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Abstract |

The goal of these lectures is to demonstrate the
usefulness and power of dynamical systems me-
thods for the analysis and the design of numerical
algorithms. Special emphasis is on applications
relevant for quantum control and computation.

Further details can be found in the book, U.
Helmke and J.B. Moore, Optimization and Dyna-
mical Systems, Springer, London, 1994, as well
as in the Ph.D thesis by K. Huper, Structure and
Convergence of Jacobi-type Methods for Matrix
Computations, Technical University of Munich,
1996.
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31 Introduction |

Matrix Eigenvalue Problems

Given X € R"*", find the eigenvalues and eigen-
vectors of X by computing a similarity transfor-
mation bringing X to some normal form.

Choose a suitable cost function

f:GL(n,R) - R

whose global minima (maxima) have the desired
normal form.




Examples

(a) The “off~norm”-function
(Jacobi 1846)

f:S0(n,R) - R

f(©) = |exe'-diag(exe')|?
Facts:

(i) All minima ©yj, of f are global.

(ii) ©min are characterized as

@mmX@%in = diagonal
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Examples cont’d

(1) Real symmetric eigenvalue problem
Given an X = X | € RXn,

(b) A trace function
(Brockett 1988)

Let N =diag(1,...,n).
f:S0(n,R) — R
f(®) = |[N-exe'|?
Facts:

(i) All minima are global.

(ii) ©min are characterized as

OminX O =diag (A1,..., \n)
with A1 < ... < A\p the eigenvalues of X.




Examples cont’'d

(2) Stereo Matching Problem
(without correspondence)

@ cowect match

& falze rnatch F
T tocal lergth
f T )
= e
left = : _ «  nght
IMage interocular separation IMmage
plane plane
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Given:

k T
Ay = Z Yi,i
=1 1 ||
Task:
Solve

Solution:
Find minimizer of

f:G— R,

Examples cont’d

T
Y1,
1

f(©) =|lA2 —©4:0" |2

T

G:={0 cR¥>3 @ =13+

, Ao

k
2.
=1

Ar —©A10" =05
for ©® € G over the Lie group

ebt 1
b1

Positive definite symmetric A1, A> € R3%3

T2 ;
Y2.i
1
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/Examples cont’'d )

(3) C—Numerical Range Computations

Let C, A € C"*"™ be arbitrary. The C—numerical
range of A is defined as

W(C, A) = {tr(CTUAUN|U € U(n,C)}.

In general, the shape of W(C,A) C C is un-
known.

= Develop numerical methods to find good
bounds on size of W(C, A).

Cost Function:
f:U(n,C) =R, f(U) = Re(tr(C*UAU™))
Has applications in

(i) Nuclear Magnetic Resonance (NMR) Spec-
troscopy

(ii) Quantum Computing
\ %
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§2: Tutorial |
Optimization on Lie Groups I

. Lie Groups and Lie Algebras

. Riemannian Metrics

. Optimization via Gradient Flows

. Discrete—time Gradient Optimization

12




1. Lie Groups and Lie Algebras I

A basic example of a Lie group is the general
linear group of invertible n x n matrices

GL(n,R) := {X € R"™"| det X # 0}.

More generally

Definition
A matrix Lie group is any subgroup G C GL(n,R)

that is also a (locally closed) submanifold of
RTLX’I’L.
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Examples

(a) The real orthogonal group

O(n,R) :={X e R XX = I,}

(b) The unitary group

U(n,C) = {X e C"*" XX = I,}

(c) The Euclidean group

E(n,R) .= {[? 21)” REO(n,R),pERn}.

The first two examples are compact groups, whi-
le the third is not.
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A beautifully simple criterion for matrix Lie groups
IS

Cartan‘s Criterion
A subgroup G C GL(n,R) is a matrix Lie group
if and only if G is a closed subset of GL(n,R).

