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ARMA models, their Kronecker indices and their McMillan degree

MICHEL R. GEVERS*

This paper highlights some difficulties with the use of ARMA models with leading
umit coefficient matrix in system identification. It is shown that the McMillan degree
of such models is not in any easy way related to the row degrees of the-polynomial
factors of the ARMA medel. A rank test is given for the McMillan degree of such
models and it is shown that this degree will generically be a multiple of the
dimension of the observation vector.

1. Introduction

Not much mystery remains about canonical forms for state-space (SS) or matrix-
fraction description (M¥D) representations for linear multivariable systems of finite
order. It is well-known that the McMillan degree (i.e. the order) of the system is the
dimension of the state of any minimal state-space representation, and is the sum of the
row (column) degrees of the denominator matrix of any row-reduced left coprime
(column-reduced right coprime) MFD of its matrix transfer function. Canonical
MF'Ds are therefore defined by their row (or column) degrees, and these will determine
the number of free parameters in these canonical descriptions: see e.g. Guidorz ( 1981).
"These row (or column) degrees are in turn determined by the left (or right) Kronecker
indices of the matrix transfer function K(z). It is also well established that the set
S.ny, ..., ny,) of all px m matrix transfer functions K(z) with, say, left Kronecker

I
indices (ny, ..., n,) with }" n, =n is an analytic manifold whose dimension d is entirely
1

determined by these Kronecker indices: d=d(n,,..., n,). In addition din,, ...
.n)<n(p+m), and generically din,, ..., 1) =n(p + m). In most standardly used
canonical MFDs the number of free parameters is precisely d(n;, ..., n,). All this has
been extensively described in a number of papers: see e.g. Clark (1976), Hazewinkel
and Kalman (1976), Deistler (1985), Hannan and Kavalieris (1984).

So then why another paper on canonical forms? It turns out that most of the
studies on canonical forms have been for SS or MFD models, because these are the
most widely used in control. In econometrics, and also in system identification, it is
often much more natural to use ARMA or ARMAX models. Here we shall
concentrate on ARMA models:

AD)y(®) = B(D)u(t) (1.1a)

where D is the unit delay operator (Dy(t) = y(t — 1)), dim y = p, dim u = m and
AD)= Ao+ A D+ ... + ADY A,#0 (1.15)
B(D)=B,+B,D+ ... + BIY, B,#0 (L1¢)

These models are usually referred to as ARMA(g, ¥) models. ARMA models are
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Since ARMA models and MFD models are connected in such an obvious way,
one would expect that the properties of canonical MFD models menticned above
should apply almost unchanged to canonical ARMA models. Perhaps surprisingly,
this is not the case. In fact, the following points will be made in this paper, some of
which are fairly obvious and some of which are not;

(i) if A~ Y(D)B(D) is a left coprime ARMA model for K(z) with A(D) row proper,
this does not imply that the row degrees of A(D) are connected to the left
Kronecker indices of K{(z);

(i) the-MecMillan degree-of K{z)-cannot-be obtained from such-4(D);

(ili) given a K{(z) € S,(ny, ..., n,), it is generally not possiblc to construct a monic
ARMA model such that the number of free parameters is equal to d(n,, ..., n,),
the dimension of §,(n,, ..., n,);

(iv) monic ARMA models will generically represent systems whose McMillan
degree is a multiple of p, the dimension of the observation vector.

The last problem can be relaxed by taking a non-monic ARMA model (i.e. A, # ).
However, such models lose the major advantage of ARMA models mentioned above.

Coniment 1.1

The four drawbacks just mentioned arise when ARMA models are derived from
canonical MFD models through the relationship (1.6). These canonical MFD models
arc themselves obtained by selecting a basis of the observability matrix of a state-
space representation of the system (or, equivalently, of the Hankel matrix of that
systerm), and there are several ways of selecting such a basis. It has recently been
shown, however, that when the system has no poles at the origin, a canonical ARMA
model can be derived directly from any state-space model by selecting a basis of the
constructibility matrix (rather than the observability matrix). This requires a non-
singular state-transition matrix and corresponds to constructing the present state
from past observations as opposed to future observations, which is a logical thing to
do for ARMA modeis. The column degrees of the canonical monic ARMA model then
coincide with the constructibility indices: see Bokor and Keviczky. (1985).

1t is apparent from our statements above that ARMA models exhibit a number of
limitations and drawbacks which do not seem to be well recognized in the control
literature. It was argued in Bokor and Keviczky (1982), for example, that one could
always transform a canonical MFD into a canonical monic ARMA model with
n(p-+ m) parameters: we shall show that this is not correct. It was argued in Stoica
(1982) that fully parametrized ARMA models could represent almost all systems and
that those that could not be so represented could be considered ‘pathological’. It is the
purpose of this paper to correct some of these statements and to draw attention to
some of the limitations of ARMA models. In addition we present a new criterion
which gives the McMillan degree of a monic model as a function of the parameter
matrices A;, B; of that model.

