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What is a good clustering?

Non-overlapping clusterings
Quantify the quality of a clustering:

MinCut
Normalised Cut (Shi-Malik 00)
(α,ε)-clustering (Kannan, Vempala, Vetta 00)
Modularity (Newman-Girvan 04)
Local modularity (Muff, Rao, Caflisch 05)
Density (Delling, Gaertler, Görke, Nikoloski, Wagner 07)
K-means for various kernels (Fouss ; Latapy Pons)
Potts model clustering (Reichardt, Bornholdt 04)
Fitness function (Fortunato. Lancichinetti, Kertész 08)
etc.



Graphs as Markov chains

Nodes = state of the Markov chain
Edges = possible transition
Probability of transition = 1/outdegree
If undirected, then

stationary proba of node = degree / ∑ degrees
every path of length 1 (=edge) has same proba

In general: 
weighted graph = Markov chain
weight = energy



Clustering of Markov chains

Interpret graph measures: 
For a 2-way clustering of nodes V = V1 ∪ V2

MinCut = Prob[V1 V2] + Prob[V2 V1] 
NormalisedCut= MinCut (1/Prob[V1] + 1/Prob[V2]))
Conductance = MinCut /  min(Prob[V1] , Prob[V2])
Modularity = 2 Prob[V1] Prob[V2] �− MinCut
Modularity = 2 (1/Prob[V1] + 1/Prob[V2])-1 − MinCut

For a k-way clustering:
MinCut = 1− ∑i Prob [Vi Vi] 
Modularity = 1− (MinCut + ∑i Prob[Vi] 2)



Clustering of Markov chains

MinCut gives unbalanced clusterings

Others =MinCut + bias towards balanced clusterings
Modularity originally defined for unweighted graphs. 
Here, defined on Markov chains (=weighted graphs)
All make use of paths of length one
= short term behaviour.
What about long term behaviour?
For NCut with Markov Chain: Zhou, Huang, Schölkopf
05



Clustering and random walks

Algorithms on Markov chains: 
MCL (van Dongen 00)
Euclidean Commute distance 
(Fouss, Pirotte, Saerens 04)
Walktrap (Latapy, Pons 06) 
Etc.



Clustering and physics

Intuition from physics:
Quasi-equilibrium (e.g. glass):

medium time scale is observed

Cluster = quasi-equilibrium at some time scale
Time scale = resolution parameter of clustering:

short time = many clusters
long time = few clusters

Quality of clustering at a given time scale



Stability: 
definition and properties



Functions on Markov chain
Assign a real to every state:

A random walk generates a signal (=sequence of 
reals): e.g., 3, -1, 3, 2, -1, -1, -1, 3,…
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Functions on Markov chain
Random signal s(t) not Markovian in general

Autocovariance function:
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Functions on Markov chains

If the function is constant on clusters:
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Functions and clusterings
Good clustering = any function constant 
on clusters:

has slow signals = low frequencies
has autocovariance with slow decay
is slowly forgotten

It is enough to check basis functions:
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Stability of a clustering
Stability = sum of autocovariance for all basis functions
Stability(t) =                                            

= stationary distribution (=normalised degrees)

(basis function = characteristic function of cluster)   
is matrix of transition probabilities

(=normalised adjacency matrix)

Computation up  to t  =



The best clustering

We want to maximise stability

At every time a different clustering may be
optimal.

From physical intuition, we expect:
high time=few clusters
low times=many clusters
A hierarchy across time



Stability, modularity, and spectral 
clustering

Stability(0) is optimal for finest clustering
Stability(1) is modularity
Stability(∞) is optimal for 2-way clustering = sign of 
normalised Fiedler vector.

Natural definition of modularity for Markov chains
Spectral clustering= exact algorithm for largest times 
scales
Sequence of optimal clusterings = hierachy?



Example

Graph with obvious clusters:

K20

K15

K10 K5



Example
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Applications



Application I: 
Hierarchical Clustering

A 379-node graph (collaborations in network science, 
collected by Mark Newman),
Apply KVV algorithm: k-way clustering by spectral 
method
Compute k-way clustering for every k
Rank them according to stability for every time
Discard those that are never optimal



Stability curve



Dendrogram
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Application II: 
Compare Clustering Algorithms

A 379-node graph
Apply several k-way clustering algorithms (for all k).
Result: Performance can vary with time scale.



Application III: 
Model Reduction of Proteins

Protein = graph of atoms and chemical bonds
Dynamic modelling (e.g., mass-spring system)
How to reduce the number of degrees of freedom: 
find rigid clusters.
As a quick approximation: find clusters with Shi-Malik 
algorithm (= k-way clustering with spectral method).
Intuition: a group of atoms with many bonds is more 
likely to be rigid.
Compute k-way clusterings for all k.
Rank the clusterings for every time.
Most significant = largest time scales
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31 clusters (time=1) 18 clusters (4 ≤ time ≤ 10) 6 clusters (25 ≤ time ≤ 60)

4 clusters (107 ≤ time ≤ 159) 2 clusters (time ≥ 852)



Change of distance within
clusters

To assess quality of clusters: change of intra-cluster 
distances between two different configurations
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Extensions



Almost bipartite graphs
Stability not always decreasing with time.

Example: almost bipartite: oscillations
Bipartite graph= « anti-clustering» = square root of 
clustering

If we are only interested in clusterings:
Average two consecutive times to kill oscillations.



Fractional times
Fortunato 07: interesting clusterings finer than given
by modularity.
How to see between time=0 and time=1?
Fractional powers if nonnegative spectrum
Interpolate between and
Stability(t)=

Close to continuous-time process:

Similar to Arenas, Fernandez, Gomez 07 (=adding
self-loops of weight r) 



Overlapping clusterings

Membership function: 
E.g., node i belongs to cluster 1 (60%) and 
cluster 3 (40%)

Characteristic functions of clusters:
Stability(t)=



Conclusions
Stability of clustering = autocovariance
Applies to reversible Markov chains, 
undirected graphs
Optimal clustering depends on time scale
Bridge between modularity (time=1) and 
spectral clustering (time=∞)

Applications: 
comparing algorithms
creating simple hierachies
find significant time scales