Definition
A vector space V with a bilinear operation [, ]:
V x V — V satisfying

() [z,y] = —ly, ]

(i) [z, [y, 2z]] + [2, [z, yl] + [y, [z, 2]] = O
(Jacobi Identity)

is called a Lie Algebra.
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Lie algebras are the tangent spaces of Lie groups.

Theorem
Let G C GL(n,R) be a matrix Lie group. Then

(a) The tangent space g := T;G at the identity
matrix is a Lie algebra with commutator as

the Lie bracket:

[X,Y]= XY - YX.

(b) The matrix exponential function

exp:g— G, exp(X)=e*

maps g into G. It is surjective if G is a com-
pact connected Lie group.
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Examples
(a) The Lie algebra of O(n,R) is

o(n,R) := {Q € R**"| Q= —Q}.

(b) The Lie algebra of U(n,C) is

u(n,C) = {Q € C"™"| Q* = —Q)

(c) The Lie algebra of E(n,R) is

e(n,R) = {[SOZ 8

(d) The Lie algebra of GL(n,R) is

‘ QTz—Q,veR”}.

gl(n,R) := R"*"™,
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Lie Group Actions

Definition
An action of a Lie group G on a manifold M is a
smooth mapa: Gx M — M, (g,z) — g-x, with

(i) g-(h-x)=(gh)-x Vg,heG, xe M
(ii) eecx=x VeeM

An orbit is the set
G-xz:={g-z|g € G}.

Examples
(a) Similarity action: G = GL(n,R), M = R*X"

(S,X) —» Sxs~ L.

(b) Equivalence: G = O(n,R) x O(m,R), M =

R’I’I,X’l’n

(U, V), X) - UXV~L

18



Examples

(a) Let X € R*"*"_ Every similarity orbit

GL(n,R) - X = {SXS7 S € GL(n,R)}

is @ smooth submanifold of R™"*"™,

(b) Let X € R**™_ Every equivalence orbit
(O(n,R) x O(m,R)) - X

={UXV'|U € O(n,R),V € O(m,R)}

is a smooth submanifold of R*x™,

19
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Examples cont’d

(d) Procrustes Problem on Orbits

Let o« : G XV — V be a Lie group action on
a vector space V.

Definition
An orbit

G-z={g z|lg € G}
is called closed if it is a closed subset of V.

Consider any norm || - || on V. For any a € V
consider the distance function

fo: G-z =R, fal@)=l|a—g- z|>
Lemma

A minimum exists for all a € V iff G- x is
closed.

20



2. Riemannian metrics I

A Riemannian metric on a submanifold M C R"
IS an inner product

(, Yo ! TaM X TpyM — R

on each tangent space that varies smoothly with

X.

A Riemannian metric is thus a smooth map

Q: M — R""
with

(i) Q(z) =Q(z)' Yz e M
(i) Q(z) >0 on TuM x T, M.

Basic Fact
Every manifold M has a Riemannian metric.

\_

21



Definition
Let

(,)e: TxeM xTpyM — R

be a Riemannian metric on M. The gradient of
a smooth function f : M — R is the unique vector
field grad f on M such that

(i) grad f(x) €e TyM VY € M.

(i) D f(x)§ = (9rad f(z),&)a VEE€TeM,z € M.

22
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3. Optimization via Gradient Flows

Consider the optimization task

Minimize a smooth cost function
f: M — R on a Riemannian mani-
fold.

Existence of Minima: Minima of a smooth func-
tion f : M — R exist if the sublevel sets

f(=oo,c] ={x € M| f(z) <c}, ceR

are always compact.
This is e.g. the case when M is compact.

Example
Let M C R™ be a subset. For a ¢ M consider

fiM =R, f(@)=z—a|?

There exists minima if M is closed.

23




Convergence Theorem A:

Let f. M — R be a smooth function on a Rie-
mannian manifold with compact sublevel sets.
The solutions of the gradient flow

z(t) = —grad f(z(t)) I

exist for all t > O and converge to a connected
component of the set of critical points of f.