Statisticians have for quite some time been aware of some of the limitations
mentioned above and, in particular, the fact that the McMillan degree of monic
ARMA models will generically be a multiple of p: see for example Akaike (1974),
Hannan (1976). The fact that they perform their search over models whose McMillan
degree increases by p each time the length of the ARMA model is increased by 1 does
not concern statisticians too much because their data always comes from infinite-
dimensional systems anyway, and because they argue that a system whose McMillan
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degree is not a multiple of p can be approximated arbitranly closely by a system of
higher degree. This might also explain why statisticians have not been interested in
establishing the precise connection between the parameters of an ARMA model and
its McMillan degree, which we present in § 5. In engineering applications, the
underlying system can often be assurned finite and it is often important to obtain a
minimal model, particularly if the model is to be used to design a controlier. A more
important aspect, however, which applies equally well to statistical and engineering
applications, is the curse of dimensionality. The number of parameters of a monic
ARMA model is increased by p(p + m) each time the length of the model is increased
by 1; the correspondmg increase with MFD models is only p + m each time one of the
structure indices is increased by 1. A consequence is that in practical applications
multivariate ARMA models have always been limited to very low lag-lengths
(typically max (g, r) < 2).

The paper is organized as follows. In § 2 we recall some basic mathematical
notions about the McMillan degree and the Kronecker indices of a rational transfer
function matrix, and their connection with the row degrees of left coprime MFDs of
such a transfer function matrix. In § 3 we briefly review canonical MFDs and we
derive canonical ARMA models from these where A is not necessarily equal to I. We
also study the degree properties of these ARMA models. Monic ARMA models are
studied in § 4. Finally, in § 5 we give a new formula for the calculation of the McMillan
degree of a monic ARMA model with A(D) and B(D) left coprime, and we show that
sach ARMA models will genericaily represent systems of McMillan degree k x p,
where p=dim y and k is an integer.

2. Transfer fumctions, Kronecker indices and McMillan degree
As a starting point we consider a p x m rational matrix K(z) (or equivalently K(D))
that is strictly proper, Le.

lim K(z) = lim K(D)=0 2.0
i) D-0
K(z) can then be written as
K(z)=K;z7* + Kz 2+ ... (2.2

We shall often refer to K(z) as ‘the system’.
With K(z) we associate a Hankel matrix 2, 4[K], defined as follows:

K, K, .. Ky
K K ... K
#, K14 n 2.3)
Ky Kyii o Koy,

The rank of #; [K] is called the order of the system or, equivalently, the McMillan
degree of K(z), denoted 8[K(z)]. 5, ,[K] is made up of block rows of size p and
block columns of size m. We denote by (i, j) the ith row of the jth block row of
H 1, o[K]. Similarly we denote by cfi, j) the ith column of the jth block column of
#, o[ K] For each ig{l, ..., p}, let r(i, n; + 1) be the first row r(i, j) that is linearly
dependent on all rows above it in 5, [K]. For i=1, ..., p this defines p integers
Ny, ..., n, These are called the left Kronecker indices, or the output Kronecker indices
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or the observability indices. This last terminology comes from the fact that the linear
dependence relations on the rows of 5, [ K] are identical to the linear dependence
relations on the rows of the observability matrix of any minimal state space realization
of K(z). We shall call Kr,, = {n,, ..., n,} the ordered set of Kronecker indices n; for
increasing i, while Kr, will denote the unordered set. For example, if Kry = {2, 1} then
Kr, is the collection of ordered sets {2, 1} and {1, 2}. We shall denote p £ max{n,}. By
applying exactly the same procedure to the columns of 5, ,[K] one can similarly
define the m right Kronecker indices v, ..., v, also called input Kronecker indices or
controllability indices.

We shall now state a number of facts concerning Kronecker indices and their
relationship to the McMillan degree and to coprime MFDs of K(z). They will be
stated for left Kronecker indices and, corréspondingly, for left coprime MFDs. By
duality, identical results exist for right Kronecker indices and right coprime MFDs.
Most of these results are well known and will therefore be stated without proof.

Lemma 2.1 (see for example Kailath 1980)
The McMillan degree of -K(z) is the sum of the left (right) Kronecker indices of

K(zj: n= i n; :i v

Lemma 2.2 (sce for example Popov 1972)

A permutation of the rows of K(z} (which corresponds to a relabelling of the
components of the output vector y(1)) leaves Kr, unchanged, but it may change Kr,,.

This result is very important for our future arguments: we illustrate it with an
example.

