alg = Blg s + g (5

i.e. by setting C =1 in (1). By minimising the same
criterion with the same tuning knobs (N,, N,, A) as in
(3) for the model (5), we obtain the following stabilis-
ing 2 DOF controller:

AR' (g VY, =T (g Vrwy —S'(a )y (6)

The following theorem shows the relation between
these two GPC controllers.

Theorem 1. [5] The two controllers (4) and (6) are
related by

AR=AR'C-q 'BAM
S=S'C+4AM
T=T'C (7)

where M is a C-dependent polynomial.

The block diagram for the model (1) and the con-
troller (4) can be represented as in Fig. 1. The outer
loop is the optimal GPC controller R’, S', T’
obtained for the deterministic model (i.e. C=1),
while the inner loop is a correction that accounts
for the rejection of the coloured noise modelled by
C/(AA). In the C-design method, a stabilising con-
troller for the model (5) is first computed. Then a C
polynomial is designed to enhance robustness to
model uncertainties or disturbances. There exist
several guidelines for a good choice of C, but no
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Fig. 1. Equivalent GPC controller structure.
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systematic design has been proposed (see, for ex-
ample, Yoon and Clarke [12]), because polynomial
M is C-dependent.

An alternative to this C-design procedure is to use
a design based on the Youla parametrisation [5]. This
is based on the following observation. Consider the
controller AR’, §’, T' of (6) and assume, as before,
that it stabilises the model (5), and thus also the
model (1). Then the set of all controllers yielding
the same closed-loop characteristic polynomial
Al = AAR' + ¢7'BS’ with the plant model (1) is
given by

AR= AR —q'BQ
S=S8"+40
T=T (8)

for any stable transfer function Q. The transfer
function Q is called the Youla parameter. Observe
that the regulator obtained from (4) by dividing all
polynomials by C is a special case of (8) in which
Q= (AM)/C, with M a function of C. In the
Youla parametrisation-based design method, how-
ever, Q is now entirely free, save that it has to be
a stable transfer function. We show in the sequel
how to select a simple choice of Q for robustness
enhancement.

In order to calculate bounds for robust stability, we
consider that the input to output model of (1) and the
true plant (2) are linked by the following identity:

B, B
il L
4, AT

An important tool to examine the stability of a
system in the presence of model-plant mismatch is
the small-gain theorem based on the Nyquist stability
criterion.

Theorem 2. [1] Consider the stable closed-loop
system obtained by the controller (8) acting on the
model (5), and let A, = AAR+q 'BS be the
characteristic polynomial of that closed loop system.
Suppose that the input—-output transfer functions of
the model (1) and the plant (2) have the same
number of poles outside the unit circle and the
same poles on the unit circle. Then the closed loop
system obtained by the controller (8) acting on the
true plant (2) is stable if the following inequality is
fulfilled:

IE| < ‘% Vo € [0, 7] )
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3. Selection of the Youla Parameter for
Stability Robustness

In this section we propose a systematic way of select-
ing the transfer function Q in (8) for robustness
enhancement in the presence of neglected dynamics.
With the definition of S as in (8), equation (9) may be
rewritten as

A,

IE| < ‘—

S/
Aslm‘ VLL)E [0,7['] (10)

Observe also that A, is fixed entirely by the first part
of the design, because

A, = AAR+q 'BS=AAR' +q'BS' = 4,

i.e. it is independent of Q. The stability bound, i.e. the
right-hand side of (10), consists of two terms: the first
term, 4./(AS’'), is obtained from the first step of the
GPC design, while the second term, S'/(S’ + 4Q),
contains the free parameter Q which we expect to
tune in order to satisfy the stability criterion.

We may want to impose a constraint on Q for the
rejection of step disturbances. Indeed, observe that,
with the controller (8) applied to the system (2), the
closed-loop system becomes

B,T AR’ — ¢ 'BO\ C,
yt:ALcort+Ny—l + <—Ac0— N

where
Ay = A)AR+q 'ByS

Therefore, in order to avoid steady-state errors due to
step disturbances, we need to impose that A is a fac-
tor of Q. In the sequel we shall impose this constraint

on Q.

