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Abstract

A stable linear system controlled by a proportional controller is closed-loop stable provided the controller has
sufficiently small gain. If the system has an unstable zero then any proportional controller with sufficiently large gain is

destabilizing.

In this note we give an upper bound for the gain of stabilizing proportional controllers of stable systems that have one

or more unstable zeros.
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1. Introduction

The following result, valid for stable systems, is
an easy consequence of the small gain theorem (see,
for example, [4]):

A stable linear system controlled by a propor-
tional controller is closed-loop stable provided
the controller has sufficiently small gain (i.e., for
some positive constant L, all controllers k satisfy-
ing |k| < L are stabilizing).

Elementary manipulations show that for a sys-
tem with rational transfer function p(s) the largest
possible bound L is equal to

1
L t = s
o sup{lp(s)l: Ris) =0, I(p(s) = 0}

* Corresponding author.

where R(-) and 3(-) are used to denote real and
imaginary parts. This expression for L, is not
convenient for computations because its evaluation
is constrained by 3(p(s)) = 0. If we define

1
sup{|p(s)l: R(s) >0}’

L:

then L < L, and any proportional controller sat-
isfying |k| < L is stabilizing. Moreover, the value
L is considerably simpler to compute since it is the
inverse of the H,, norm of p(s).

A converse statement of the above property is

A stable linear system that has one or more zeros
in the open right half plane (ORHP), and that is
controlled by a proportional controller is closed-
loop unstable provided the controller has suffi-
ciently large gain (i.e., for some finite constant
U, all controllers k satisfying U < |k| are de-
stabilizing).
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As previously, the bound U depends on the sys-
tem considered. In this case however the smallest
possible bound U, is considerably harder to com-
pute. In this note we give an upper bound for
U,pe by using an argument from the geometric
theory of analytic functions. More precisely, we
show that if the system with transfer function p(s)
has a zero s, of multiplicity g in the ORHP and has
a total number of zeros in the ORHP that does not
exceed n, then

O 9(n + 1)
" [2R(s0) 1 p“(s0)]”

where p@(s,) is the gth derivative of p(s) evaluated
at sg.

Any proportional controller k satisfying U < |k|
is destabilizing.

A particular feature of the bound U is that it
depends on the number of zeros of the system in the
ORHP and on the gth derivative of the transfer
function of the system evaluated at one particular
zero, but it does not otherwise depend on the
system. This renders the computation of U parti-
cularly easy to perform.

To summarise, we have the following ordering:

Uopt <

0<L<Lp<Up<U<o.

A proportional controller & satisfying 0 < |k|
< L, is stabilizing, whereas it is destabilizing if
Uspe < 1k| < oo. The bound U is described in this
note.

The main result is proved and commented in
Section 2. Examples are given in Section 3.

2. Result

We start with the needed property of analytic
functions.

Theorem 2.1. Suppose that the complex-valued func-
tionf(z) = z + ¢,2z° + --- is analytic in the open unit
disc D and has n or less zeros there. Then the image of
D under the mapping ¢ = f(z) completely covers the
disc & < 1/9(n + 1).

Proof. Let f(z) =z + c,z2 + -~ be an analytic
function in the open unit disc D with » or less zeros
in D and let o« 3 0 be a complex number such that
f(z) #x for all z in D. We want to show that
] > 1/9(n + 1).

Consider the function defined by

ETAC R
glz)=1 . =1 "

Obviously, g(z) is analytic, is never equal to zero
and takes the value ¢ = 1 less than n times in D.
Since g(z) is zero-free in D, we may define a function
h(z) by h(z)"*! = g(z) and h(0) = 1; then

hz)= (gD = 1= e

Since g(z) assumes the value ¢ =1 less than
n times in D, we can select a complex number
o such that @""! =1 and h(z) # o for all z in D.
(Indeed, if such a value o did not exist, h(z) would
assume the value £ =1 n + 1 times, a contradic-
tion.) As a final transformation consider the func-
tion defined by

h(z) 1 z
He)= o o an+ o *

The function [(z) is analytic in D and never takes
the value £ = 0 or the value £ = 1 on D.

By Landau’s theorem (see [2]), the first two
coefficients of I(z) = ay + a;z + --- are such that
la;| < 2|ag|(Jloglaeg|| + A) where A can be taken
to be equal to I'*(0.25)/4n? = 4.377... We thus

et )

: l <2
Using 4 < % and |w| = 1, we simplify the above

_ lo
aln + Ho &
inequality and get

2> 5o D)

as required. O

We now prove our theorem on proportional
control.

Theorem 2.2. Let p(s) be the transfer function of
a stable linear system that has at least one zero sy in
the ORHP. Assume that k is a stabilizing propor-
tional controller. Then

9n+1)
12%R(s0) 141 p@(s0)|”

where n is equal to the number of zeros of p(s) in the
ORHP, q is the multiplicity of the zero sq, R(so) is

k] <
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the real part of sq and p'P(s) is the qth derivative of
the transfer function p(s) evaluated at sg.