Example 2.1
Consider the systems
i i] i 1]
#z—05) z 0 z
K, (z)= : and K,(z)= . (2.4)
0 B
z{z — 0-5) § 2z — 0-5) 0

It is easy to compute that K,(z) has Kr, = {2, 1} while K,(z) has Kr, = {1, 2}. By
permuting the rows we get

1 ] "1 ]
_ 2z —0-5) 0 _ z(z — 0-5) 0
R (z)= 1 1 and K,(z)= 1 (2.5
Az —05) z 0 z |

We now find Kr, = {2, 1} for K,(z) and K,(z). Notice that Kr, remains unchanged by
the permutation.

Lemma 2.3

Let P~'(z)0(z) = K(z) be a polynomial left coprime MFD of a strictly proper K(z)
with P(z) row reduced. Then the row degrees of P(z) are the left Kronecker indices of
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K(z). Hence deg det P(z) = n = 8[K(z)]. In addition these row degrees can be arranged
in arbitrary order.

Proof

The first part of the proof can be found in Wolowich (1974). That the row degrees
of P(z) can be arranged in arbitrary order follows from the fact that, if a particular (say
canonical) MFD has P(z) with row degrees n,, ..., n, in that order, then other row-
reduced MFDs of K(z) can be obtained by permuting the rows of P(z) and the
corresponding rows of Qfz} in the same way.

Hence there is no connection between the ordered left Kronecker indices of K(z)
and the ordered row degrees of a row-reduced left coprime MFD of K(z), except that
the unordered sets are identical. Notice also that permuting the rows of P(z) and,
correspondingly, of Q(z) changes the ordering of the I/O equations, but not the
ordering of the input or output components. Lemma 2.3 has led a number of authors
to construct canonical left coprime MFDs or to derive properties of left coprime
MFDs under the simplifying assumption that the row degrees could be ordered in a
specified way, e.g. ny £ ... £n,orny = ... = n, There is nothing wrong with that, but
it has in turn led some people to believe that the Kronecker indices of K(z) could be so
arranged by a permutation of its rows. This is not correct. The next lemma examines
what can be achieved by permuting the output components; this corresponds to
permuting the rows of K(z) and the columns of P(z) in K(z) = P~ 1(2)0(z), while leaving
Q=) unchanged. This lemma is probably well known to researchers in the field, but we
have not been able to find a statement or a proof of this result. We therefore give a
complete proof.

_ Lemma 2.4

By permuting the rows of K(z) onc can always arrange the left Kronecker indices
in decreasing order (ie. ny =n, = ... Zn,), but not always in increasing order.

Proof .

The second part is proved by Example 2.1. We now prove the first part. Let n,,
..., 1, be the ordered Kronecker indices of K(z). We denote by r(i, k) the ith row of the
kth block of #; ,[K] and by ant r(i, k) the antecedents of #(i, k), i.e. the set of rows
above (i, k)in the Hankel matrix. The proofis best illustrated by the crate diagrams of
Figs. 1a and 1b. In these diagrams the element in position (i, k) represents (i, k). Bach
coiumn of the crate therefore represents a block of rows of #°, [K], with the leftmost
column representing the first block. The antecedents of (i, k) correspond to all the
elements above and to the left of (i, k) in the crate diagram. The crosses in Fig. 1
mdicate the linearly independent rows obtained by searching from top to bottom in
the Hankel matrix, or from top left to bottom right in the crate, going down column
by column. The circles indicate the first linearly dependent rows of #; [K]. The
figuires are drawn for a system with five outputs.

By definition of the »; we have

P Hix
F‘(i, n; + I) = E 2 aiklr(ks Il) l= 19 s P (26)
k=11i=1
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X[ x| x] x| x]C X x| x| x| x|O
XiIx| x| x]|O X{ x| x| x| O
x| x| O x| x| xjO
x| x| x10 x| x O
X | x| x 10 X | x| x]0O
Figure la. (K(z)). Figure 15. (K(2)).

where
ny A min (n;,n,) ifi<k

Amin (m,+1,n) fi>k (2.7)

This expresses that r(i,n;+ 1) is a linear combination of its linearly independent
antecedents. Our proof uses an initialization step and an induction step.

