Clustering and Time Scales in Markov Chains

Jean-Charles Delvenne (Université catholique de Louvain) Sophia Yaliraki (Imperial College London) Mauricio Barahona (Imperial College London)

What is a good clustering?

Non-overlapping clusterings

- Quantify the quality of a clustering:
 - MinCut
 - Normalised Cut (Shi-Malik 00)
 - (α,ε)-clustering (Kannan, Vempala, Vetta 00)
 - Modularity (Newman-Girvan 04)
 - Local modularity (Muff, Rao, Caflisch 05)
 - Density (Delling, Gaertler, Görke, Nikoloski, Wagner 07)
 - K-means for various kernels (Fouss ; Latapy Pons)
 - Potts model clustering (Reichardt, Bornholdt 04)
 - Fitness function (Fortunato. Lancichinetti, Kertész 08)
 - etc.

Graphs as Markov chains

- Nodes = state of the Markov chain
- Edges = possible transition
- Probability of transition = 1/outdegree
- If undirected, then
 - stationary proba of node = degree / Σ degrees
 - every path of length 1 (=edge) has same proba
- In general:
 - weighted graph = Markov chain
 - weight = energy

Clustering of Markov chains

Interpret graph measures:

- For a 2-way clustering of nodes $V = V_1 \cup V_2$
 - MinCut = Prob $[V_1 V_2]$ + Prob $[V_2 V_1]$
 - NormalisedCut = MinCut (1/Prob[V₁] + 1/Prob[V₂]))
 - Conductance = MinCut / min(Prob[V₁], Prob[V₂])
 - Modularity = 2 Prob[V₁] Prob[V₂] \Box MinCut
 - Modularity = 2 $(1/Prob[V_1] + 1/Prob[V_2])^{-1} MinCut$

• For a *k*-way clustering:

- MinCut = $1 \sum_{i} \text{Prob} [V_i V_i]$
- Modularity = $1 (MinCut + \sum_{i} Prob[V_i]^2)$

Clustering of Markov chains

- MinCut gives unbalanced clusterings
- Others = MinCut + bias towards balanced clusterings
- Modularity originally defined for unweighted graphs.
- Here, defined on Markov chains (=weighted graphs)
- All make use of paths of length one

= short term behaviour.

- What about long term behaviour?
- For NCut with Markov Chain: Zhou, Huang, Schölkopf 05

Clustering and random walks

Algorithms on Markov chains:

- MCL (van Dongen 00)
- Euclidean Commute distance
 - (Fouss, Pirotte, Saerens 04)
- Walktrap (Latapy, Pons 06)
- Etc.

Clustering and physics

- Intuition from physics:
 - Quasi-equilibrium (e.g. glass):
 - medium time scale is observed
 - Cluster = quasi-equilibrium at some time scale
 - Time scale = resolution parameter of clustering:
 - short time = many clusters
 - Iong time = few clusters

Quality of clustering <u>at a given time scale</u>

Stability: definition and properties

Functions on Markov chain

• Assign a real to every state:

A random walk generates a signal (=sequence of reals): e.g., 3, -1, 3, 2, -1, -1, -1, 3,...

Functions on Markov chain

Random signal s(t) not Markovian in general

• Autocovariance function:

Functions on Markov chains

If the function is constant on clusters:

Functions and clusterings

- Good clustering = any function constant on clusters:
 - has slow signals = low frequencies
 - has autocovariance with slow decay
 - is slowly forgotten
- It is enough to check basis functions:

Stability of a clustering

- <u>Stability</u> = sum of autocovariance for all basis functions $\sum_{h=1}^{n} \frac{hT(\Pi - \pi \pi T)}{Mth}$
- Stability(t) = $\sum_i h_i^T (\Pi \pi \pi^T) M^t h_i$
- π = stationary distribution (=normalised degrees)
- $\Pi = \operatorname{diag}(\pi)$
- $h_i^T = (0 \dots 011 \dots 10 \dots 0)$ (basis function = characteristic function of cluster)
- M is matrix of transition probabilities (=normalised adjacency matrix)
- Computation up to t = O(t.|edges|)

The best clustering

- We want to maximise stability
- At every time a different clustering may be optimal.
- From physical intuition, we expect:
 - high time=few clusters
 - Iow times=many clusters
 - A hierarchy across time

Stability, modularity, and spectral clustering

- Stability(0) is optimal for finest clustering
- Stability(1) is modularity
- Stability(∞) is optimal for 2-way clustering = sign of normalised Fiedler vector.
- Natural definition of modularity for Markov chains
- Spectral clustering = exact algorithm for largest times scales
- Sequence of optimal clusterings = hierachy?

Graph with obvious clusters:

Example

Application I: Hierarchical Clustering

- A 379-node graph (collaborations in network science, collected by Mark Newman),
- Apply KVV algorithm: k-way clustering by spectral method
- Compute *k*-way clustering for every *k*
- Rank them according to stability for every time
- Discard those that are never optimal

Stability curve

Dendrogram

• Not a binary tree

Application II: Compare Clustering Algorithms

- A 379-node graph
- Apply several *k*-way clustering algorithms (for all *k*).
- Result: Performance can vary with time scale.

Application III: Model Reduction of Proteins

- Protein = graph of atoms and chemical bonds
- Dynamic modelling (e.g., mass-spring system)
- How to reduce the number of degrees of freedom: find rigid clusters.
- As a quick approximation: find clusters with Shi-Malik algorithm (= k-way clustering with spectral method).
- Intuition: a group of atoms with many bonds is more likely to be rigid.
- Compute *k*-way clusterings for all *k*.
- Rank the clusterings for every time.
- Most significant = largest time scales

18 clusters (4 \leq time \leq 10) 6 clusters (25 \leq time \leq 60)

31 clusters (time=1)

4 clusters (107 \leq time \leq 159)

2 clusters (time \geq 852)

Change of distance within clusters

 To assess quality of clusters: change of intra-cluster distances between two different configurations

Almost bipartite graphs

- Stability not always decreasing with time.
- Example: almost bipartite: oscillations
- Bipartite graph = « anti-clustering» = square root of clustering
- If we are only interested in clusterings:
 <u>Average two consecutive times</u> to kill oscillations.

Fractional times

- Fortunato 07: interesting clusterings finer than given by modularity.
- How to see between time=0 and time=1?
- Fractional powers if nonnegative spectrum
 Interpolate between $I = M^0$ and M^1

• Stability(t) =
$$\sum_i h_i^T (\Pi - \pi \pi^T) ((1-t)I + tM)h_i$$

Close to continuous-time process:

 $(1-t)I + tM \approx \exp(t(M-I))$

Similar to Arenas, Fernandez, Gomez 07 (=adding) self-loops of weight r)

Overlapping clusterings

Membership function:

- E.g., node *i* belongs to cluster 1 (60%) and cluster 3 (40%)
- Characteristic functions of clusters:
 Stability(t) = Σ_i h_i^T (Π − ππ^T)M^th_i
 h_i ≥ 0; Σ_i h_i = 1

Conclusions

- Stability of clustering = autocovariance
- Applies to reversible Markov chains, undirected graphs
- Optimal clustering depends on time scale
- Bridge between modularity (time=1) and spectral clustering (time=∞)
- Applications:
 - comparing algorithms
 - creating simple hierachies
 - find significant time scales