24



Problem

If f: M — R has infinitely many critical points,
then solutions z(¢t) may not converge to a single
equilibrium point. — Mexican hat example.

L

/"j\
1 equilibrium point infinitely many

25



Mexican Hat

Figure 5
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There is a beautiful and extremely useful result
for real analytic functions.

Convergence Theorem B (t.ojasiewicz)

Let f: M — R be areal analytic function on a
real analytic Riemannian manifold with real ana-
Iytic Riemannian metric. If f has compact suble-
vel sets, then every solution of the gradient flow

x = —grad f(z)

converges for t — +oo to a single equilibrium
point.

Proof rests on (t.ojasiewicz)

Lemma

Let f . R" — R be a real analytic function and let
z* € R"® be a critical point. Then there exists a
neighborhood U C R"™ of x* € U and real numbers
uwe(0,1), C >0,s.t.

|grad f(z)|| > C|f(z) — f(«®)|*, =ze€U.

27
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4. Discrete—time Gradient I
Optimization I

Various possibilities for minimizing a smooth func-
tion f: M — R on a Riemannian manifold

(i) Discretization of gradient flow.

(ii) Conjugate gradient method.

(iii) Jacobi—type method (Gauss-Southwell, Coor-

dinate descent).

4.1 Geodesic Approximation Scheme (GAS)
For any initial condition zg € M the GAS genera-
tes a sequence of points (xg)ren iN M with limit
points being critical points of f.

e Convergence to a single critical point is not

guaranteed.

e Convergence to saddle points or local minima

possible.

28




GAS—Recursion

Given a == z;, € M with v := —grad f(a) € T,M
let t — exp(tv) be the geodesic through a with
initial velocity v. Set

Tp41 = exp(txv)

t« = argmin f(exp(tv)).

e tx and zxp4 1 Can often not be computed ex-
actly ~ replace by approximations via e.g.
Newton—method

e Ph.D. Theses by Smith (1993), Mahony (1994).

e Bottleneck: Computation of geodesics exp(tv)
can be hard.

29



Geodesic Approximations

qradient

Figure 6

\_
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Figure 7

Exponential Map
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4.2 Conjugate Gradient Method (CGM)
Variant of the above. See Edelman, Smith.

Bottleneck: Computation of geodesics can be
hard.

4.3 Jacobi—type method

Here we do not minimize along geodesics in gra-
dient direction, but rather in pre—chosen direc-
tions. The choice of these directions depends
on computational simplicity and the attempt to
achieve fast convergence rates. This approach
usually outperforms the previous ones.

32
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Jacobi Algorithm on Homogeneous Spaces

Let ao: G X M — M be a Lie group action, G-z
an orbit, and f: G-x — R be a smooth function
with compact sublevel sets.

Choose a basis vy,...,vy Of the Lie algebra g of
G, with associated l1—parameter groups g; : R —
G,

gi(t) :eXD(t’UZ'), 1=1,..., V.

Jacobi Sweep

rp) = g (1Y)
v = gt -
o) = g () 2 Y

x,gi) = Global minimum of f restricted to
the closure of {gi(t)-x,(:_l)| t € R}

33



Jacobi Algorithm on Homogeneous Spaces

o Let zg,...,x, € G-x be given for k£ € Np.

e Define the recursive sequence x,gl),...,x,gN)
(sweep).

o Set zp4q = :z:,gN). Proceed with the next
sweep.

34




Figure 8

Jacobi Iterations
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4 N

Deriving general convergence results for discrete
time gradient recursions is difficult. For simplici-
ty: M =R", f:R*" - R

Assumption A: f: R" — R is real analytic, f >
0, f~1(0) # 0.

Assumption B: Let Qp = Q] > 0, k € N, be
positive definite n x n matrices, such that the
condition numbers ¢(Qy) are uniformly bounded
from above.

Assumption C: The gradient descent algorithm

Tha1 = T — apQy 'V f(xp) |, ap >0

satisfies the two conditions

(i) f(xg+1) — f(zg) < pD f(ag)(p41 — ) VEk
for some 0 < p < 1.