Initialization step

Letn;£ max {n}.Ifj 5 1, permute the first and jth rows of K(z). Denote the new
i=1

= . * l--:P - . . - - v
matrix K(z), its rows 7k, !) and its associated Kronecker indices Hes ooy ity Since

ant /{1, n;+ 1) = ant r(j, n, + 1), it follows that u, > n,, and since n;=max {n;}, it follows
by Lemma 2.2 that 4, =n;

Induction step
Let k be the largest index such that in K(2)

Wpz. Zme (284
) 2w i=k..,p fk—1<p (2.8 b)

The initialization step ensures that k— 12 1. Ifk—1 = p, the desired ordering is
achieved. If k — 1 < p,let ;2 max {n}. Then, necessarily, y, _, = 4> . (If Fig. la
=%

2rees I

is representative of K(z), then k — 1 =2 and j =4.) Permute the kth and Jjth rows of
K(z), and denote K(z) the new matrix, ke, 1) its rows and v,, ..., v, its Kronecker
indices: see Fig.1b. We show that v, =y, Since ant /i, v,+ 1) = ant i, p; + 1) for
i=1,...,k—1,it follows that

vi=y i=1,..,k—1 (2.9)

Since ant Ak, n; + 1) = ant /{j, n; + 1), it follows that v, > p » and since y; & ~max {1}
it follows by Lemma 2.2 that v, = . Hence we now have TR

WDviz...z2zw (2.10 a)

i) vezv, i=k+1,...,p fk<p (2.10 b)

Comparing (2.8) and (2.10) we see that the induction step has increased the number of
ordered Kronecker indices by at least one. Repeating this step a finite number of times
therefore leads to the desired ordering.

Comment 2.1
Note that permuting two rows i and j may affect other indices than n; and n;.
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Finally, we denote by S{n) the set of all rational strictly proper K(z) of McMillan
degree n, and by S,(n,, ..., n,) the set of all such K{z) whose ordered left Kronecker

bl
indices are #,, ..., n, with Y n;=n. We then have the following result (see e.g. Deistler
1

and Hannan (1981), Hazewinkel and Kalman (1976)).

Lenmma 2.5
(i) The S,(n,, ..., n,) are disjoint subsets of S(n) with L S,(ny, ..., n,}=S(n)
(i} S.{n, ..., n,) can be mapped homeomorphically into an open and dense subset
of Rém="» ) where
ding, ....n)=nlm+ 1)+ Z {min (n;, n;) + min (n;, n; + 1)} 2.1

i<j

<n(m+ p) (2.12)

3. Caponical MFDs and their ARMA equivalent

The rows appearing on the right-hand side of (2.6) form a basis for the row space of
#, [K]. 1tis clear from the structure of the Hankel matrix that the first m ¢lements
of these rows, together with the coefficients ay, of (2.6), completely determine the
whole #, ,[K], and therefore K(z). They form a complete system of independent
invariants (Guidorzi 1981):

(o il B k=1, I=1 g j=1,,m) (3.1)

Here r,{k, j) denotes the ith element of the row r(k, j). The number of invariants in (3.1)
is precisely d(ny, ..., n,) see (2.11}. .

Most canonical forms, whether in SS, MFD or ARMA form, can be derived from
these d(n,, ..., n,) invariants; they will most often bave exactly d(ny, ..., n,) parameters:
see for example Rissanen (1974), Guidorzi (1981), Gevers and Wertz (1986).

The most commonly used canonical MFD is the Guidorzi form (Guidorzi 1975,
1981), also calied the echelon form in time series analysis (see e-g- Deistler 1986). Letn,,
...y 11, be the ordered left Kronecker indices of K{z). Then K(z) is uniquely described
by P~ (z)Q(z), where

Pi2) = 2% — o™ T — o — g (324
pl-J{Z) = - Gﬁij"i}znij_-l T e T Gtijl fOI‘ i %j (3.2 b)
q:{z) = ﬁijn.-z“'-_l + ...+ Bipn (32 ¢

The coefficients a,; are the invariants oy of (3.1) and (2.6). The §;; are bilinear
functions of the oz and 14 j, k} of (3.1): see Guidorzi (1981) or Gevers and Wertz (1986).
We notice that this caponical form has the following properties which uniquely define
its structure:

{i) The polynomials on the main diagonal of P(z) are monic with

deg p;=m (33 a
(i) deg p;=deg pu, J=L deg p;<deg pu, j>1i (33 b)
deg p;;<deg py, JjH#i (3.3 ¢)

(ifi) deg g;; < deg p; and P(z), O(z) are left coprime. (3.34d)
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With the notation of (1.5), it is clear from (3.3 b, ¢) that
(1) Pp.=1, B4 4a)
(i) Py, is lower triangular with unit diagonal elements (34 b)

Hence P(z) is both row-reduced and column-reduced. In an identification context,
once the left Kronecker indices n; have been estimated, the structure of P(z)and Q(2) is
completely specified by either (3.2) or (3.3). The ;5 and fi,, are parameters to be
estimated; their number is exactly d(n,, ..., r,) as given by (2.11).