3.1 Stable Model and Plant

We assume in this section that the model and the true
plant are stable and we pose
S'AM*
=—— 11
where M* is any polynomial and C* is any Hurwitz
polynomial. This choice of Q, i.e. with S’/ 4 as factor
of O, has the property of making the second term in

the robustness bound (10) totally independent of the
first term, and hence of the first design step:

A 1

4
AS’1+AM*
C*

E| < Yw € [0, 7] (12)
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The first term, A4./(AS’), is the robustness bound
obtained after the first design step (see (9) with S
replaced by S’). It depends on the model (5) and
the tuning knobs (N,, N,, A). The condition (9) with
S replaced by S’ may or may not be fulfilled because
the objective of this first step is nominal performance
only.

The second term, 1/[1+ (AM™)/C"], is entirely
free for tuning, i.e. M* and C* are free with the
only constraint that C* must be Hurwitz. In order
to satisfy the inequality (12), this term must have a
high-pass characteristic because the uncertainties on
By/ Ay are typically dominant in the high frequencies.

We propose the following first-order filter with unit
DC gain:

L - g

= 13
P AM T (1 =)+ (w2 = p)q (1)
C*
with p; < 1 and 0 < g, < py. This implies that
AM* _ —p(1—g7) »
1= g (14)
and (12) becomes
Ac 1— ,ulq‘1
|E| < |-—= —| Yw e [0,7]
| AS" (1= pg) + (2 = m)q™! !
(15)

The second step in the O-design method can provide
robustness against high-frequency modelling errors.
The parameters p;,u, in the filter (13) are used as
new tuning knobs to adjust correction in the high-
frequency band where the modelling errors are
expected to be large. Note that the high-pass charac-
teristic is guaranteed if the inequality 0 < p, <
holds: see Fig. 2. This two degree of freedom filter
permits the design of a wide variety of frequency
band corrections. We propose the following design
procedure:

e First consider p; = uy; the filter in (13) is rewritten

as
1 1—pq!
AM* - 1-— M1
1
+ c
Select p; between 0.6 <y <09, as recom-

mended, for example, in Soeterboek [11], such
that the inequality in (15) is satisfied. This step
fixes the filter bandwith.

e Gradually reduce the value of the parameter p,,
leaving p, fixed. This has the effect of reducing
the high-pass correction, without affecting the sys-
tem bandwith: see Fig. 2.
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Fig. 2. Amplitude Bode plot of the first-order filter in (13) with
fixed parameter p; (here p; = 0.8) and variable parameter p,.

Note that the choice of the first-order filter (13) is
such that (1 —¢~!') is a factor of Q; this is required
for asymptotic step disturbance rejection (see above).
Note also the similarity with the C-design method in
GPC, where C is often chosen as C = AC”, i.e. equal
to the denominator of Q in (11), with C* =1 — gL
and p; = p, between 0.6 < p; <0.9.

Another interesting interpretation of our two-stage
design method with the design choice (13) is obtained
by comparing (15) and (9). The effect of the second
design step is to replace the feedback path S’ by

1 — ) + (2 — p1)q

i (
S = -
g

which represents the nominal filter S’ multiplied by a
low-pass filter. The physical interpretation is that the
feedback path attenuates the loop gain at frequencies
where the uncertainties are dominant.

We now compare with the C-design method, as in
Yoon and Clarke [12]. With the regulator (7), the
small gain condition (9) becomes

A

Ac) _|AC
AS

AS

E| <

‘ Yw € [0, 7] (16)

The right-hand side of (16) consists of two terms:
A./A, which is independent of C, and a C-dependent
term, C/S. For the reason described above, if we
want to select C such that C/S has a high-pass
characteristic, then, as observed in Robinson and
Clarke [9], one method is to choose C = AC".
Indeed, the definition of S is (see (7))

S=S8'C+A4AM (17)

If C = AC* in (17), then S must contain A4 as factor.
By assuming that deg(S) = n. — 1 (see, for example,
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Morari and Zafiriou [8]), the feedback polynomial S
is then reduced to

S =KA

where K is a polynomial with deg(K) =n. — 1.
Hence, if C* =1 — pyq~ ", then (16) becomes

A, 1 —pg!
E| < A_é% Y € [0, 7] (18)

where k*(1 — p) = K is a scalar.

