k-clique percolation and clustering in directed and weighted networks

Gergely Palla¹ Dániel Ábel² Imre Derényi² Illés Farkas¹ Péter Pollner¹ Tamás Vicsek^{1,2}

¹Statistical and Biological Physics Research Group, Hungarian Acedmy of Sciences,

> ²Department of Biological Physics, Eötvös University, Hungary

March 2008, Louvain-la-Neuve

イロト イポト イヨト イヨト

Outline

Introduction

- The Clique Percolation Method (CPM)
- Phase transition in the Erdős-Rényi graph
- Directed communities
 - Relative in- and out degree
 - Directed CPM
 - Results
- Weighted communities
 - Weights in the original CPM
 - Weighted CPM
 - Results

Vicsek group Directed and weighted communities

イロト イポト イヨト イヨト

æ

CPM Phase transition in the Erdős-Rényi graph

The Clique Percolation Method (CPM)

Definitions

- *k*-clique: a complete (fully connected) subgraph of *k* vertices.
- k-clique adjacency: two k-cliques are adjacent if they share k - 1 vertices, *i.e.*, if they differ only in a single node.

イロト イポト イヨト イヨト

CPM Phase transition in the Erdős-Rényi graph

The Clique Percolation Method (CPM)

Definitions

- *k*-clique: a complete (fully connected) subgraph of *k* vertices.
- k-clique adjacency: two k-cliques are adjacent if they share k - 1 vertices, *i.e.*, if they differ only in a single node.

イロト (過) (注) (日)

CPM Phase transition in the Erdős-Rényi graph

The Clique Percolation Method (CPM)

Definitions

- *k*-clique: a complete (fully connected) subgraph of *k* vertices.
- k-clique adjacency: two k-cliques are adjacent if they share k - 1 vertices, *i.e.*, if they differ only in a single node.

イロト イポト イヨト イヨト

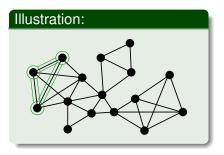
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

Vicsek group Directed and weighted communities

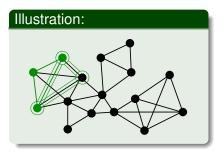

イロト 不同 トイヨト イヨト

CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.


イロト 不同 トイヨト イヨト

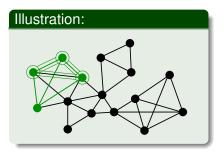
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

Vicsek group Directed and weighted communities

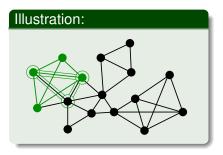

イロト 不同 トイヨト イヨト

CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.


ヘロア 人間 アメヨア 人口 ア

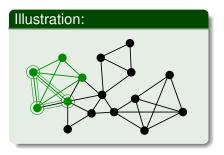
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

 k-clique community: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Vicsek group Directed and weighted communities


ヘロア 人間 アメヨア 人口 ア

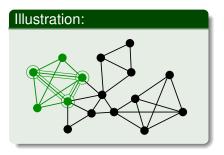
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

Vicsek group Directed and weighted communities


イロト 不同 トイヨト イヨト

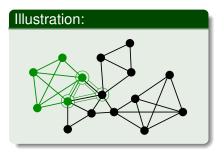
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

 k-clique community: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Vicsek group Directed and weighted communities


ヘロア 人間 アメヨア 人口 ア

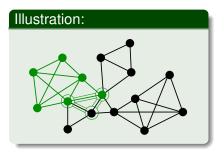
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

 k-clique community: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Vicsek group Directed and weighted communities


イロト 不同 トイヨト イヨト

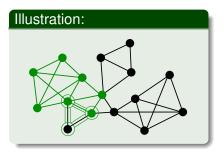
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

Vicsek group Directed and weighted communities

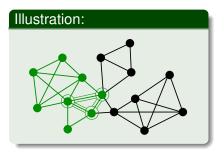

イロト 不同 トイヨト イヨト

CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.