Example 3.1

Consider a 2 x 2 matrix K(z) of McMillan degree 3 with left Kronecker indices
{2, 1). Then d(2, 1)=12,n,, =1, n;; =2 and

P(Z):I:zz__oclxzz—fxlu 05121], Q(z):[ﬁ1122+ﬁ11‘ ﬁ1zzz+ﬁ121]

T O342Z —¥pyy 2 0Opag Bai1 B2zt

(3.5)

1 0] .
Pixr = . (3'6)
—35, 1
Comment 3.1

In the control engineering literature another uniquely defined MFD is called the
canonical echelon MFD (see Forney (1975), Kailath (1980)). It is obtained from the
Guidorzi canonical form by a permutation of the rows of P(z) (and correspondingly of
Q(z): see the proof of Lemma 2.3) such that in the transformed P(z):

Note that

(i} the row degrees are arranged in increasing order;
(i) if in P(z) m, = n; with i < f, then the ith row of P(z) is above the jth row of P(z) in
P(z).
Finally, with P(z) and ((z) defined by (1.3), we notice that the relations {2.6) can be
rewritten as follows:

[Po Py - PJ# [K]=0 (3-7)

This yields (3.2 a, b) with u = p £ max {n,}. The form of 0(z) in (3.2 ¢) follows from the
requirement that P~ '(2)((z) must be strictly proper. It follows that v = p—L

We now turn to canonical ARMA forms. Although there are other ways (sec
Comment 1.1}, the most obvious way to construct a canonical ARMA form is first to
construct a row-reduced canonical MFD P~ '(z)Q(z) with P(z) having row degrees
Ny, ..., N, and to apply the transformation (1.6 a). If we apply this transformation to
the Guidorzi canonical MFD, we get K(D)=A" HD)BD)=K D+ K,D* + ... +
with A(D) and B(D) as follows:

(D) =1—ay, D— ... —ay, D™ (384a)
a; (D)= — Lgj DT — o D for isj (3.8b)
bifD) =B D + ... + fiyy D" (38¢)
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We can also write
AD)=Ag+AD+..+A,D%, BD)=BD+.. +B,D (3.9)

where A, = Py, (see (3.4 a)). Note that 4, or B, could be zero, but not both. The
left Kronecker indices of K(z) completely determine the structure of A(D) and B(D)
through (3.8), but notice that, unlike the canonical MFD, the row degrees and column
degrees of A(D) are not necessarily equal to (n,, ..., n,). Indeed some of the a; can be
zero: think of a moving-average model, for example.

The following properties hold:

(i) orfA(D): BD)}=mn, (3.10 a)
(i) dcLfAD] =p, dclBD)]=p (3.10 b)
(iii) .A(D) and B(D) are left coprime (3.10¢)

This canonical ARMA form is sometimes called the reversed echelon form (see
Deistler, 1986).

Example 3.2
For the matrix K(z) of Example 3.1 we get

1 0 —a 0 —a —
A_(_D}=|: :|+|: 112 :lD""l: 111 . 121 D2 (3.11a)
[ —%12 1 —O%z11 @211 0 0

B(D)=[ﬂ1-1z .ﬂ122]D+[ﬁ111 ﬁ-lzleDz GA1B)
Ba1y Bzas 0 0

It is immediately clear that our canonical reversed echelon form does not have the
desired property that A, =1. Since A, = Py, it will be lower triangular with unit
diagonal elements: see (3.4 b). On the other hand, the number of free parameters in

A(D), B(D) is d(ny, ..., n,).

4. Canonical monic ARMA models

As we said above, it would be interesting to work with monic ARMA models, i.c.
to have A,=I. We shall show here that it is in general impossible to construct
canonical monic ARMA models such that the row or column degrees are specified by
the left Kronecker indices of K(2). In addition we shall show that, generically, canonical
monic ARMA models can only represent systems whose McMillan degree is a
multiple of p = dim y. By generically we mean that ifa monic ARMA model with fixed
lag lengths is chosen, and if its parameters are randomly generated, then almost surely
the McMillan degree of the corresponding system will be a multiple of p.

First notice that one obvious way to obtain a monic ARMA form from the
canonical reversed echelon form is to redefine

A(D)= A; ' A(D), B(D)= A5 B(D) @1

However, this will in general rake all row degrees of A(D) and B(D) equal to p.
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Example 4.1
From Example 3.2 we get

_ _1 0 — o 0 { — %14y —a
AD) = :|+|: 112 ]D+|: 121 D2
[0 1 251 T O212%112 T Oayy T o120y —O1205,

4.1a)

E{D):f ‘ ﬁ17127 o B122 7 :|D+|: Bi11 Biz21 7 ]Dz 7
_ﬁ-211 + 22128112 Bazi +%212B122 U212B111  ®2Pim
415)

Notice that the row degrees of A(D) and B(D) are now (2, 2). The number of ‘free’
parameters has increased from d(2, 1) =12 to 15, but of course these are not all

independent. The next two lemmas show that this problem is a generic one with monic
ARMA models.

