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A Sufficient Condition for Simultaneous
Stabilization

V. Blondel, G. Campion, and M. Gevers

Abstract—In this note, we study the following problem, “Under what
condition(s) is it possible to find a single controller which stabilizes k
single—input single-output linear time-invariant systems p,(s) (i =
1,---,k)?”. We introduce the concept of avoidance in the complex plane
and use it to derive a sufficient condition for k systems to be simultane-
ously. stabilizable. A method for constructing a simultaneous stabilizing
controller is also provided and illustrated by an example.

1. INTRODUCTION

Simple questions cannot always be simply answered. In this
note, we give a very partial answer to a simple question in
control theory which, for being open for ten years, does not
seem to have a simple answer. The question is known under the
name of simultaneous stabilization problem and is the following,
“Under what condition(s) is it possible to find a single controller
c(s) which stabilizes k SISO linear time-invariant systems ps)
i=1,...,07.

When k = 2 a tractable necessary and sufficient condition,
known as the parity interlacing property, exists (see [12], [18], [15]).
The problem becomes harder when k > 3 and most papers on
the simultaneous stabilization problem deal either with neces-
sary or with sufficient conditions ([2], [4], [9], [10], and [16]).
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The connection between interpolation in the complex plane
and the simultaneous stabilization problem was pointed out by
various authors ([S]-[8]). In the same spirit, we present the
problem in this note as an avoidance problem between complex
valued functions. Roughly speaking, a set of k SISO linear
time-invariant systems {p.(s), -, p,(s)} will be shown to be si-
multaneously stabilizable if and only if there exists a & + 1th
system p,, (s) which avoids, in a sense that we will define, the
systems p(s), -+, p,(s) for all s in the extended closed right-half
plane. With this view of the problem we will prove a new
sufficient condition under which k systems are simultaneously
stabilizable.

A method for constructing a simultaneous stabilizing con-
troller is provided and illustrated with an example.

II. NOTATIONS—-DEFINITIONS

R(s) is the set of real rational functions. C,, is the extended
complex plane C U {=} adequately topologized. € is any subset
of C,.. We shall suppose throughout this note that € is symmet-
ric with respect to the real axis (if s € Q then § € Q), that it is
closed, simply connected, contains {=} and that its complement
in C,, contains at least one value of R U {=}. Q is to be thought
of as the complement in C, of a region of stability. A real
rational function f(s) € R(s) is Q-stable if it has no poles in
(we draw the reader’s attention to the fact that Q-stability is
defined by other authors in exactly the opposite way). S(Q) is
the set of all Q)-stable functions and U((2) is the set of functions
that are in S({)) and that have their inverse in S(Q): they are
the units of the ring S(Q).

ITII. AVOIDANCE AND INTERSECTION

Immediate checking shows that, whatever Q, S(Q) is a com-
mutative ring. It is also known that under our hypothesis on (2,
the field of fractions of S(Q2) is R(s) (see e.g;, [13, p. 50]). This
means that if p(s) € R(s) then there exist n(s),d(s) € S(Q)
such that p(s) = (n(s)/d(s)) where n(s) and d(s) have no
common zeros in ). Such a fractional decomposition of p(s) is
called an Q-coprime decomposition. We may now define what we
mean by the intersections of two functions p,(s), p,(s) € R(s)
in Q.

Definition: Let py(s), p,(s) € R(s) and let n,(s), d,(s) € S(Q)
be fractional Q-coprime decompositions of p(s) i = 1,2. The
intersections of p,(s) and p,(s) in Q are the zeros of n,(s)d,(s)
= d(ny(s) € S(Q) in O. If n(s)d(s) ~ di(s)n,(s) € U(Q),
then p(s) and p,(s) have no intersections in ) and we say that
they avoid each other in (.

This definition may look somewhat mysterious. In fact, it is
very natural and the procedure to compute the intersections
between systems is very simple. Consider py(s), p,(s) € R(s)
and decompose p(s) = (n,(s)/d (s)) and p,(s) = (n,(s)/d,(s)),
where n,(s),d(s) are polynomials with no common zeros (; =
1,2). The finite intersections of p,(s) and p,{(s) in  are simply
the zeros in Q@ of the polynomial n(s)d,(s) — d(s)n,(s),
whereas the possible additional intersections at infinity may be
checked by inspection of the relative degree and gain of the
functions. For example, the rational functions p,(s) = (25/(s +
1)(s — 1)) and p,(s) = (1/s — 3) have their intersections at the
zeros of 25(s —3) —(s + s — 1) =5% ~ 65 + 1 and at the
point at infinity since p,(®) = p,() = 0.
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IV. SIMULTANEOUS STABILIZATION

A controller ¢(s) € R(s) is said to be an Q-stabilizing con-
troller of p(s) € R(s) if and only if all the transfer functions
P + p(8)e(sN™Y, ()1 + p(s)e(s)~! and p(sX1 +
P(8)c(s)~! are in S(Q). This notion of Q-stabilization is strongly
connected to that of avoidance in ().

