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inequality (6). To show stability, the authors reason by contradiction
as follows: assume that u ¢ Lo, and take limits on both sides of (7)
as T — oo. In this case, the right-hand side tends toward zero and
therefore, the left-hand side also tends toward zero. Hence the authors
conclude that there is a contradiction since, by (6), the left-hand side
is actually greater than zero. Therefore it must be true that v € Lo.
This reasoning is fallacious, however, unless condition (6) is
strengthened by requiring that the following be satisfied

(u, Hu)r + 3

inf [ lim (w, uyr

u€L} [T—oo

]25>0. 8)

In other words, there are only two possibilities of interest in (7)

(u, Hu)r + 8

1)
inf [ lim (w07

w€Lly  |T—oo

}25>0. )

If this is the case then indeed there is a contradiction in (7).
Condition (9), however, implies that the system is strictly passive,
and therefore Lemma 1 becomes a restatement of the passivity
theorem (see, for example, [1]), i.e., it says nothing about weak
SPR functions.

2)
inf [um “‘—’IM] -0

10
w€Ly, {u, u)t (10

T—oo
In this case, there is no contradiction in (7) since the left-hand
side also tends toward zero for some function u, without violating
condition (6) (in the same way 1/n® — 0 as n — oo, for all
p € RY > 1)

As a final remark we make the following observations, which
emphasize the distinction between weak and strong SPR. It is
relatively easy to show that the feedback combination of a (possibly
nonlinear) passive plant and a strong SPR compensator is stable. The
result can be proved by defining the loop transformation shown in
Fig. 1 and noting that it does not alter the stability properties of the
original system. It is then straightforward to show that, for small
enough ¢ > 0, the system Hj = (1 — eH,)™1H, is passive, while
H' = H + <1 is strictly passive, and therefore stability follows from
the passivity theorem.

The case of a weak SPR system is, however, very different as
shown in the following example.

Example 1: Consider the linear time-invariant system H(s) =
(s+c)/[(s+a)(s+b)], and let H'(s) = H(s)/[1—eH(s)]. We have

H'(jw)+ H'(—jw)
_ (abc—scz)+w2(a+b— c—¢€)

=2 (ab—ec—w?)2 4+ (a+b—¢€)? >0

(11)
if and only if
abe — ec® > 0,

a+b—c—e>0. (12)

If a + b > ¢, we can always find an € > O that satisfies (12). If,
however, a + b = ¢ (i.e.,, when H(s) is weak SPR), no such ¢ > 0
exists.

II. CONCLUSIONS

The proof of Lemma 1' is incorrect. Since this note does not
disprove that the feedback interconnection of a passive plant and a
weak SPR controller is stable, we conclude that it remains an open
question.
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On Interval Polynomials with No Zeros in the Unit Disc

V. Blondel

Abstract—We give a necessary condition for an interval polynomial to
have no zeros in the closed unit disc. The condition is expressed in terms
of the two first intervals.

The stability analysis of polynomials subject to structured uncer-
tainty has received considerable attention this last decade (see [2] for
an historical overview; references related to this contribution include
[11, [3], [5], (8], and [9D).

In this note we give a necessary condition for an interval poly-
nomial

P={a+arz+-+an:": g <a; <@}

to be D-stable, i.e., such that all members of P have no roots in
the closed unit disc. Qur condition is expressed in terms of the two
first intervals only.

In a corollary we show that if ¢, < @ /2 and gy < @1 /9 then
P cannot be D-stable.

The results presented here are easy consequences of a little-known
theorem on analytic functions.

Landau’s Theorem: Assume that the function f is analytic in the
open unit disc |2| < 1 and that f(z) # 0, 1 for all |z| < 1. Then

|7(0)] < 21£(0)(l1ogl F(O)] + 4)

were A is a constant which can be taken equal to 4.4.

For a proof of this theorem (which is sometime referred to as
Landau-Carathéodory theorem) see, for example, Hille [4, p. 221].
The best possible bound for A was given in 1981 by Jenkins [6]; it
is equal to 4x%/T*(L) = 4.37.- ..

We now prove our theorem.

Theorem: Let P = {ag+arz+---+anz": @a; < a; <T;}be
an interval D-stable polynomial and assume that @ > a5 > 0.

+ 4.4)
where log™ 2 = max (0, log ).