Lemma 4.1

Let K(z) be a strictly proper p x m rational transfer matrix with left Kronecker
indices #,, ..., #,. Then it is in general impossible to construct a monic ARMA model
A(D), B(D) for K(z) such that the row degrees of [A(D):B(D)] are n,, ..., n,.

Proof

Let P~ *(z)0(z) be the Guidorzi canonical form for K(z). By Lemma 2.4 we know
that it is always possible to arrange the rows of K(z) such that the n; are in decreasing
order, but that it is not always possible to arrange them so that the n, are increasing,
Therefore, the generic situation is that n, > ... = n, Now suppose that for at least one
ig{l, ..., p—1}:m;>n.y. Then by (27) myy ;=n,, +1. Hence in the Guidorz
canonical form the (i+ 1, i) element has degree n;, ,, which introduces a non-zero
clement in that same posifion in P,. Since the monic diagonal element in_the ith
column of P(z) has degree n,; > n; . ,, it is impossible to remove that (i + 1, i) element of
P(z) by elementary row operations. It is therefore impossible to find a unimodular U(z)
such that U(z)P(z) = R(z) with R,, = I. Now any monic ARMA model A(D), B(D) with
or | A(D); B(D)] = n; is equivalent with a MFD P(z), Q(z) such that ér,[ P(z)] = n, and
Py, = 1. Therefore it is in general impossible to construct a monic ARMA model A(D),
B(D) with row degrees of [A(D}): B(D)] equal to n,, ..., n,.

Comment 4.1

The proof relies on the assumption that there exists at least one i such that
n; > n;, 1. In fact the same proof goes through if there exists i, j with i <j such that
n; >n;. The Guidorzi canonical form will have P, = I if any only if n, < ... =n,
However, such situation is unlikely: see Lemma 2.4. In fact, generically, a system will
have its left Kronecker indices such thatny = ...=nm, =n ,; +1=... = n, + 1 for some
k, so that the only generic system that can be modelled by a monic ARMA model with
row degrees of [A(D): B(D)] equal to the left Kronecker indices is when n, =n, =
-.. =1, But this is the case only when the McMillan degree is a multiple of p, the
number of outputs of the system. We state this as a corollary.
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Corollary 4.1

Let K(z) be a strictly proper p x m rational transfer matrix with left Kronecker
indices 7y, ...,n, and let K(z) be generic, ie. ny 2 ... = Then K(z) can be
represented by a monic ARMA model A(D), B{(D) w1rh ar![A V:B(D)=n, i=1,

.,p, only if n; = ... =n, which requires in particular that n=pxk for some
integer k.

In Bokor and Keviczky (1982) it was assumed that the rows of K(z) could be
permuted so that the ordered Kronecker indices were increasing (n, < ... =n,). This
would have led to a Guidorzi canonical form with P, =1 and hence a monic
canonical ARMA form with minimal row degrees and therefore a minimal number of
free parameters. HHowever, we have seen that generically this cannot be done.

A consequence of Corollary 4.1 is that, except when n; = ... =n, any monic
ARMA model will have more than the minimal number of frée parameters, i.e. more
than d(ny, ..., n,), as Example 4.1 illustrates.

Alternative characterizations of identifiable monic ARMA models have been
proposed in the time series literature. One is to prescribe the column degrees of
[A(D): B(D)] and to impose that A(D)), B(D) are left coprime and that the p x (p +m)
matrix of coefficients of highest column degrees in each columa of [A(D): B(D)] be full
rank (see e.g. Deistler (1985), Hannan and Kavalieris (1984)). The disadvantage is
that p + m integers have to be prescribed rather than p. Another identifiable para-
metrization is to prescribe only the highest degrees ¢ and r in A(D) and B(D)
respectively, and to impose that A(D) and B(D} be left coprimie and that the
matrix [ A,'B,] have full rank. The matrices 4;, 1 Si<qand B, 1 Sisrare then fully
parametnzed (see e.g. Hannan (1976), Stoica (1982)). The advantage of these fully
parametrized forms is that only two integers need to be specified, but a disadvantage is
that the rank condition automatically implies that the McMillan degree of K(z) is
p x max (g,r). This will be shown by Theorem 5.1. The implication is that only
systems whose McMillan degree is a multiple of p can be represented with this
parametrization. Finally, another identifiable canonical ARMA maodel can be derived
froti a basis of the constructibility matrix: see Comment 1.1. However, this
parametrization is limited to systems having no poles at the origin; in particular, this
excludes moving-average models.