(i) oD f(xg)(xpt+1—2k) < D f(rp41)(@py1—x5) Yk
and p <o < 1.

\_ /

36




Theorem (R.Mahony/1999)
Under assumptions A—C, the gradient algorithm

—1
Tr1 = T — apQr "V f(zg)
converges, starting from any initial condition in a

neighborhood of f~1(0), to a single critical point
z+« € f1(0).

Extension to Riemannian Manifolds: C. La-
geman, Masters Thesis, 2002, University of
Wurzburg
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Example: Brockett Function I

The gradient flow for the trace function

f:SO0n,R) —» R

f(®) = |N-oxo'|?

© =0O[N,0' Xxe].

The solutions converge to an orthonormal eigen-
basis of X.

38
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33 Optimization of NMR Spin Systemi I

Single spin 5 system

Hilbert space: C2

N coupled spin 3 system
Hilbert space: 2" = (2 ® .- ® C2

Hilbert spaces are finite-dimensional!

Evolution of N coupled spin 1 :

2 .

2N
X(t) = —i(Hg+ ) uwj(t)H;)X(t)), X(0) =1
=1

Schrédinger equation on SU(2V)
o /
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Drift term: H; (Hermitian matrix)
Control Hamiltonians: H1,..., Hoy (Hermitian)
Controls: uq(t),...,u>n(t)

Explicit Forms

gsz]l(g)...@]@U@]@...@ﬂ

Weak Coupling Terms:

k201, = 1®- - Q1lR0:Q1Q---®1RoQ1R---®1

40



Drift term H;: Linear combination of 1,0y,

Control Hamiltonians:

I‘IJ‘ZO']<er orszaky k=1,...,2N

Time-optimal control problem:

Given initial state Xg =1

and final state X;u. € SU(2N).

Find controls u1(t),...,u>n(%)

and smallest time 7" > 0 such that for solution
of Schrodinger equation

X(0) = X0, X(T) = Xmaz

41



Need to solve at least 3 problems:
Subproblem A: Controllability

Theorem (Ph.D.thesis Schulte-Herbruggen,
1998)

The Pauli operators ogy,opy,k = 1,...,N, to-
gether with weak coupling terms

{O'kzo'lz|1gk<l§N}

generate the Lie algebra su(2).
The Schrodinger equation is controllable on
the Lie group SU(2Y).

42



Subproblem B: Find (time-opt.) controls!
Basically open problem:

Given initial state Xy and final state X4 find
controls u1,...usy that steer from Xy to X,
in minimal finite time 7 > 0.

Preliminary work: N.Khaneja, R.Brockett, S.Glaser:
"Time optimal control in spin systems’, Phys. Re-
view A, Vol. 63 (2001)

43
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Subproblem C: Find final state X,,q.!
— Solve optimization problem!

Ipn_1S system:

Given:

C=0_QQ1I®---Q1

A;:]L@(g_@1@...®1+...+1®...®1®0_)
(0 1
°~=\loo

find unitary matrix Uppt = Xmaz that maximizes

f:UR2N)—R

F(U) = Retr(CUAU™)

44



NMR Matrices I

For n € N consider the recursively defined nilpo-
tent (2nt+1 x 27+ 1) _matrices

s8] 28]
A, = éV” ?Vn ] (1)
N, 1= ZZjll ?Vn—l ] , Ng:=0.

Theorem

For C = [ CI) 8 ] and A arbitrary the C-numerical

range W(C,A) is a circular disc around the
origin.
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NMR Matrices (n =1, 2,3)
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Gradient Flows and Ciritical Points I

Theorem

The gradient flow of f : U(n,C) — R, f(U) =
Retr(C*UAU™) with respect to the bi-invariant
Riemannian metric is given from the gradient

grad f(U) = 2[C*,UAU*|_U (2)

U=2(C*UA+ CUA* —UAU*C*U — UA*U*CU).