ヘロア 人間 アメヨア 人口 ア

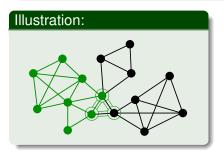
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

 k-clique community: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Vicsek group Directed and weighted communities

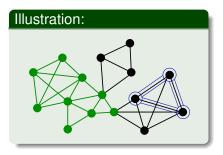

イロト 不同 トイヨト イヨト

CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

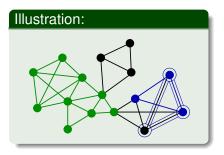

イロト 不同 トイヨト イヨト

CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.


イロト 不同 トイヨト イヨト

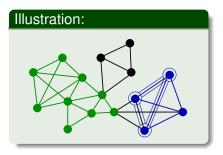
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

 k-clique community: the union of k-cliques that can be reached from one to the other through a sequence of adjacent k-cliques.

Vicsek group Directed and weighted communities


イロト 不同 トイヨト イヨト

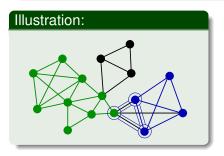
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

Vicsek group Directed and weighted communities


イロト 不同 トイヨト イヨト

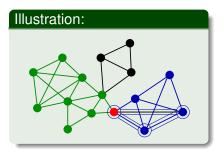
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

Vicsek group Directed and weighted communities


イロト 不同 トイヨト イヨト

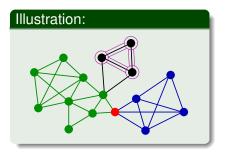
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

Vicsek group Directed and weighted communities

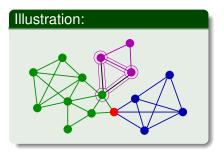

イロト 不同 トイヨト イヨト

CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.


イロト 不同 トイヨト イヨト

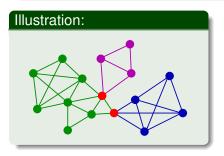
CPM Phase transition in the Erdős-Rényi graph

CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

Vicsek group Directed and weighted communities

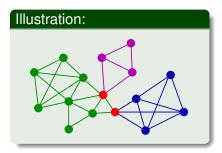

ヘロア 人間 アメヨア 人口 ア

CPM Phase transition in the Erdős-Rényi graph

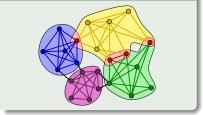
CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.


ヘロア 人間 アメヨア 人口 ア

CPM Phase transition in the Erdős-Rényi graph


CPM (continued)

Definition

• *k*-clique community: the union of *k*-cliques that can be reached from one to the other through a sequence of adjacent *k*-cliques.

same at k = 4:

イロト イロト イヨト

CPM Phase transition in the Erdős-Rényi graph

Advantages of the CPM

The main advantages of the CPM:

- Allows overlaps between the communities.
- The definition is based on the density of the links.
- It is local. (No resolution limit).

イロト (過) (注) (日)

CPM Phase transition in the Erdős-Rényi graph

The order parameters

The Erdős-Rényi graph:

- N nodes,
- every pair is independently linked with probability *p*.

A giant *k*-clique percolation cluster can be found if $p \ge p_c(k)$.

The order parameter of the phase transition is the size of the giant cluster:

The number of nodes, $N^* \longrightarrow \Phi \equiv N^*/N$, The number of *k*-cliques, $\mathcal{N}^* \longrightarrow \Psi \equiv \mathcal{N}^*/\mathcal{N}$.

イロト 不得 トイヨト イヨト

CPM Phase transition in the Erdős-Rényi graph

The order parameters

The Erdős-Rényi graph:

- N nodes,
- every pair is independently linked with probability p.

A giant *k*-clique percolation cluster can be found if $p \ge p_c(k)$.

The order parameter of the phase transition is the size of the giant cluster:

The number of nodes, $N^* \longrightarrow \Phi \equiv N^*/N$, The number of *k*-cliques, $\mathcal{N}^* \longrightarrow \Psi \equiv \mathcal{N}^*/\mathcal{N}$.