5. The McMillan degree of ARMA models

Consider a monic ARMA (g, r) model (1.1 a, b, d) and assume that A(D) and B(D)
are left coprime. We now express the McMillan degree 6[K(z)] of K(z) = A~ (D)B(D)
as a function of the 4, B,

Theorem 5.1

Let A~ Y(D)B(D) be a monic left coprime ARMA model for K(z) with A(D)and B(D)
as in (1.1 b, d), and let u 2 max (g, ). Then

I[K(z)] =rank M, {5.1)
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where
A, B, 0 0. 0 0]
Ao By Ao B, e
| I 52)
i {p+ mhu
0 0
Proof
Since A(D), B(D) is left coprime, we have
rank [A(D):B(D)]=p forall D : (5.3)
Now define
LP1(2): Qu(z)] = z“LA(D): B(D)] (5.4
Then by (5.3)
rank [P(z):Q,(zY]=p forall z#£0 (5.5)

If the rank condition (5.5) held for all z, including z = 0, then P,(z), 0,(z) would be left
coprime and since P, (z) is row-reduced with row degrees all equal to u, the McMillan
degree of Py '(2)0,(2) = A~ Y(D)B(D) would be pu. To compute the actual McMillan
degree, we thus have to substract from pu the number of common zeros at z=0
introduced by (5.4). We shall need the following notation:

M, & - )b oi=1,,u
pix{ptm)i
: ) 0 0
| Aucier Buior ey BuiA, B, |

(5.6)

We shall call ‘defect of M, denoted def M,, the following quantity:
def M; = pi — rank M, (5.7)

‘When M, is full rank, def M, = 0. Now consider

LP1(2):Q:(2)]. o =[A,: B,] = M, (5.8)

If rank M, = p, then P(z) and Q,(z} are left coprime, and the McMillan degree of K(z)
1s pu as stated above. Suppose def M, = t,. Then there exists a p x p real non-singuiar
matrix T, such that

) } 0 0 }tl .
T1[P(2):Q:(2)],=0 = i B }p ; =T,[4,:B,] (59
o u S

This shows that P ,(z) and Q,(z) have at least ¢, common zeroes at z = 0. We extract
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these common zeros by defining

[P2): Q2] = diag {7, ... 27, 1., BTL[Py(2): Q4(2)] (5.10)
Lﬂﬁ&__} ooy

Notice that [P{(z):Q,(z)] is polynomial with Py Y2)Q,(z) = A~ Y(D)B(D), it has full
rank for all z #0 and P,_ = I. We now repeat the same procedure with [Py(z): 0,(z)}:

Eu—lgu—l

A, B,

H

o, S, (5.11)

[Pxz):Q2(z))o=0 = =
Pty

where [A,_,B,_,] are the first ¢; rows of Ty[A,_;:B,_,] and [4,:B,] are the last
p—t, rows of T[4, B,] (see (5.9)). If rank §, = p, then P,(z), Q,(z) are left coprime, and
since P,(z) is row-reduced with its first t, row degrees equal to u— 1 and its last p — ¢,
row degrees equal to u, the McMillan degree of K(z) is then pu —£,. Denote def §, 2
p— rank S, and let def S, =t,. Note that t, <¢, since the last p—t, rows of S, are
linearly independent. Now

tl + tz = def Mz (5.12)
This follows from the fact that

T, 0 A, B, 10 0 4, B,
———————— —— = e | (5.13)
0 T, || A1 Bia| 4 B, Ay-y By |0 0
Nu—l ﬁu*l ju Eu
From (5.13) it is clear that
rank M, 2 2p —def M, =rtank M, + rank §, 514

We can now apply a left non-singular transformation T, to [P.(z):0,(z)] to transform
the top £, rows of S, to zeros, and then eliminate these £, common zeros in P,(z) and
0,(z) by defining

z ! 1{_;;-_:}}]"2[})2(2) :0,(2)] (5.15)

[Py(2): Qs(z)] = diag {z7*, ...,

f2

Defining [P4(z): 05(z)],=0 £ S5, and letting def S; =3, we notice that necessarily
ty=<t, <t and that t; +1t,+ 3 =def M, Iterating this procedure, we find that
t,+1t,+ ... +t,=def M, =number of common zeros at z=0 between P,(z) and
0:(2). It follows by (5.5) that the McMillan degree of K(z} is pu— def M, =rank M,

Comment 5.1

It is important to notice that the result of Theorem 5.1 holds only if A(D) and B(D)
are coprime. This can be easily seen as follows. Let A(D) and B(D) be left coprime with
u = max (g, 7) so that S[K(z)] = rank M, Now define

A(D)={ + PD)A(D), B(D)=(I+ PD)B(D) (5.16)
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for some p x p non-singular constant matrix P. Then for 4A(D) and B(D) we have