(3)
Every solution of (3) exists in U(n,C) forallt € R
and converges for t — +oo to a critical point. The
critical points of f are characterized as

[C*, UAU*] = [C*, U AU**. (4)

Theorem
U is a critical point for f if and only if

B:UAU*lehl, gf] (5)

with H = H* Hermitian.
N
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Numerical Optimization Algorithm I

Theorem
et
. 1
U Vnntt
The algorithm
Uk:+1 — ea[C*,UkAUI:]_ U,

converges to the set of critical points of

Re(tr(C*U ApU*)).

Lemma
For An,Cn and for all U € U(n,C) it holds
Re(tr(CRUAnU™)) < 2(n—m)( )
m
where m =n/2 if nis even and m = (n—1)/2 if
n IS odd.
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Numerical Optimization Algorithm I

For n = 1,2 the upper bounds of the Lemma are
sharp.

Conjecture

For A,,Cy, the gradient flow of the cost functi-
on Re(tr(CrUA,U*)) converges to the following
maximal values

n | 1| 2 | 3 | 4 | 5
max [ 2 [ 4 [ 4(1++3) | 8(14+V3) | 16(1+V3) +4V5
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34 NMR and Representations I

Let g be a finite dimensional Lie algebra. A linear
map

p:g—>RNXN

is called a representation if for all z,y € g:

p([z,y]) = [p(x), p(y)] := p(x)p(y) — p(y)p(z).

Two representations p; : g — RVXN =1 2 are
iIsomorphic if there exists S € GLx(R) with

po(x) = Sp1(x)S™1, V zeg.

(unitarily equivalent if S can be chosen unitary)
A representation is called irreducible, if it is not
isomorphic to a direct sum of nontrivial repre-
sentations.
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4 N

Irreducible Representations of s> (C) |

Let

sl5(C) = {X € C?*?|tr X = 0}

with basis

=105 7=l 0 r=lo &)

Define

0 n O 0] 0 0 0 O]
O 0n-1 --- 0 1 0 O O
E = |: , FE:= [0 2 0O O
oo ... O 1 :
O O O O OO0 --- n O
H :=diag(n,n—2,...,—n).
Then (n = 2l)
| 1.3
pp - 5lo(C) — sl 1(C), 1=0, > Lo
e— F
f—F
h— H

@efines an irreducible representation. Y
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Tensor Products I

The tensor product of two representations
p; g — RNiXNi =1 2
is the representation
p1 ® pp g — RV1V2XN1V2 = Eng(RN1 @ RV2)
defined by
(p1 ® p2)(z)(v @ w) = p1(z)v @ w + v ® p2(z)w.

Thus, using Kronecker Products Notation

(p1 ® p2)(x) = p1(x) @I + I ® pa(x).

Clebsch-Gordan Formula: For the irreducible
representations p;, pm Of sl5(C) one has

PL® pm = Pl4m @ Pl4m—-1D - B P

52



Example for n-fold Tensor Product I

_@CV Pv

Clebsch-Gordan decomposutlon. The coefficients
can be explicitly computed:

pP1 X -

P1
2 2

n/2
pn(t) 1= Z M e 7).

Then

pn(t) = e] A()" " (te; +e3), neEN
with

¢t 1 0

1 0 --.
A =" 5

0 1 0
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4 N

Least Squares Matching of Representations
Fix generators x1,...,z, Of a Lie algebra g and
let

(A,B) :=tr(AB*), ||A||% :=tr(AA%)
be the Frobenius Norm. For representations

p1,po 1 g — CNXN

define

]
2.
o1 — p2ll? =3 |1 (x:) — pala)||7
1=1

Unitary least squares matching: Find a unitary
matrix Uy, € CVXN with

Uopt 1= argmin |[|p1 — UpoU*||?
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4 N

Example 1 (Abelian Case)

Consider two r-tuples of commuting N x N-matrices

(A1,...Ar), [A;,A)]=0 Vi,j.
(B]_,...Br), [BZ,B]] =0 VZ,]