イロト 不得 トイヨト 不良トー

CPM Phase transition in the Erdős-Rényi graph

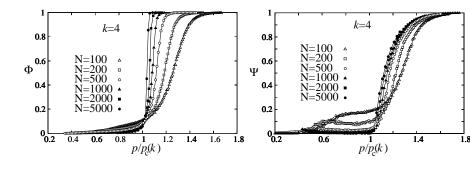
The order parameters

The Erdős-Rényi graph:

- N nodes,
- every pair is independently linked with probability p.

A giant *k*-clique percolation cluster can be found if $p \ge p_c(k)$.

The order parameter of the phase transition is the size of the giant cluster:


The number of nodes, $N^* \longrightarrow \Phi \equiv N^*/N$, The number of *k*-cliques, $\mathcal{N}^* \longrightarrow \Psi \equiv \mathcal{N}^*/\mathcal{N}$.

イロト イポト イヨト

CPM Phase transition in the Erdős-Rényi graph

Results

Numerical results:

$$p_{\rm c}(k) = \frac{1}{[N(k-1)]^{\frac{1}{k-1}}}$$

イロト イポト イヨト イヨト

в

Relative in- and out-degree Directed CPM Results

Directed links

Direction of the links:

- Direction of some kind of flow (e.g. information, energy).
- Asymmetrical relation (e.g. superior-inferior).

Out-hubs in communities represent "sources", whereas in-hubs correspond to "drains":

イロト イポト イヨト

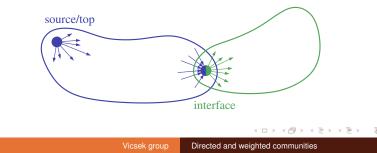
Introduction Relative in- and out-degree Directed communities Directed CPM Veighted communities Results

Directed links

Direction of the links:

- Direction of some kind of flow (e.g. information, energy).
- Asymmetrical relation (e.g. superior-inferior).

Out-hubs in communities represent "sources", whereas in-hubs correspond to "drains":


Introduction Relative in- and out-degree Directed communities Directed CPM Veighted communities Results

Directed links

Direction of the links:

- Direction of some kind of flow (e.g. information, energy).
- Asymmetrical relation (e.g. superior-inferior).

Out-hubs in communities represent "sources", whereas in-hubs correspond to "drains":

Introduction Relative in Directed communities Directed C Veighted communities Results

Relative in- and out-degree Directed CPM Results

Relative in- and out-degree

We define the relative in-degree and relative out-degree of node i in community α as

$$egin{array}{rcl} D^{lpha}_{i,\mathrm{in}}&\equiv& \displaystylerac{d^{lpha}_{i,\mathrm{in}}}{d^{lpha}_{i,\mathrm{in}}+d^{lpha}_{i,\mathrm{out}}},\ D^{lpha}_{i,\mathrm{out}}&\equiv& \displaystylerac{d^{lpha}_{i,\mathrm{out}}}{d^{lpha}_{i,\mathrm{in}}+d^{lpha}_{i,\mathrm{out}}}, \end{array}$$

For weighted networks these can be replaced by the relative in-strength and relative out-strength:

$$\begin{array}{lll} W^{\alpha}_{i,\mathrm{in}} & \equiv & \frac{W^{\alpha}_{i,\mathrm{in}}}{W^{\alpha}_{i,\mathrm{in}}+W^{\alpha}_{i,\mathrm{out}}}, \\ W^{\alpha}_{i,\mathrm{out}} & \equiv & \frac{W^{\alpha}_{i,\mathrm{out}}}{W^{\alpha}_{i,\mathrm{in}}+W^{\alpha}_{i,\mathrm{out}}}, \end{array}$$

ヘロアメ 国マメ ヨア・

Introduction Relative in-Directed communities Directed CP Veighted communities Results

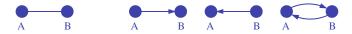
Relative in- and out-degree Directed CPM Results