Proof. Let n be the number of zeros of p(s) in the
ORHP and assume that s, is one such zero. For
simplicity, assume first that s, has multiplicity one.
Define zg:= (s — 1)/(so + 1) D and consider the
following mappings of the complex plane:

A—ZO
ize—1

HiA—

and

14+ 4
g:A— =
The linear transformation y maps the unit disc
D bijectively onto itself and is such that u(0) = z,,
whereas ¢ is the usual bilinear mapping between
the open unit disc D and the ORHP. The value z, is
chosen such that o(zy) = so. Due to these proper-
ties, the rational function r(z) defined by

r(z) = plo(u(2)))

is such that
r(0) = p(o(1(0))) = p(so) = 0.

By the chain rule we have
r'(z) = plo(uz))o’'(u(2)) 1 (2)
and thus
r'(0) = p'(s0) 0’ (20) ¢ (0).

The quantities involved in this last expression
can be computed as ¢’(zo) = 2/(1 —zo)* and
@ (0)=(zozo — 1). Using the definition of z, we
obtain

F(0) = — 2p'(s0)R(s0) 2L

So+ 1

The function r(z)/r'(0) =z + c,z*> +-.- is ana-
lytic in D and has n zeros there. By the previous
theorem, the image of D under the mapping
E=r(z)/r'(0) completely covers the disc
€] < 1/9(n + 1) or, in other words, the image of
D under the mapping & = r(z) completely covers
the disc

so+ 1

1
I < m 2p (So)m(so)gg 1l

Due to the definition of r(z) this means that,
associated with any value ¢ of modulus less than or

equal to (1/9(n + 1))|2p'(so) R(so)(so + 1)/(50 + 1],
there is a point s* of the ORHP, such that p(s*) = ¢.
It now remains to show the link between this prop-
erty and proportional stabilization.

Let k be a proportional controller. If k stabilizes
p(s), then kp(s)/(1 + kp(s)) is stable and p(s) #
—1/k for all s in the ORHP. However, then, by the
above condition, k must satisfy

1

k

So+1
So+ 11

2p’(so) R(so)

i
9+ 1)

Using |(so + 1)/(5¢ + 1)| = 1 we obtain

9mn+1)
12R(s0)11p"(s0)!

and the theorem is proved for g = 1.

The proof is similar for g > 2. If 54 is a zero of
multiplicity g then the function r(z) defined by
r(z) = p(o(u(z))) is such that r(0) = r'(0) = r®(0)

=...=r9"Y(0) = 0. The gth derivative of r(z)
evaluated at 0 is different from O and can be com-
puted as r?(0) = p@(so)(d"(so) ' (0))*.

The function

r(z)
r(q)(O) -

is analytic in D and has n zeros in D.

By extending the result of Jenkins [2] it can be
proved that, similarly as for the case g = 1, the image
of D by a function f(z) = z¢ + ¢+ 1297 ' + - that
has at most n zeros in D completely covers the disc
|&] < 1/9(n + 1). Applying this extended version of
our previous theorem, we obtain that the range of
r(z)/r'?(0) on D covers the disc|&| < + 1/9(n + 1).
The last steps are identical to those for the case
g =1; they lead to the following inequality for
stabilizing proportional controllers:

9n+ 1)
12R(50)17p@(s0)|
The theorem is proved. [J

LIRS

.
294 cuyq 28T 4 e

k| <

Remarks

(1) If p(s) is factored as n(s)/d(s) with n(s) and d(s)
coprime polynomials, and if s, is a zero of multipli-
city g of p(s), then p@(s,) is equal to n'@(sq)/d(s¢).

(2) A close look at the proof of the theorem
reveals that the same bound is valid for systems
that have poles on the imaginary axis. See
Example 3.2 for an illustration of this.
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(3) The expression 9(n + 1)/]12R(s0)|7|p“@(so)] is
increasing with n; it is therefore obvious that the
statement of the theorem remains valid when » is
substituted by a value that is larger than n. For
example, n can be taken to be equal to the order of
the system.

3. Examples

Example 3.1. Let

(s—=2)(s+ 1) s2—5—2
p(s): 3 2 = 3 2 .
25+ 8"+ 3s+1 280+ +3s5+1

The transfer function p(s) has a zero of multipli-
city one at s, = 2. The other two zeros are at —1
and at oo; they are outside the ORHP. The first
derivative of p(s) evaluated at s, = 2 is equal to
p'(2) =% = 4 and thus any proportional stabiliz-
ing controller k must satisfy

9n+1)

k| < = 4(.5.
K< 20 1P 0]

The controller k = 41 is destabilizing.

Example 3.2. Let

_ 6(s*> — 55+ 6)
p(s) = 242

The transfer function p(s) has all its poles on the
imaginary axis. The zeros of p(s) are at s = 2 and
at so = 3, both are in the ORHP. We compute, for
So = 2, |k| < 6.75 and, for s, = 3, | k| < 8.25. Hence,
any stabilizing proportional controller satisfies
|kl < 6.75.
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