Proof: Define af € [ay, @o] by ag: = min(2a,, @) and choose
an arbitrary set of coefficients a € [g;, @i] (i = 2,---,n). Consider
the polynomial p(z) defined by

1

p(z):= (g, taiztar 4 Falz").
4y — Go

@] < 24, (Iog+ 2o

a-gq

It is easy to see that p(z) never takes the value zero or one in the
open unit disc. Indeed

2

p(2)=0& gy +Tz+azz"+--+apz" =0

and

p2)=1&aj+mz+asz®+---+alz"=0.
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These two polynomials belong to P, hence p(z) # 0, 1 when |z| < 1.
Applying Landau’s theorem on p(z) we obtain
+ 4.4).

(Ilog

log —*g"—‘ + 4.4).
@p — 4o

The coefficient ag is defined by ag: = min(2a,, o). If 2¢4 < To
then a; = 24, and

U <2 4o

A
*

* *
4y — G Gy — g 2 — G

Since ag > gy > 0 we get

wszgo(

[a1] < 2a94.4 = 2a, (log+ —% 4 4.4)
o — ay
whereas if 2a, > @o then ag = @ and
4.4) =20, (logt —22— +4.4).
+ ) g ( og A +

The theorem is thus proved.
Remarks:

— a

1) A corresponding theorem can be derived for other stability
regions. For Schur stability (no roots outside the open unit disc)
we obtain a necessary condition for the stability of interval
polynomials with uncertainty in the highest order coefficient.

2) It is clear from the proof of theorem that, if p1(2) = a+a12+
a2 -t anz" and po(2) =B+ arz+ a2t +---+anz”
are both D-stable polynomials, then

[e3
pop? ’ + 4.4).

This inequality can be used to derive bounds for other struc-
tured uncertainties descriptions.

Corollary: Let P = {ao+a1z+---+a.2": g, <a; <a}be
an interval polynomial and assume that 0 < 2a, < @o and 9¢, < @1.
Then P cannot be D-stable.

Proof: Assume by contradiction that P is D-stable. Since
2a, < @o, the theorem gives |a1| < 2a,4.4 = 8.8a,. But this is
a contradiction since 9a, < @. The result is thus proved.

lar < 2|a|(|log
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The Logical Control of an Elevator

Derek N. Dyck and Peter E. Caines

Abstract—This paper presents a detailed example of the design of a
logical feedback controller for finite state machines. In this approach,
the control objectives and associated control actions are formulated as
a set of axioms each of the form X implies Y, where X assets that i)
the current state satisfies a set of conditions and ii) the control action y
will steer the current state towards a given target state; Y assets that the
next control input will take the value y. An automatic theorem prover
establishes which of the assertions X is true, and then the corresponding
control y is applied. The main advantages of this system are its flexibility
(changing the control law is accomplished through changing only the
axioms) and the fact that, by the design of the system, control actions will
provably achieve the control objectives. The illustrative design problem
presented in this paper is that of the logical specification and logical
feedback control of an elevator.

I. INTRODUCTION

The COCOLOG system (from Conditional Observer and COn-
troller LOGic) [1], [2] is a logical system for the state estimation
and control of finite state machines. In this approach, the control
objectives are formulated as axioms (i.e., necessarily true logical
formulas) which relate the current state to a target state. The axioms
are each of the form X implies Y, where X asserts that i) the current
state satisfies a set of conditions and ii) the control action y will
steer the current state towards a given target state; Y asserts: that
the next control input will take the value y. An automatic theorem
prover establishes which of the assertions X is true, and then the
corresponding control y is applied. The main advantages of this
system are its flexibility (changing the control law is accomplished
through changing only the axioms) and the fact that, by the design
of the system, control actions will provably achieve the control
objectives.

This paper applies the COCOLOG system to an idealized version
of an elevator control problem. Section II describes the state, dy-
namics and control of the elevator. Sections III-V briefly outline the
COCOLOG system and present a new logical framework specific to
the control of an elevator. Sections VI and VII present the results
of computer simulations using an Automatic Theorem Prover (due
to Mackling, see [3]) and the conclusions which can be drawn from
these results.

II. THE ELEVATOR CONTROL EXAMPLE

The logical control of an elevator is a good example with which
to illustrate the operation of the COCOLOG system because it shares
with many other discrete event systems the features of i) simplicity of
dynamics, ii) combinatorial complexity of state description, and iii)
great variety of possible control strategies and resulting trajectories.
This section describes the basic set-up of the elevator control problem.

A. The State

The elevator -control problem studied in this paper consists of
a single elevator in a building with five floors, numbered zero
to four. The elevator can handle up to three demands, with the
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