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i What is a good clustering?

= Non-overlapping clusterings

m Quantlfy the quality of a clustering:

MinCut
= Normalised Cut (Shi-Malik 00)
= (a,€)-clustering (Kannan, Vempala, Vetta 00)
= Modularity (Newman-Girvan 04)
= Local modularity (Muff, Rao, Caflisch 05)
= Density (Delling, Gaertler, Gorke, Nikoloski, Wagner 07)
= K-means for various kernels (Fouss ; Latapy Pons)
= Potts model clustering (Reichardt, Bornholdt 04)
= Fitness function (Fortunato. Lancichinetti, Kertész 08)
= eftc.



i Graphs as Markov chains

= Nodes = state of the Markov chain

= Edges = possible transition

= Probability of transition = 1/outdegree
= If undirected, then

= Stationary proba of node = degree / > degrees
= every path of length 1 (=edge) has same proba

= In general:

= weighted graph = Markov chain
= Wweight = energy



i Clustering of Markov chains

Interpret graph measures:

= For a 2-way clustering of nodes V=V, UV,

= MinCut = Prob[V, V,] + Prob[V, V,]
= NormalisedCut= MinCut (1/Prob[V,]
= Conductance = MinCut / min(Prob

+ 1/Prob|[V,]))
V1], Prob[V,])

= Modularity =2 Prob[V,] Prob[V,] [l- MinCut

= Modularity =2 (1/Prob[V,] + 1/Prob

= For a A~way clustering:
=« MinCut = 1- 2, Prob [V, V]

V,])t — MinCut

= Modularity = 1- (MinCut + Y, Prob[V/] 2)



i Clustering of Markov chains

MinCut gives unbalanced clusterings

Others =MinCut + bias towards balanced clusterings
Modularity originally defined for unweighted graphs.
Here, defined on Markov chains (=weighted graphs)
All make use of paths of length one

= short term behaviour.

What about long term behaviour?

For NCut with Markov Chain: Zhou, Huang, Scholkopf
05




i Clustering and random walks

Algorithms on Markov chains:
= MCL (van Dongen 00)
» Euclidean Commute distance
(Fouss, Pirotte, Saerens 04)
« Walktrap (Latapy, Pons 06)
= Etc.



i Clustering and physics

= Intuition from physics:
= Quasi-equilibrium (e.g. glass):
= medium time scale is observed

= Cluster = quasi-equilibrium at some time scale

= Time scale = resolution parameter of clustering:
= short time = many clusters
« long time = few clusters

= Quality of clustering at a given time scale




Stabllity:

!'_ definition and properties




i Functions on Markov chain

= Assign a real to every state:

= A random walk generates a signhal (=sequence of
reals): e.g., 3, -1, 3, 2, -1, -1, -1, 3,...
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i Functions on Markov chain

= Random signal s(t) not Markovian in general
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i Functions on Markov chains

If the function IS constant on clusters:
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Functions and clusterings

= Good clustering = any function constant
on clusters:

= has slow signals = low frequencies
= has autocovariance with slow decay
= IS slowly forgotten

= It Is enough to check basis functions:
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i Stability of a clustering

= Stability = sum of autocovariance for all basis functions

« Stability(t) =[>; b7 (M — 7l ) Mh,

= 77 = stationary distribution (=normalised degrees)
= [1 = diag(x)
= b/ =(0...011...10...0)

(basis function = characteristic function of cluster)

= )M is matrix of transition probabilities
(=normalised adjacency matrix)

= Computation up to ¢ = O(t.|edges|)



i The best clustering

= We want to maximise stability

= At every time a different clustering may be
optimal.

= From physical intuition, we expect:
= high time=few clusters
= low times=many clusters
= A hierarchy across time



Stability, modularity, and spectral
clustering

+

= Stability(0) is optimal for finest clustering
= Stability(1) is modularity

= Stability(e) Is optimal for 2-way clustering = sign of
normalised Fiedler vector.

= Natural definition of modularity for Markov chains

= Spectral clustering= exact algorithm for largest times
scales

= Sequence of optimal clusterings = hierachy?



i Example

Graph with obvious clusters:

@



Example
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!'_ Applications



Application |I;
i Hierarchical Clustering

= A 379-node graph (collaborations in network science,
collected by Mark Newman),

= Apply KVV algorithm: A~way clustering by spectral
method

= Compute A-way clustering for every k&
= Rank them according to stability for every time
= Discard those that are never optimal
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Dendrogram

= Not a binary tree

| Slmple Number Time
of clusters| of split
2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .. 133
3
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .. 130
5
N O O NS EN R RPN 6
l .
e e e e ) 4
17
S N Y .2
) minil |-
,,,,,,,,,,, B R R T B 1
379
10 10 20 8 61 16 10 7 29 20 9 22 42 25 4 17 10 16 10 9 24




K e X
G \YAA
-‘

PPN
-

GRE




Application I1:
i Compare Clustering Algorithms

= A 379-node graph
= Apply several A&~way clustering algorithms (for all 4).
= Result: Performance can vary with time scale.
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Application IlI:

i Model Reduction of Proteins

Protein = graph of atoms and chemical bonds
Dynamic modelling (e.g., mass-spring system)

How to reduce the number of degrees of freedom:
find rigid clusters.

As a quick approximation: find clusters with Shi-Malik
algorithnm (= A-way clustering with spectral method).

Intuition: a group of atoms with many bonds is more
likely to be rigid.

Compute A-way clusterings for all 4.
Rank the clusterings for every time.
Most significant = largest time scales
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18 clusters (4 <time <10) 6 clusters (25 < time < 60)

4 clusters (107 < time < 159) 2 clusters (time > 852)



Change of distance within
clusters

= T0 assess quality of clusters: change of intra-cluster
distances between two different configurations

10" F

10° F

Average square variation of distance within a cluster

0 5 10 15 20 25 30
Number of clusters



!'_ Extensions



Almost bipartite graphs

= Stability not always decreasing with time.

= Example: almost bipartite: oscillations

= Bipartite graph= « anti-clustering» = square root of
clustering

= |f we are only interested in clusterings:
Average two consecutive times to kill oscillations.




i Fractional times

Fortunato O7: interesting clusterings finer than given
by modularity.

How to see between time=0 and time=17?
Fractional powers if nonnegative spectrum
Interpolate between I = MY and M?

Stability(t)= >, b/ (M — 77! ) ((1 — )T + tM)h;

Close to continuous-time process:
(1 —t) I +tM ~exp(t(M — 1))

Similar to Arenas, Fernandez, Gomez 07 (=adding
self-loops of weight /)



i Overlapping clusterings

= Membership function:

= E.g., node /belongs to cluster 1 (60%) and
cluster 3 (40%)

s Characteristic functions of clusters:
« Stability(t)= >; k! (M — 7w l) Mh;
«h; >0; >;h =1



i Conclusions

= Stability of clustering = autocovariance

= Applies to reversible Markov chains,
undirected graphs

= Optimal clustering depends on time scale

= Bridge between modularity (time=1) and
spectral clustering (time=w)

= Applications:
= comparing algorithms
= creating simple hierachies
= find significant time scales



