Collaborations in European research programmes

Panos Argyrakis

University of Thessaloniki, Thessaloniki GREECE

Introduction

- Framework Programmes are the main funding tools of European Union to support research
- (4-year funding schemes, currently FP7)
- Inter-national collaborations encouraged (practically forced)

"Instruments"

- Different schemes with varying targets
- STREP: Collaboration for research of $-8-10$ partners
- IP: Integrated Projects, Large collaborations of ~ 20 partners
- MCA: Marie-Curie Actions, Exchange of students, postdocs, usually 2 partners
- SSA, CP, CPR ...

FP5 data (1998-2002)

- 84267 partners in 16558 contracts
- 27219 unique partners
- 147 countries

FP6 data (2002-2006)

- 69237 partners in 8861 contracts
- 19984 unique partners
- 154 countries

FP6 data

Instrument	Number of Projects	Number of partners (not unique)	Partners/Project
STREP	2139	20023	9.36
IP	696	17046	24.4
NOE	170	5078	29.8
MCA	3627	7169	1.97
SSA	1271	7560	5.9
CA	462	6666	14.4
II	85	945	11.1
I3	11	293	26
CRAFT	348	3290	9.45
CLR	52	1069	20.5
Total	8861	69139	7.8

Why use these data?

- Reliable data: all collaborations are listed
- PRACTICAL PURPOSES:
- Using network theory can take us beyond usual statistical analysis
- THEORETICAL PURPOSES:
- Easy to observe under different scales
- Relate directly networks and fractality

In how many projects did a University participate during FP5?

In how many projects did a University participate during FP5?

In how many projects did a University participate during FP5?

Assuming random connections

Degree distribution, $\mathrm{P}(k)$:
Probability that a node (partner) has k links (partnerships) with other nodes

Assuming random connections

Degree distribution of the projected network (FP5)

Bipartite network

FP5

24982 partners in the largest cluster (27219 total)

Degree distribution of the projected network (FP5)

Coarse-grained networks (FP5) [Partners, cities, provinces, countries]

Degree distribution of the projected network

Conclusion: Enhanced collaboration with time

Degree distributions for collaborations in different instruments

Degree distributions for collaborations in different instruments

FP6

Similar large-degree behavjor

Weights (number of collaborations with a partner)

We consider as link weight the number of collaborations between two partners

Weights

 (average number of collaborations with a partner)

FP6

Strongest links

FP6

What is a minimum spanning tree?

- Add links in increasing weight order, as long as they do not form loops. Continue until all nodes are included.
- Here, weights are the number of collaborations between two countries

FP6 Minimum Spanning Tree (countries)

FP6 Minimum Spanning Tree (countries)

- 15 EU members

FP6 Minimum Spanning Tree (countries)

- 15 EU members
- 25 EU members

FP6
|||||||||||||||||||| Member states of the European Union (2007)
Candidate countries

FP6

Candidate countries

Number of contracts per thematic area for the entire FP6 duration.

Number of contractors per thematic area for the entire FP6 duration.

Number of unique partners per thematic area for the entire FP6 duration.

Average number projects for an institution per thematic area for the entire FP6 duration.

We construct the MST for collaboration between countries in a given thematic area. Then we focus on a given country, say Germany, and measure what percentage of the MST nodes are connected to Germany. This shows how 'central' Germany is in a given thematic area. We repeat the same for UK, France and Italy. For example, in 3. Nanoscience 65% of the nodes are directly connected to Germany, while in 4 . AeroSpace more than 80% are connected to France.

1. LIFE

1. LIFE

Available online at www.sciencedirect.com

$\%$ ScienceDirect

The network of scientific collaborations within the European framework programme

Juan A. Almendral ${ }^{\text {a }}$, J.G. Oliveira ${ }^{\text {b }}$, L. López ${ }^{\text {c }}$, J.F.F. Mendes ${ }^{\text {b }}$, Miguel A.F. Sanjuán ${ }^{\text {a,* }}$

${ }^{\text {a }}$ Departamento de Fisica, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
${ }^{\text {b }}$ Departamento de Fisica, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
${ }^{\text {c }}$ Departamento de Ingenieria Telemática y Tecnologia Electrónica, Universidad Rey Juan Carlos, Tulipàn s / n, 28933 Móstoles, Madrid, Spain

Received 20 April 2007; received in revised form 18 May 2007 Available online 25 May 2007

Abstract

We use the emergent field of complex networks to analyze the network of scientific collaborations between entities (universities, research organizations, industry related companies, ...) which collaborate in the context of the so-called framework programme. We demonstrate here that it is a scale-free network with an accelerated growth, which implies that the creation of new collaborations is encouraged. Moreover, these collaborations possess hierarchical modularity. Likewise, we find that the information flow depends on the size of the participants but not on geographical constraints. (C) 2007 Elsevier B.V. All rights reserved.

PACS: 05.10.-a; 89.65.-s; 89.75.-k
Keywords: Complex networks; Accelerated growth; Hierarchical modularity

CONCLUSIONS

- Network theory can help us address questions of importance to research policy-makers
- The same collaboration databases reveal significant self-organization principles

Boxing a network

How to "zoom out" of a complex network?

$>$ Generate boxes where all nodes are within a distance l_{B}
$>$ Calculate number of boxes, N_{B}, of size l_{B} needed to cover the network

$$
N_{B}\left(l_{B}\right) \sim l_{B}^{-d_{B}}
$$

(Song, Havlin, and Makse, Nature 2005, Nature Physics 2006)

Larger distances need fewer boxes

$$
\ell_{B}=2 \text { \& } N_{B}=4
$$

$$
\ell_{B}=3 \int N_{B}=3 N_{B}\left(l_{B}\right) \sim l_{B}^{-d_{B}}
$$

$$
\left.\ell_{B}=4 \text { (\&) }\right)_{B}=2 \text { (ractal }
$$

$$
d_{B} \rightarrow \infty
$$

Renormalization in Complex Networks

Now, regard each box as a single node and ask what is the degree distribution of the network of boxes at different scales

Renormalization of WWW network with $\ell_{B}=3$

Renormalization of the FP5 collaboration network

Are they fractal?

FP5