Relative in- and out-degree

We define the relative in-degree and relative out-degree of node i in community α as

$$egin{array}{rcl} D^{lpha}_{i, ext{in}} &\equiv & \displaystyle rac{d^{lpha}_{i, ext{in}}}{d^{lpha}_{i, ext{in}}+d^{lpha}_{i, ext{out}}}, \ D^{lpha}_{i, ext{out}} &\equiv & \displaystyle rac{d^{lpha}_{i, ext{out}}}{d^{lpha}_{i, ext{in}}+d^{lpha}_{i, ext{out}}}, \end{array}$$

For weighted networks these can be replaced by the relative in-strength and relative out-strength:


$$egin{array}{rcl} W^lpha_{i,\mathrm{in}} &\equiv & rac{W^lpha_{i,\mathrm{in}}}{W^lpha_{i,\mathrm{in}}+W^lpha_{i,\mathrm{out}}}, \ W^lpha_{i,\mathrm{out}} &\equiv & rac{W^lpha_{i,\mathrm{out}}}{W^lpha_{i,\mathrm{in}}+W^lpha_{i,\mathrm{out}}}, \end{array}$$

イロト イポト イヨト イヨト

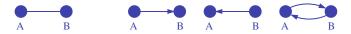
Relative in- and out-degree Directed CPM Results

Directed k-cliques?

Comparing undirected and directed connections:

In case of k-cliques:

- k(k-1)/2 links $\longrightarrow 3^{k(k-1)/2}$ possible configurations.
- However, we would like the *k*-clique to have some kind of directionality as a whole as well.


・ロト ・ 同ト ・ ヨト ・ ヨト

э

Relative in- and out-degree Directed CPM Results

Directed k-cliques?

Comparing undirected and directed connections:

In case of k-cliques:

- k(k-1)/2 links $\longrightarrow 3^{k(k-1)/2}$ possible configurations.
- However, we would like the *k*-clique to have some kind of directionality as a whole as well.

Relative in- and out-degree Directed CPM Results

Definition

A directed k-clique has to fulfil the following conditions:

In the absence of double links:

- Any directed link in the *k*-clique points from a node with a higher order (larger restricted out-degree) to a node with a lower order.
- The *k*-clique contains no directed loops.
- The restricted out-degree of each node in the *k*-clique is different.

If double links are present:

It is possible to eliminate the double links in such a way that the single links fulfil the above conditions.

Relative in- and out-degree Directed CPM Results

Definition

A directed *k*-clique has to fulfil the following conditions:

In the absence of double links:

- Any directed link in the *k*-clique points from a node with a higher order (larger restricted out-degree) to a node with a lower order.
- The k-clique contains no directed loops.
- The restricted out-degree of each node in the *k*-clique is different.

If double links are present:

It is possible to eliminate the double links in such a way that the single links fulfil the above conditions.

Relative in- and out-degree Directed CPM Results

Definition

A directed k-clique has to fulfil the following conditions:

In the absence of double links:

- Any directed link in the *k*-clique points from a node with a higher order (larger restricted out-degree) to a node with a lower order.
- The k-clique contains no directed loops.
- The restricted out-degree of each node in the *k*-clique is different.

If double links are present:

It is possible to eliminate the double links in such a way that the single links fulfil the above conditions.

Relative in- and out-degree Directed CPM Results

Definition

A directed k-clique has to fulfil the following conditions:

In the absence of double links:

- Any directed link in the *k*-clique points from a node with a higher order (larger restricted out-degree) to a node with a lower order.
- The k-clique contains no directed loops.
- The restricted out-degree of each node in the *k*-clique is different.

If double links are present:

It is possible to eliminate the double links in such a way that the single links fulfil the above conditions.