Au-i-l Bu+1 0 0_ A 0 0 1
gu Bu "{u+ 1 Bu +1 :

Mu+1 4
. 0 0
L A, B, “"-ﬂwf"-gﬁu
Now it is casy to see that
[P 0 0]
I P :
My = 0.__. P IM, (3.17
W 0
0 0 I P |
where
0 0
_ M, Do
M, = (5.18)
________ 0.0
I o 014, B,

It follows that
rank M, ,, =rank M,=rank M, +rank [4, B,]#rank M,

Hence [ K(z)] #rank M, ;. |

Relationships between the McMillan degree of K(z) and the rank of generalized
Beroutian and Sylvester matrices have been obtained in Anderson and Jury (1976).
These trelationships do not require that A(D) and B(D) be left coprime as is required in
Theorem 5.1. However, the Bezoutian matrix contains the coefficient matrices of both
feft and right factorizations of K(z) whereas only a left factorization is required here.
As for the test based on Sylvester matrices, if requires the computation of the ranks of
matrices of much higher dimension and rank than M, Our condifion is a much
simpler one, at the expense of a coprimeness requirement on A(D), B(D).

Corollary 5.1
Consider the AR model

YO+ Ale— D+ ... + At — py = ult) (5.19)
Then the McMillan degree of the system represented by (5.19) is given by
[ 4, 0 ... 0]
Apy Ay
rank [ (5.20)
‘. . '-.0
| 4 “Apy A, |
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Although Corollary 5.1 is a special case of Theorem 5.1, a much simpler proof can be
given in this case. The system (5.19) can be realized in state-space form as

[—4, I, 0, ... 0)) [—A4,]
Ay 0 .
M+)=| O [+ | 1 |ul®) (521 a)
| -4, 0, .. .. O] | —4, |
wW=[L 0, ... 0]x{t)+u() (521 b)

It is trivial to see that the observability matrix has full rank. As for the controllability
matrix, it can be written as

A, Ay o A AL —A, —A, .. —A, R
“o (o -1, —a,.
€ = _
Ap—l . "'_Al
4,770 o || o 0 1,
(5.22)

The result follows immediately using the Sylvester inequality.
It is easy to modify Theorem 5.1 to apply to ARMA models with 4, # I or B, #0,

4
or to MA models. For example, for the MA(g) model y(t) =u(t) + > At — i), the
1

McMitlan degree is given by (5.20). This last result is of course well known, since (5.20)
is then the Hankel matrix of the impulse response, written upside down.

Assuming for simplicity that m = p, then Theorem 5.1 shows that if monic ARMA
{g, ¥} models arg-used in system identification, one will almost always estimate models
of McMillan degree pu with u == max (g, r) since M, will almost always be full-rank
when estimated A; and B; are used. It was shown in Dunsmuir and Hannan {1976) that
the set of monic ARMA (g, r) models satisfying the full rank condition on [4,:B,]
form an analytic manifold of dimension p(pg + mr). Using arguments from Hannan
(1976), Stoica argued that systems that cannot be described by such manifolds are
‘pathological’ and unlikely to be encountered in practice: see Stoica (1982). It is true
that if one models a system with a fully parametrized monic ARMA (g, r) model, then
any system that does not satisfy the rank condition on [ A,: B, ] lies in a submanifold of
lower dimension. But to argue that such a system is pathological is to believe that certain
McMillan degrees are more likely than others. If a system has a McMillan dégree that is
not a multiple of p, and this fully parametrized form is used, then asymptotically
[A,: B,] will have less than full rank. However, with finite data this matrix will have full
rank because the true system lics on a thin submanifold; and therefore the order will be
overestimated and the number of free parameters will be unduly large.

These points are well illustrated by Example 3.2. If K{(z) has McMillan degree 3
with Kronecker indices (2, 1), then the non-monic ARMA model (3.11) has structural
zeros in the second row of 4, and B,. If 2 monic ARMA (2, 2) model is used, then it is
clear from (4.1) that rank [4,: B,] = 1. But if this fully parametrized model is used in
parameter estimation, then the two rows of [4,:B,] will not be exactly linearly
dependent and a fourth-order system will be estimated.
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6. Conclusions

It is commonly assumed in the control engineering community that MFDs and
monic ARMA models are equivalent and can therefore be used interchangeably.

We have highlighted a number of difficulties with the use of monic ARMA models
as opposed to MFDs in system identification. These models can only represent
systems whose McMillan degree is a multiple of the number of outputs. In all other
cases they will tend to produce estimated models of higher order than the true system.
We have also produced a new rank test for the determination of the McMillan degree
of a left coprime ARMA decomposition. It is clear from our result that the control
over the McMillan degree of a system is much more difficult when ARMA models are
used than when MFDs are used.
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