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Ever since Darwin read Malthus, the
theory of evolution has benefited
from the interaction of ecology with
economics. Evolutionary game theory
belongs to this tradition: it merges
population ecology with game theory.
Game theory originally addressed
problems confronted by decision
makers with diverging interests (for
instance, firms competing for a
market). The ‘players’ have to choose
between strategies whose payoff
depends on their rivals’ strategies.
This interdependence leads to a
mutual ‘outguessing’, as with chess
(she thinks that I think that she
thinks…). There usually is no
solution that is unconditionally
optimal, no matter what the
co-players are doing.

In the context of evolutionary
biology, the two basic notions of
game theory, namely strategy and
payoff, have to be re-interpreted. A
strategy is not a deliberate course of
action, but an inheritable trait; payoff
is Darwinian fitness (average
reproductive success). The ‘players’
are members of a population, all
competing for a larger share of
descendants. 

If several variants of a trait occur
in a population, then natural selection
leads to an increase in the frequency
of those variants with higher fitness.
If the success of a trait does not
depend on its frequency, this will
eventually lead to the fixation of the
optimal variant. But if the success of a
trait is frequency-dependent, then its
increase may lead to a composition of
the population where other variants
do better; this can be analysed by
means of game theory. This is similar
to what happens in population

ecology. If prey is abundant, predators
will increase for a while. But this
increase reduces the abundance of
prey, and eventually leads to a
decrease of the predators.

Hawks and doves
Intraspecific fights provide a first
example of changes in a population
that are dependent on the frequency
of a trait. Assume that there are two
behaviourally distinct morphs:
‘hawks’ escalate a fight until the
injury of one contestant settles the
outcome, ‘doves’ stick to some
conventional display (a pushing
match, for instance, where injuries
are practically excluded) and take
flight if the adversary escalates. If
most contestants are doves, the hawk
morph will spread; but if most
contestants are hawks, escalating a
conflict will lead with probability ½
to injury (see green box and Figure 1).
Even this oversimplified example
shows that heavily armed species
(where the risk of injury is large) are
particularly prone to conventional
displays (see Figure 2).

A wide variety of behavioural
traits — and purely morphological or
physiological characters, like the
height of trees or the length of
antlers — are submitted to
frequency-dependent selection and
are amenable to game analysis. Such
traits may influence conflicts of
interest between two individuals, for
instance, territorial disputes (between
neighbours), the length of the
weaning period (between parents and
offspring), or the division of parental
investment (between male and
female). But frequency-dependent
selection also occurs without
antagonistic encounters. The sex
ratio is an example of this (if it is
biased towards males, it pays to
produce daughters, and vice versa).

The prisoner’s dilemma
The evolution of cooperation
through reciprocation is a particularly
extensive chapter of evolutionary
game theory. Why should a selfish
gene, or ‘fitness maximiser’, bear the

cost of helping an unrelated
individual? Suppose that the benefit
(to the recipient) is b and the cost (to
the donor) is c, with c < b. If an
individual is equally likely to be
potential recipient or donor in a
given encounter, then a population
of cooperators would earn, on
average, b – c per interaction, and be
better off than a population of
defectors earning 0. But no matter
how the population is composed, an
individual would always increase its
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In the hawk–dove game, G is the gain in
fitness resulting from winning the
contest, and C is the cost in fitness due
to an injury (see Figure 1).

No morph is unconditionally better
than the other. If the object of the fight is
not worth the injury, then the dove morph
will spread. Hawks can spread only if
their frequency is below G/C. If G is less
than C, a mixed population of hawks and
doves will evolve. It is conceivable that
some phenotype plays a mixed strategy,
escalating only with a certain frequency.
Such a mixed strategy escalating with
probability G/C is evolutionarily stable; no
mutant with a different propensity to
escalate can invade. If there exists an
asymmetry between the two contestants
(larger versus smaller, for instance, or
owner versus intruder), this will alter the
game. In such cases a conditional
strategy will emerge which uses the
asymmetry as a cue, for instance the
so-called ‘bourgeois strategy’: if owner,
escalate; if intruder, display. Some
intraspecific conflicts use a long
assessment phase to detect an
asymmetry in, for instance, size, by means
of a pushing match or a parallel walk.

The hawk–dove game

Figure 1

The payoff matrix for the hawk–dove game. 

Type of adversary

Hawk Dove
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fitness by refusing help, and hence
we would not see cooperation.