Relative in- and out-degree Directed CPM Results

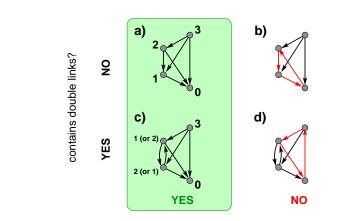
Definition

A directed *k*-clique has to fulfil the following conditions:

In the absence of double links:

- Any directed link in the *k*-clique points from a node with a higher order (larger restricted out-degree) to a node with a lower order.
- The k-clique contains no directed loops.
- The restricted out-degree of each node in the *k*-clique is different.

If double links are present:


It is possible to eliminate the double links in such a way that the single links fulfil the above conditions.

イロト イポト イヨト イヨト

э

Relative in- and out-degree Directed CPM Results

Illustration

directed k-clique?

イロト イポト イヨト イヨト

æ

990

Introduction Rela Directed communities Dire Veighted communities Res

Relative in- and out-degree Directed CPM Results

Phase transition in the directed E-R graph

The directed E-R graph:

- N nodes,
- The N(N 1) possible "places" for the directed links are filled independently with probability *p*.

Theoretical prediction of the critical point for the appearance of a giant directed *k*-clique percolation cluster:

$$p_{\rm c}^{\rm theor} = \frac{1}{[Nk(k-1)]^{\frac{1}{k-1}}}.$$

Order parameters: Φ , Ψ (same as in the undirected case).

ヘロアス 聞アス ほアメロア

Introduction Relative in Directed communities Directed C leighted communities Results

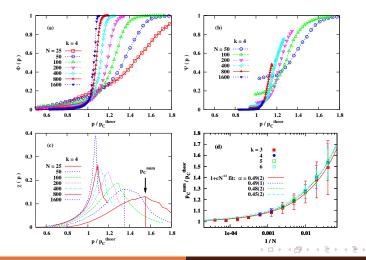
Relative in- and out-degree Directed CPM Results

Phase transition in the directed E-R graph

The directed E-R graph:

- N nodes,
- The N(N 1) possible "places" for the directed links are filled independently with probability *p*.

Theoretical prediction of the critical point for the appearance of a giant directed *k*-clique percolation cluster:


$$p_{c}^{\text{theor}} = \frac{1}{[Nk(k-1)]^{\frac{1}{k-1}}}.$$

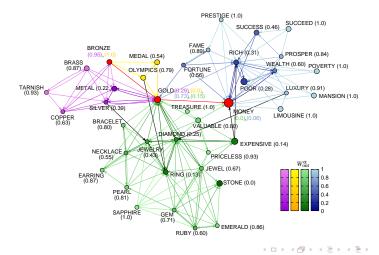
Order parameters: Φ , Ψ (same as in the undirected case).

イロト イポト イヨト

Introduction Relative in- and ou Directed communities Directed CPM Weighted communities Results

Numerical results

Vicsek group

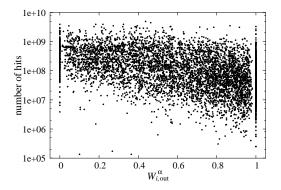

Directed and weighted communities

в

Relative in- and out-degree Directed CPM Results

Word association network

Local picture of the communities:

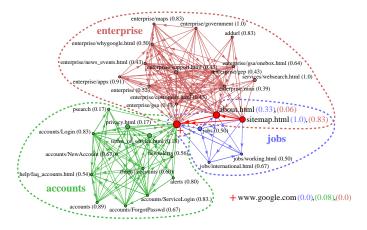

3

Introduction Relativ Directed communities Directed Weighted communities Result

Relative in- and out-degree Directed CPM Results

Relative out-degree and number of hits

The number of hits in Google as a function of $W^{\alpha}_{i,out}$:



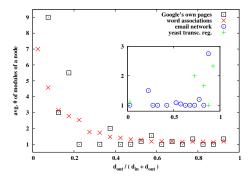
э

Relative in- and out-degree Directed CPM Results

Google's on web pages

Local picture of the communities:

Vicsek group Directed and weighted communities


イロト イポト イヨト イヨト

э

Relative in- and out-degree Directed CPM Results

Comparing overlaps

Membership number in function of $D_{i,out}^{\alpha}$:

Community overlaps:

- word association net, Google's web pages in-hubs,
- e-mail net, transcription regulatory network out-hubs.

