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II. ADDENDUM II

The conditions that are necessary for the construction above are
that the matrices

[A22, B2]

<]
Co
have full row and column rank, respectively (cf. p. 1508 of the
paper’). If the system matrices satisfy a third condition, it will be
possible to bypass the construction of a device to produce rs and
still find a matrix K such that Ay + B2 K is nonsingular.

Let K = R(I — N, Nf’), where R is a matrix to be specified
and ;" is the Moore-Penrose generalized inverse of the matrix N,
found in (8). The key property of I — Ny Ni™ = & is that DN, = 0.
Then it can be shown that the input

and

(10)

w=K(Lix1 + My)+o (11

will yield a matrix I'oo = Aso + Bo K = Ay + By R®.
The matrix B can be chosen to make I's; nonsingular if the
conditions in (10) are fulfilled and, in addition, the matrix

3

has full column rank. This condition arises from the dual factoriza-
tions

(12)

'
A2z + BoR® = [Agy, Bs) L%D}

=[I, B2R] [Aq‘jz }

If 'y, is to be nonsingular, then all four factors must have full
rank (cf., p. 1508 of the paper’). An appropriate matrix R may be
found by using the algorithm described on page 1508 of the paper*
by replacing I{' with R and C; by ®. Condition (12) is essentially
independent of those in (10).

IV. ApDENDUM 11

Now we consider a descriptor system containing the derivative of
the control vector in the descriptor equation and/or the output equation

de du
E%_A4.1+Bou+B1E (13)
, du
y =Cux+ Dou+ D1 Th (14)
p
Here E = diag {I,, 0}, A, and C are partitioned as in (3)~(5), and
f— ']‘]
50=[5]
_ [
5=
l:.‘l,‘i J
xr =
T2
W = [D[J, Dl]

(For some aspects of controlling such systems, see [2] and [3].)
The problem is to find a matrix K for which the feedback law
u = Ky + v yields a nonsingular

FQQ = 4422 + J‘ZI\’Cz. (15)
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We choose to require i’ to have the form K = (I, — B}t By)R(1,, —
WW™T), where R is yet to be specified. Note that By K = ( and
also KW = 0 so that

, U

K Dou + D, du =KW| du
dt at

d

Hence the second derivative of the input is eliminated from the
equations resulting from feedback if either By or D, is nonzero.

Now define P = Jo(I, — B By) and Q = (I, - WIW 1), so
that JoK'Cy = PRQ). From Section II of the paper’ one concludes
that As» + JoKC: is nonsingular if and only if [42, P] and
[AZ;, QT1" have full row and column rank, respectively. Again,
the algorithm on page 1508 of the paper’ can be used to determine
an appropriate R.
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A Note on Convex Combinations of Polynomials

Vincent Blondel

Abstract— We show an equivalence between conditions for linear
systems to be stabilizable by stable controllers and conditions for convex
combinations of polynomials to be stable.

I. INTRODUCTION

In this paper, we point to an equivalence between conditions for
linear systems to be stabilizable by stable controllers and conditions
for convex combinations of polynomials to be stable.

For the proof of our result we shall need the following extension
of the classical zero exclusion principle (see, e.g., [3, Th. 7.3.3]).
Let () be a pathwise connected subset of B™, and suppose that the
family of polynomials P := {p(., ¢) : ¢ € @} has invariant degree
and has continuous coefficient functions a,(g). Then the members
of P all have the same number of zeros in the right-half plane iff
p(jw. q) # 0 forall ¢ € Q and w € R.

Theorem 1: Suppose po.p1  are two stable
of identical sign (i.e., po(0)p1(0) > 0).
poo(=5”) + spor(—5). pi(s) = pio(—s®) + spii(—s?)
and define d(s) = s[poi(s)pio(s) — poo(s)pr1(s)], n(s) =
poo(s)p10(s) + spor(s)p11(s). Then the following are equivalent.

1) Apo(s) 4+ (1 — N)pi(s) are stable for 0 < A < 1.

polynomials

Let po(s)

I

[N}
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2) po(s)pi(—s) + p have equally many zeros in the right-half
plane when p > 0.
3) The system n(s)/d(s) is stabilizable by a stable controller.
Proof (1 4 2): By the extended version of the zero exclusion
principle given above, and by using the fact that po and p, are stable,
we deduce that the polynomials Apo(s) + (1 — X)pi1(s) are stable for
0 <AL Tiff

Apo(jw) + (1= Mpi(jw) # 0

(The family Apo(s) + (1 — M)pi(s) has invariant degree when
0 < A < 1 since po, p1 are stable and have same sign.) This last
condition can be expressed equivalently by

po(Jw) + ppi(jw) #0
Multiplying both sides by pl(jwj = p1(—jw), we arrive at the
equivalent condition

po(jw)pi(—jw)+p#0

A second application of the extended zero exclusion principle leads
us to the conclusion.