Compare the relative degrees in the stability
bounds (15) and (18). Because deg(S’') =n,, the
right-hand side in (18) typically dominates the right-
hand side of (15) in high frequencies. The C-design
method thus provides higher bounds than our
method. However, these high bounds will provide
for a deterioration in performance. This will be illu-
strated in Section 4.

3.2. Unstable Model and Plant

In the case of an unstable plant and model, the para-
meter O cannot be chosen as in (11) because the
model is unstable. Let then the polynomial 4 be
split into its stable part 4° and unstable part A",
A = A*A4", where deg(A") =n and deg(A4’) = n, —n.
Define

S'AM*
=T
Then the robust condition (10) becomes
A, 1
|E| < AS’l_i_ATMk Yw € [0,71'] (19)

C*

where the two terms of the right-hand side depend,
as before, on the first and the second design step,
respectively. In the same way as is done for the stable
case, one can select a high-pass filter in the second
design step in order to fulfil the robust stability con-
dition of (19). We propose the simplest low-order
high-pass filter compatible with the degree of 4"

LI (=g
A'AM™ T k(1 — aiq7")
C*
where k is selected such that the filter has unit DC
gain. Equation (20) implies that

(20)
1+

n+1

C = H(l — g ")

i=1

where C* is any Hurwitz polynomial of degree n + 1
and
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n
C+AAM* =]kl - i)
i=1

This filter contains n poles which depend on the
unstable poles of the model. Note also that deg(M™)
is zero as in the stable case. Similar remarks as in
Section 3.1 are in order here.

4. Tllustrative Examples

In this section we present two examples to illustrate
the new Q-design method, and we compare its per-
formance with the more classical C-design method
and the SGPC-design method, proposed in
Kouvaritakis et al. [5].

4.1. Example 1

Our first example is the well-known Rohrs example
(see Rohrs et al. [10]). The discrete-time description of
the true system with a sampling period of 7 = 0.04
seconds is given by

0.00361(1 +0.196g")(1 4 2.76g " )g™" )

(1—0.961g~H)[(1 — 0.55¢71)> + (0.04g~")*] '
(21)

A first-order model is chosen that has the same nat-
ural frequency as the true plant
_ 03¢t N C .
T1-088¢ 1 T (1-0.88¢7 A"
The GPC criterion (3) is used in combination with

model (22). The reference signal r, is a step change.
We now compare four different control designs.

;=

Yt (22)

1. Nominal design. We choose standard tuning
knobs (N, =6,N,=1,A=0.1) and C=1 pro-
viding a good nominal tracking step response for
the closed-loop model. The right-hand side of (9)
with § =S’ is shown in Fig. 3; it intersects the
amplitude of the model error |E|. The small gain
condition (9) is not fulfilled and the achieved closed
loop is actually unstable.

2. SGPC-design. We consider the optimal SGPC-
design as proposed in Kouvaritakis et al. [5], which
is also a two-step procedure. The resulting
controller has the same stucture as in (8). The
nominal controller, AR’,S’,T’, is obtained using
the following tuning knobs: N, =6, N, =1,
N, — N, terminal constraints and A =0.1 (see
Kouvaritakis et al. [5] for details). This controller
does not stabilise the true plant. An optimal Hy-
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Fig. 3. Amplitude of the model error, |E|, and of the right-hand
side of (9) in designs 1-4, as a function of frequency.
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Fig. 4. Step response of the closed-loop system with designs 24
(noise-free simulations): Q-design (full), C-design (dotted), SGPC
design (dashed).

design is therefore performed as in Kouvaritakis et
al. [5]. Results of this design are presented in Figs 3
and 4. In Fig. 3, one can see the right-hand side of
(9), and the achieved closed-loop step response on
the true plant is shown in Fig. 4. The controller is
robust, i.e. the curve noted SGPC-design in Fig. 3
has no intersection with the amplitude of the error
model |E|.

3. Q-design. The first design step is the nominal
design described above. Recall that this controller
destabilises the true system. We then perform a
second design step to enhance robustness with
Q=S'JA(AM*/C*) and AM*/C* selected as in
(14) with pu; =0.8 and p, =0.4. The small gain
condition (9) is now fulfilled (see Fig. 3); the curve
noted Q-design is very close to that obtained in the
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optimal SGPC-design. Moreover, the step response
achieved on the true plant is excellent (see Fig. 4),
in fact much better than that obtained with the

SGPC-design.