Weights in the original CPM Weighted CPM Results

Link weights in the original CPM

In the original CPM we can take into account the weights by ignoring links weaker than a certain threshold w^* .

Changing w^* and k is similar to changing the resolution in a microscope.

Optimal k-clique size and w

Where the community structure is as highly structured as possible: just below the critical point of the appearance of a giant *k*-clique community.

Weights in the original CPM Weighted CPM Results

Link weights in the original CPM

In the original CPM we can take into account the weights by ignoring links weaker than a certain threshold w^* .

Changing w^* and k is similar to changing the resolution in a microscope.

Optimal k-clique size and w

Where the community structure is as highly structured as possible: just below the critical point of the appearance of a giant *k*-clique community.

Weights in the original CPM Weighted CPM Results

Link weights in the original CPM

In the original CPM we can take into account the weights by ignoring links weaker than a certain threshold w^* .

Changing w^* and k is similar to changing the resolution in a microscope.

Optimal k-clique size and w^*

Where the community structure is as highly structured as possible: just below the critical point of the appearance of a giant *k*-clique community.

Introduction Weights in the original CPM Directed communities Weighted CPM Weighted communities Results

k-clique intensity

The intensity *I* of a sub-graph is defined as the geometrical mean of its link weights.

For a *k*-clique
$$C$$
: $I(C) = \left(\prod_{\substack{i < j \\ i, j \in C}} w_{ij}\right)^{2/k/(k-1)}$

Weighted k-clique

A *k*-clique with an intensity greater or equal to a given intensity threshold I^* .

イロト (過) (注) (日)

Э

Weights in the original CPM Weighted CPM Results

Percolation transition in the E-R graph

A weighted E-R graph:

- N nodes,
- every pair is linked independently with uniform probability *p*,
- each link is assigned a weight chosen randomly from a uniform distribution on the (0, 1] interval.

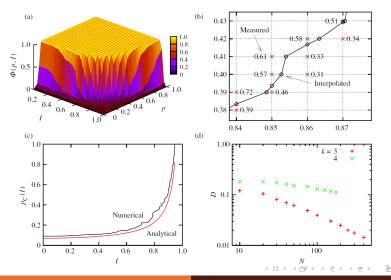
The critical linking probability is a function of the intensity threshold. At I = 0 we recover $p_c(I = 0) = [N(k - 1)]^{-1/(k-1)}$.

ヘロト 人間 トメヨトメヨト

Weights in the original CPM Weighted CPM Results

Percolation transition in the E-R graph

A weighted E-R graph:


- N nodes,
- every pair is linked independently with uniform probability *p*,
- each link is assigned a weight chosen randomly from a uniform distribution on the (0, 1] interval.

The critical linking probability is a function of the intensity threshold. At I = 0 we recover $p_c(I = 0) = [N(k - 1)]^{-1/(k-1)}$.

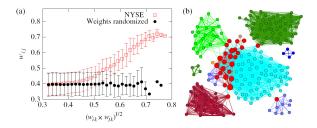
イロト 不得 トイヨト 不良トー

Introduction Weights in the original (Directed communities Weighted CPM Weighted communities Results

Results

Vicsek group

Directed and weighted communities


990

Introduction Weights in the original CPM Directed communities Weighted CPM Veighted communities Results

NYSE graph

New York Stock Exchange graph:

- We studied the pre-computed stock correlation matrix containing the averaged correlation between the daily logarithmic returns.
- The correlation coefficients can be used as link weights. We kept only the strongest 3%.

Introduction Weights in the original CPM Directed communities Weighted CPM Weighted communities Results

Summary

- Directed communities:
 - Relative in- and out-degree,
 - Directed k-cliques.
- Weighted communities:
 - k-clique intensity.
- Publications:
 - New Journal of Physics 9, 180 (2007),
 - New Journal of Physics 9, 186 (2007).
- Downloadable community finding software:
 - http://cfinder.org