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A Rational Test for Strong Stabilization*
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Abstract—We propose a simple test for checking strong
stabilizability. The test necessitates the construction of a
single Routh table.

1. Introduction

Youla er al. (1974) showed that linear systems are strongly
stabilizable (i.e. stabilizable by a stable controller) if and only
if they have an even number of real poles between each pair
of real zeros in the right half-plane. This condition is usually
referred to as the. parity interlacing condition.

Motivated by this result, Anderson and Jury (1976)
exploited properties of the Cauchy index to show that it is
possible to check the parity interlacing condition without
explicitly computing the real poles and zeros of the system
but by performing instead a finite number of rational
operations on its coefficients. The test proposed by Anderson
and Jury is given in terms of Cauchy indices.

In this note we express the parity interlacing condition as a
condition on the difference between the number of open
right and open left half-plane zeros of a polynomial
constructed from the coefficients of the system. This
formulation can be used to derive an explicit rational test for
the parity interlacing condition. The test necessitates the
construction of a single Routh table.

2. Equivalent formulation of the parity interlacing condition
Let p be as real polynomial. We use the following
notation: deg (p) denotes the degree of p, p.(p) and p_(p)
denote the number of open right and open left half-plane
zeros of p, and p(p) =p.(p) — p_(p) denotes the difference
between these two quantities.
With this notation, we have the following theorem.

Theorem. Let

sy ast+. tasta
d(s) s**'+bsk+... +bis+by

q(s)

be a linear system and assume that deg(n)=1 and a,#0.
Define the polynomial p(s) by

pls)i=[n(=s*) +sn'(=s?)][n(=s%) — sn'(=s")d(=s?)].

Then the system g(s) satisfies the parity interlacing condition
if and only if p(p) = 1.

If q(s) has no multiple zeros on the positive real axis, an
equivalent condition is given by p,(p) = 3[deg (p) + 1].

Remark. Note that the last condition makes sense since p has
always an odd degree.
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Proof. It was shown in Anderson and Jury (1976, Main
Result, p. 388) that the strictly proper system g(s) satisfies
the parity interlacing conditon iff

n(s) .n'(s)d(s)
° n(s) B n(s)

where 1 denotes the Cauchy index. In the following we use
properties of the Cauchy index to reformulate the condition
(1) as a condition on the zeros of p.

A rational function f(s) satisfying f(0) # = also satisfies
205f(s) = I .sf(s?). By assumption, n(0)+#0, and thus (1)
is equivalent to

0

sn'(s?) .
n(s?) 7%

sn'(s2)d(s?)
n(s?)

By assumption, d(s) is monic and n(s) is of degree no less
than one. Therefore the rational function on the right-hand
side of (2) is positive when s approaches infinity from the
positive axis and is negative when s approaches infinity from
the negative axis. Using Property S from Gantmacher (1959,
XV, §12.1) (and correcting a misprint of the 1974 edition: on
line 16 one should read (¢, — €,)), we rewrite the right-hand
side of (2) and obtain

G
Fon(s?)

I*. (2)

- n(s?)
“sn'(s?)d(s?)’

€))

The condition (3) can now be re-interpreted as a polynomial
property. Define the polynomials p, and p, by

pi(s) :=n(—s2) +sn'(~s?),

pa(s) = n(—s?) = sn’(—s%)d(—s?).
By formula (20) from Gantmacher (1959, XV, §3.4), we
deduce

sn'(s?) .
F et = 4
) p(p1) Sy
and
wo_nshH

isn:(sz)d(sz)_p(pZ)- (5)

Hence, (3) can equivalently be expressed by
p(pi) +p(pl) =1 (6)

Since p(s) = p1(s)pa(s), the condition (6) is also equivalent to

plp)=1, ™

and the first part of the theorem is proved.