Game theorists have
encapsulated this tug-of-war
between common good and selfish
interest in the so-called prisoner’s
dilemma game. In this game, a player
has two possible strategies CC (to
cooperate) and DD (to defect). Two CC
players will get a reward R which is
higher than the punishment P
obtained by two DD players. But a DD
player exploiting a CC player obtains a
payoff T (temptation to defect)
which is higher than R, and this
leaves the CC player with the sucker’s
payoff S, which is lower than P. So,
because T > R > P > S, a rational
player will always play DD, which is
the better move no matter what the
co-player is doing.

Many species engage in
interactions which seem to be of the
prisoner’s dilemma type. Vampire
bats feed each other, monkeys
engage in allogrooming, birds and
vervet monkeys utter alarm calls,
guppies and stickleback cooperate in
predator inspection, hermaphroditic
sea bass alternate as egg-spenders
and lions engage in cooperative
hunting or joint territorial defense.

But often, attempts to specify the
payoff values of these behavioural
interactions lead to doubts as to
whether one is seeing a bona fide
prisoner’s dilemma. It is difficult to
measure the fitness of fish darting in
and out of shoals or of monkeys
hiding in the bush. It may be that
some of these are simply instances of
by-product mutualism, in which both
players are best served by cooperating
and none is tempted to defect, or an
instance of the so-called snowdrift
game, in which the best reply to the
co-player’s CC is a DD, but the best reply
to a DD is a CC. For instance, if two
drivers are caught with their cars in a
snowdrift and one defects by not
shovelling, the other is still better off
by digging, rather than defecting. 

Recently, however, a striking
example of a prisoner’s dilemma type
of interaction has been uncovered for
an RNA phage — a virus that

reproduces inside a bacterium. In
this instance, one phage variant
produces less of the intracellular
products needed for replication than
the other, and thus may be said to
defect. The payoff values can be
measured with some precision: they
satisfy the rank ordering required for
the prisoner’s dilemma.

There are several ways in which
the prisoner’s dilemma can be
overcome. With the phages, selection
for a particular trait-group operates
whenever the virus population is so
small that most bacterial hosts are
invaded by only one virus. A phage
will then most likely interact only
with members of its own clone, and
this is when cooperators are better
off than defectors. More generally,
any form of associative interaction
favours cooperation. Such association
can be due to kinship, to partner
choice, to ostracism of defectors or
simply to spatial structure (or
‘population viscosity’).

Repeated interactions
Among higher organisms, interactions
of the prisoner’s dilemma type are
probably repeated between the same
two players — called the iterated
prisoner’s dilemma. Depending on
their past experience, players can
break up partnerships, or vary their
amount of cooperation. But even
without these options, the strategy of
always defecting is not invariably the
best option in the iterated prisoner’s
dilemma. If the probability of a

further round is sufficiently high,
then the presence of even a small
number of so-called ‘retaliators’ is
enough to favour cooperation. The
best known example of such a
retaliatory strategy is ‘tit-for-tat’. A
tit-for-tat player cooperates in the
first round and from then on always
repeats whatever the co-player did in
the previous round.

After promoting the emergence
of cooperators, retaliatory strategies
are often superseded by more
tolerant strategies, for instance
‘generous tit-for-tat’ or ‘win–stay,
lose–shift’. A generous tit-for-tat
player cooperates after an opponent’s
defection with a certain probability,
whereas a win–stay, lose–shift player
repeats the previous move after
receiving a high payoff in a round,
but otherwise switches to the other
move. Both generous tit-for-tat and
win–stay, lose–shift players return to
cooperation after an erroneous
defection, whereas tit-for-tat players
do not. A great many theoretical
results and computer simulations
show that under very general
conditions, populations of defectors
can be invaded by small groups of
stern retaliators, who pave the way
for more tolerant populations, which,
in turn, can eventually ‘soften up’ to
such a degree that defectors may
take over again.