4. C-design. We now compare with classical GPC
design using the C-design method. The GPC
controller is obtained in one design step with the
same tuning knobs (N, =6,N,=1,A=0.1) as in
the nominal design but with C = A(1 — pig™"), with
the same parameter p; = 0.8 as in the Q-design.
The curves C-design in Figs 3 and 4 show the right-
hand side of (16), and the closed-loop tracking step
response on the true plant, respectively. The
controller is robust but the closed-loop tracking
step response is significantly worse than with the Q-
design.

4.1.1. Interpretations

It follows clearly from Fig. 3 that the robustness mar-
gin of GPC obtained in the C-design is higher than
that obtained in the O-design with equivalent settings.
Moreover, it is possible to find a Q parameter such
that the robustness margin in the Q-design is close to
that obtained in the SGPC-design, without an accu-
rate model of |E|. The advantage of the Q parameter
is that it provides a better compromise between per-
formance and robust stability: compare Q-design
with C-design and SGPC-design in Figs 3 and 4.
Moreover, as we shall see below, the disturbance
rejection performance of the Q-designed controller
is also significantly better than that of the C-designed
controller and is similar to that of the SGPC-designed

controller.

4.1.2. Disturbance Rejection

If the noise contribution of the plant is known, i.e. Cy
in (2), the resulting GPC controller (7) is optimal for
tracking and disturbance rejection. In practice, noise
models are invariably wrong and at most a partial
knowledge of the noise can be assumed. In the C-
design method, this knowledge of the noise is incor-
porated in the C polynomial, see (7), while the Q-
design method incorporates it via the C* polynomial,
see (11). Due to the fact that the Q-design method
provides lower high-frequency uncertainty margins
than the C-design method, high-frequency noise
rejection will then be better and can be similar to
that of the optimal SGPC-design method. This is
illustrated by the following example.
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Fig. 5. Comparison of closed-loop step response and step disturb-
ance rejection for example 2, with three different regulators: Q-
design (full), C-design (dotted), SGPC-design (dashed).

4.2. Example 2

In this example, the same plant model (21) is used as
in Example 1, but now a noise contribution,
Co/(ApA), is assumed and incorporated in the trans-
fer function as in (2), with

Co=(1-0.7¢"")(1-08¢""(1-0.9¢7")

We suppose that a partial knowledge of the noise is
available: we assume C = A(1 —0.8¢7") in the C-
design method, and we take C* = (1 —0.8¢7") in
the Q-design method. The model (22) is used. We
compare the performances of the C-design, the Q-
design and the SGPC-design schemes in rejecting
step disturbances. Figure 5 presents the closed-loop
step response as well as the response to a step disturb-
ance of magnitude 0.5 applied at time ¢ = 6 seconds,
for the controller obtained with the C-design, the Q-
design and the SGPC-design using the same tuning
knobs as in Example 1. The results obtained with the
Q-design method are significantly better than those
obtained with the C-design method (see Fig. 5), both
in terms of tracking and in terms of disturbance
rejection. The performance in terms of disturbance
rejection is similar to that obtained with the optimal
SGPC-design.

5. Conclusions

We have presented a two-step procedure for GPC
control design. In the first step, a nominal controller
is designed in order to achieve some tracking be-
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haviour. The second design step, based on a Youla
parametrisation, modifies the initial controller to take
account of perturbations and/or unmodelled
dynamics. Our procedure leads to very intuitive
design guidelines for the controller adjustment in
the second step, particularly with respect to the
robustness to unmodelled dynamics. Our scheme is
not limited to open-loop stable plants.

We have compared our two-step procedure with
the prevailing C-design method and the optimal
SGPC-design method on the ‘Rohrs example’. It
shows that our design method is much better adapted
to handle model errors, in that it leads to less
conservative design than the C-design method, and
it shows that it is possible to obtain similar robustness
margins to those of the SGPC-design method, with a
suboptimal but much simpler — and computationally
faster — choice of the Youla parameter.
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