For the second part, note that when g(s) has no multiple
zero on the positive real axis, p, and p, have no imaginary
zeros. But then p has no imaginary zeros either, and hence

p(p)=2p.(p)—deg(p). o

3. A rational test

The stabilizability of a system by a stable controller can be
checked by computing the difference between the number of
right and left open half-plane zeros of a polynomial
constructed from the system. We now show how this quantity
can be evaluated by observing sign changes in the first
column of a Routh table.
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The number of open right half-plane zeros of a polynomial
p is equal to the number of sign changes in the first column
of the Routh table associated with p. If no sign change
occurs, the polynomial is stable. According to the theorem in
the previous section, this procedure can be used for checking
strong stabilizability of systems with no multiple zeros on the
positive real axis. In this case it suffices to construct the
Routh table associated with

p(s) = [n(=s5?) +sn'(=sH)][n(=s?) = sn'(=s?)d(=s?)]

and to count the number of sign changes in the first column
of the associated Routh table. There must be exactly
3[deg (p) + 1] sign changes for the system n(s)/d(s) to be
strongly stabilizable.

In the more general situation where the system may have
multiple zeros on the positive real axis we need to make a
minor modification. The number of open left half-plane zeros
of the polynomial p(s) is equal to the number of open right
half-plane zeros of p(—s). This quantity is easily seen to be
equal to the number of sign changes in the first column of a
modified Routh table of p(s) in which all the entries of the
even- (or odd-) numbered lines have their sign reversed.
Thus strong stabilizability can be checked by constructing the
Routh table associated with

p(s) = [n(=52) + sn'(=s)in(~s?) —sn'(~sHd(~s)],

counting the number of sign changes in the first column of
the associated Routh table and counting the number of sign
changes in the first column of a modified table in which all
the entries of the even- (or odd-) numbered lines have their
sign reversed. The difference between these two quantities
must be equal to one for the system n(s)/d(s) to be strongly
stabilizable.

4. Examples
Example 1. The system

s—1

1) " Fs e

has its zeros at s=1 and s == and its poles at s =2 and
s =3. It therefore satisfies the parity interlacing condition.
Indeed, following our procedure, we obtain a polynomial

p(s)=s5"—s%+6s° —4s* + 10s® — 452+ S5s + 1.

The Routh table associated with p is given by

1 6 10 S
-1 -4 -4 1
2 6 6
-1 -1 1

4 8
1 1
4

There are four sign changes in the first column
(1,-1,2,-1,4,1,4,1). When entries on even-numbered
lines have their signs reversed, the first column becomes
(1,1,2,1,4,-1,4, —1), whose number of sign changes is
three. The difference between these two quantities is one,
and thus the system is strongly stabilizable.

The degree of p increases rapidly with those of n and d (we
have deg (p) = 4 deg (n) + 2 deg (d) — 1). The construction of
the Routh table is therefore cumbersome even for systems of
small order. In the next two examples we give only the final
result, and skip the construction of the Routh table.

Example 2. From the system
s—2

9(s) T3 -552+7s—3
we obtain the polynomial
ps)=—s%+5%—Ts7 + 5% — 175 + 8s* — 185> + 75> — 85 + 4
which has seven open right half-plane zeros and two open
left half-plane zeros. It is therefore not strongly stabilizable,
since p(p) = 5. Indeed, it can be checked that g(s) has one
zero at s =2, a double zero at s = o<, one pole at s =3 and a
double pole at s =1, and it therefore does not satisfy the

parity interlacing condition, since there is a unique zero (at
s = 3) between the poles s =2 and s = =,

Example 3. The system
(s) = s2—4s+4
I =S 77155 -9
gives rise to a 13th-order polynomial
pls)=—25 + 4572 - 265" + 445'0 — 1385° + 189s®

— 38457 + 3965° — 59257 + 408s* — 480s>

+176s% — 160s + 16,
which has four imaginary zeros, five open right half-plane
zeros ands four open left half-plane zeros, and therefore
satisfies p(p) = 1. The system g(s) can thus be stabilized by a
stable controller. Indeed, this can immediately be seen by
checking that

(s -2y

(s —1)s—-3)

satisfies the parity interlacing condition.

q(s)=
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