The best examples of reciprocal
strategies may be found in human
societies. But here, reciprocation is
often indirect. An act of assistance is
returned, not by the recipient, but by
a third party. Such indirect
reciprocation can be based on
score-keeping by ‘discriminate
altruists’ (who help only those
individuals that have not refused
help too often). Withholding help
can be costly, as it reduces the
discriminators’ chance of being
helped. Simple models show that
indiscriminate altruists can therefore
spread at the expense of discriminate
altruists; once their frequency
exceeds a certain threshold,
defectors can invade. Defectors will
reduce the proportion of
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Figure 2

A clash between male red deer. Only rarely
does the fight escalate beyond a pushing
match. (Photograph provided by Tim
Clutton-Brock, Department of Zoology,
University of Cambridge, UK.)



indiscriminate altruists, however, and
therefore sap the basis of their own
success. Discriminate altruists will
then be able to eliminate them again.

Other models based on
evolutionary games have been used
to analyse the emergence of moral
systems, of division of labour or even
of proto-languages in primitive
societies. In particular, it has been
shown that highly diverse social
norms can be stably sustained by
punishment; in many cases,
deviating behaviour (for instance, the
refusal to punish dissenters) cannot
spread. In this sense, evolutionary
game theory returns to some basic
topics of classical game theory.

Population dynamics
The latest advances in evolutionary
game theory are being made by
means of population dynamics. This
transfer from population ecology
relies on the assumption that
successful traits spread. If there are
only two possible morphs A and B,
for instance, then essentially only
three scenarios are possible. In
scenario 1, A can invade B and B can
invade A. This leads to the
coexistence of both types in stable
proportions as, for instance, if A are
hawks and B are doves. In scenario 2,
A can invade B but B cannot invade
A. In this case, the dominant strategy
A will always outcompete B. This
happens with the prisoner’s dilemma,
if A players are the defectors and
B players cooperate. In scenario 3, no
type can invade the other. This is a
bistable situation; whoever exceeds a
certain (possibly quite small)
threshold will outcompete the other.
This happens with the iterated
prisoner’s dilemma if A is a tit-for-tat
player and B always defects.

As soon as three morphs A, B and
C compete, the situation becomes
considerably more complex, because
cycles can occur: A dominates B, B
dominates C, and C dominates A.
This apparently bizarre situation
holds for the lizard Uta stantibus,
where three morphs (with different
throat colors) correspond to

inheritable male mating strategies.
Type A forms no lasting bonds but
looks for sneaky matings; type B lives
monogamously and closely guards the
female; and type C guards a harem of
several females, of course less closely.
With still more strategies, the
dynamics can become ever more
complex, and the composition of the
population need not converge to an
equilibrium: the frequencies of the
strategies keep oscillating in a regular
or chaotic fashion.

Long-term evolution
We have so far discussed the
evolution of frequencies of traits
under selection alone. But, in
addition, mutation will introduce
new variants from time to time. This
proceeds at another time scale. Game
theory can be used to analyse both
short-term and long-term evolution.
In order to deal with the latter, it is
often advantageous to assume that
the transient effects following a
random mutation have settled down
before the next mutation occurs. As
long as the population remains
monomorphic, this leads to a trait
substitution sequence: selection
settles the fate of a mutant (fixation
or elimination) before the next
mutation comes along.

Along with the two time scales
come two notions of stability:
internal stability against
perturbations in the frequencies
within the resident population, and
external stability against invasion
attempts by any mutant morph. For a
monomorphic population, the latter
notion corresponds to an
evolutionary stable strategy: no
conceivable alternative strategy can
invade. But adaptation need not
converge to an evolutionarily stable
strategy: the outcome can be a
so-called ‘Red Queen’ type of
dynamics, leading for instance to
potentially endless ‘arms races’, to
‘runaway selection’ or to cyclic
chases in trait space.

Evolutionary game theory deals
with phenotypes. But with sexual
replication, it cannot be assumed that

‘like begets like’, so that more
successful types can also produce
less successful variants and vice
versa. The complications caused by
Mendelian segregation, pleiotropy
and sexual recombination can, in
principle, be integrated to model
frequency-dependent selection
acting within the gene pool, but this
often results in intractable dynamics.

But arguments from evolutionary
game theory can fail if genetic
constraints come into play. (If the
optimal genotype can only be
realized by heterozygotes, for
instance, then it can never reach
fixation in the population.)
Theoretical studies tend to show,
however, that the genetic system is
flexible enough to overcome such
constraints. In the absence of
specific information on the
genotype–phenotype map,
evolutionary game theory often
provides a reasonably efficient tool
for understanding adaptation
without getting bogged down by
complications at the genotype level.
Here again, evolutionary game
dynamics follow the traces of
Darwin — who, it will be noted,
read Malthus, not Mendel.
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