This defines representations of the abelian Lie
algebra g = C" via

: Cr C XN e A., 7: h— 1,0.-7’,’.-
P1 ? ) RAPEY)
: C,’“ CNX 9 e B.’ ?: — 1,...,’,’.0
P2 ? v Dy
We see:

Two r-tuples (A1,...,4Ar) and (Bq,...,Br) of com-
muting matrices are simultaneously unitary equi-
valent, i.e.,

(By,...,By) = (UALU*,... , UAU®),

ifand only if po is unitary equivalent to p;.

\_ /
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Example 2 (sl(2,0))

Jacobson-Morosov Lemma: For any nilpotent
matrix A € sl(N,C) there exists a representation
p:sl(2,C) — sI(N,C) with

(123]) =+

Kostant’s Theorem: For representations p1, p> :
sl(2,C) — sl(NV,C) with

i ([96])=([3 o))

there exists a S € CNXN detS = 1 with

po(x) = Sp1(x)S~1 vz esl(2,0).

Corollary: Two nilpotent matrices A, B € CNxN
are similar if and only if the associated re-
presentations are isomorphic.

\_
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Example 3 (su(2,C))

Fact 1: Every representation p : su(2,C) — su(N, C)
IS unitarily equivalent to a direct sum of irredu-
cible representations, i.e.,

p = c1pv; ® - D crpy,,

p; . su(2,C) —»su(2041,C)

standard irreducible representations.

Fact 2: The stabilizer in U(N,C) of p has di-
mension

2 2
ci+---+ecr.

In particular, the dimension of the unitary or-
bit of p is

N2 B2
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/Representations and NMR-Optimization) N

After a simple equivalent reformulation we arrive
at

An=1@ (1" 1+...4+1" 1))
with
0O -1
IL:IQ)p:pl/Q([l 0 ])7

p1)2 = su(2,C) — su(2,0)

standard irreducible representation. Thus for
0 su(2,C) — su(2" T 0
c:=p1290Q®---®0)

T =0®(p1/2® - ®py/2)
we have
. 0 -1 . 0 -1
me([3 3] (2 7))
N J
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Remark

(p1/2 ®0)(z)(v X w)

pl/z(ac)fu Qw4+ v 0(x)w
p1/2(@)0 @ v
(p1/2(z) @1)(v @ w)

More generally,

(p1/2®0® - ®0)(@) (v, wi, .., wn)

= p1/2(2)(v) @ (W1 ® - -+ @ wn)

— (p1/2($) RIRQ---® ]l)(vawla"'awn)'
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Clebsch-Gordan Formula

1. Unitary equivalence (‘Cp—Matrix’)
p=p1200® - ®0)
= p1/2®(2p0® -+ ® 2p0)

= 2"p1 2

2. Unitary equivalence ('A-Matrix')
T=08(p12® - ®p1/2)

= 2¢copo @ 2c1p1 D -+ @ 2cnpn
where ¢; are Clebsch-Gordan coefficients of

n/2

P1/2®@ - ®p10 = D oy
=0
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In the Fermionic case (n = odd) we obtain:

Theorem 1
There exists a U, € U(2"t1 C) such that

tr (CLURARU) =

n—1
2 k
2 eapr Y /(25 + 1)(2k + 1 —27).
k=0 2 j=0
Here c¢; are the Clebsch-Gordan coefficients of
P1/2 Q& P12

Theorem 2(Doubling Argument) Let n € N be
odd. and U, € U(2"+t1 C) chosen as in Theo-
rem 1. Then there exists a unitary transformati-
on U,41 € U(2"T2,C) such that

tr(Cnt+1Unt14n+1Un41) = 2tr(CrUn AnUp)
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The following values for the cost function are
assumed:

n_ | 1]2)]

1|2 3 | 4 | 5
max | 2 | 4 | 4(1++V3) | 8(1++v3) | 16(1+V3)+4V5
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