(2 < 3): From the extended zero exclusion principle, the condi-
tion that po(s)p1(~s) + 1 have equally many zeros in the right-half
plane when g > 0 is equivalent to

po(jw)pi(—jw)+p #0
The decompositions po(s) = poo{—s>) + spo1(—s>) and py(s) =
p1o(—5) + sp11(—s*) lead to po(jw) = poo(w?) + jwpor (w?) and
Pi(—jw) = pro(w?)—jwpi1(w?). Therefore, an equivalent condition
is given by

[Poo(w®)p1o(w?) + w®por (w?)pi1 (w?) + 1]
+ jwlpor (w?)pro(w?®) = poo(w?)p1r (w?)] £ 0,
0<p,weR.

0<A<l,weDl

0<p, we R.

0<p, weR

0<p,w€R.

By looking at the real and imaginary parts of this expression, we
deduce the equivalent condition that

poo(w)pro(w?) + wzpm(wz)pu(wu) >0
whenever
wlpor(w?)pro(w?) = poo(w?)pri (w®)] = 0,

In other words, the polynomial n(s) = poo(8)p1o(s)+spo1 (s)p11(s)
must take positive values whenever d(s) = s[por(s)piols) —
poo(s)pi1(s)] is equal to zero on the positive real axis. Since
P00(0)p10(0) = po(0)p1(0) > 0, this condition is satisfied if and
only if d(s) has an even number of zeros between each pair of positive
real zeros of n(s). By the parity interlacing condition (see [5]), this
is equivalent to the requirement that n(s)/d(s) is stabilizable by a
stable controller. 0

Example: Let po(s) = 10s° + s* + 65 + 0.57 and p1(s) =
105® + 25% + 85 4+ 1.57. It is shown in [3] that although both
polynomials are stable, not all convex combinations of po and p, are
stable. We verify this result by direct application of Theorem 1. From
po(s) = ~(=57)+0.57+5[—10(~5?)+6] and p1 (s) = —2(—s?) +
1.57+5[—10(—s)+8] we construct n(s) = 105> —145%+4.86s and
d(s) = 100s* — 1385 +45.295+0.8949. The polynomial d(s) has a
single zero (at 0.5991) between the pair (0, 0.6368) of zeros of n(s),
and the system n/d is therefore not stabilizable by a stable controller.
The convex combinations of po and p, are thus not all stable. This
can be verified by checking that 2/3po + 1/3p, is unstable.

w € R.
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Remarks: The equivalence between statements 1) and 2) is also
shown in [6]. Systems n(s)/d(s) resulting from po and p, may be
nonproper. It may also be identically equal to infinity when d(s) = 0.
This special case happens only when po(s) = kpi(s) for some real
k, which is a trivial case. (We thank one of the reviewers for this
remark.)

The existence of a stable stabilizing controller for a system can be
checked by the techniques described in [1] and [2]. These conditions
can thus be used as alternatives to the conditions given in [4] for
testing the stability of convex combinations of polynomials.
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On Variable Structure Output Feedback Controllers

C. M. Kwan

Abstract—In a recent work by Zak and Hui [1], a sliding-mode
controller for multi-input/multi-output (MIMO) systems using static out-
put feedback was proposed. Very nice geometric conditions for how to
design sliding surfaces were given. However, there are two restrictive
assumptions in it. One is that the uncertainties in the system must be
bounded by a known function of outputs which excludes some possible
uncertainties in the A matrix if the system is described by the triple
(A, B, C). The other one requires a matrix equality [1, (4.3)] to be held
which may also be very difficult to satisfy in many systems. In this paper,
we propose a modification of the sliding mode controller for a class of
single-input/single-output (SISO) systems which can eliminate the above-
mentioned limitations and, under certain conditions, guarantee global
closed-loop stability. Hence the range of applicability of the method in
[1] can be greatly broadened.

I. INTRODUCTION

Sliding mode control (or variable structure systems control) is
a popular robust control method among control engineers. It is
simple to design and completely robust to “matched” uncertainties.
Its importance and applications can be seen from two recent special
issues in the International Journal of Control [2] and the JEEE
TransacTioNs oN INDUSTRIAL ELEcTRONICS [3]. One major drawback of
sliding control is that states have to be available. Since in many
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