Lemma: Let p(s), c(s) € R(s). Then the controller c¢(s) inter-
nally Q-stabilizes p(s) if and only if —c~!(s) avoids p(s) in Q.

Proof: Let p(s) = (n,(s)/d,(s)) and c(s) = (n(s)/d (s))
be Q-coprime decompositions of p(s) and c(s). It is well known
that c(s) internally Q-stabilizes p(s) if and only if n,(s)n(s) +
d,(s)d (s) € U() (see [13]. This last condition is satisfied if
and only if —c(s)~! avoids p(s) in Q. ) [ ]

As a consequence of this lemma, the systems p(s) € R(s)
(i=1,...,k) are simultaneously {)-stabilizable if and only if
there exists a c(s) € R(s) such that —c~(s) avoids p{(s) in Q
(i=1,...,k). In the next theorem, we exploit this fact by
providing a condition under which & systems are simultaneously
Q-stabilizable. The underlying idea is the following: a finite set
of systems is simultaneously -stabilizable if and only if there
exists an additional “system” which avoids all of them in ().
Suppose now that in a set of k systems {p,, -, p;} one of the
systems (say p,) avoids all the others in €. Then by the lemma
the systems p,, ps,"", p; are simultaneously ()-stabilizable by
—prL. In fact it is then possible to do more than that: it is then
possible to find an Q-stabilizing controller for the whole set
{p1,**» p¢}. In addition to this, if one of the systems py,---, p; is
strictly proper then the resulting controller is proper. This is
essentially what is contained in the next theorem.

Theorem: Let p(s) € R(s)(i = 1,--+, k) and suppose that there
exists a j (1 <j <k) such that p(s) avoids p(s) in @ (i =
1,---,k and i # j). Suppose also that one of the systems p/(s) €
R(s) G = 1,---,k) is strictly proper. Then the systems p(s)
(i = 1,-++, k) are simultaneously {)-stabilizable by a proper con-
troller.

Proof: Suppose without loss of generality that j = 1. Find an
Q-coprime fractional decomposition of p(s), p(s) =
(ny(s)/d(s)) with ny(s), d,(s) € S(2). We know that under our
assumptions on Q, S(2) is an Euclidean ring (see [13] for more
details). Hence, there exist x(s), y(s) € S(Q) such that
n(s)x(s) + di(s)y(s) = 1. Since p(s) avoids p(s) in Q G =
2, k) we have n(s)d(s) — d(sIn(s) € (Q) (i = 2,++, k)
and we define u(s) £ n(s)d(s) — d(sIns) € UQ) (=
2,--, k). The set Q is closed in the extended complex plane C,,
and therefore & == min;_,_ ,(inf, ¢ olu(s)l/sup;,c olx(sIn,(s) +
y(s)d(s)D is well defined and strictly greater than zero. We
choose € with 0 < e < 8 and claim that g(s) = (ny(s) —
ey(s)/(d(s) + ex(s)) € R(s) avoids p(s) in Q (=1, k).
Indeed, if i =1 then n(sXd(s) + ex(s) — di(sXn(s) -
ey(s)) = é(ny(s)x(s) + dy(s)y(s)) = € € U(Q). Whereas for i
> 2 we have n(sXd(s) + ex(s)) — d(sXns) — ey(s)) =
ns)d(s) — dsIns) + e(x(Inls) + y(s)d(s)) = us) + e
(x(s)n(s) + y(s)d(s)). By construction of e it is clear that
us) + e(x(s)ns) + y()d(s) # 0 for every s € Q (=
2,-+,k). This shows that wu,(s) + e(x(s)n,(s) + y(s)d(s)) €
UQ) (i =2-,k) and thus g(s) = (ns) — ey(s)/(d(s) +
€x(s)) avoids p,(s) in Q (i = 2, k). But g(s) also avoids p(s)
in Q and thus —g~!(s) is a simultaneous stabilizing controller
for p(s) (i = 1,+,k). It remains to show that —gq~'(s) is
proper, ie., that g(s) has no zeros at infinity. But this follows
trivially from the fact that, by assumption, one of the p,(s) has a
zero at infinity and that g(s) avoids p,(s) at© € Q. u

The assumption that one of the systems is strictly proper can
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actually be removed without altering the final result (see [1] for
this).

V. EXAMPLE

Let pi(s) = (1/s — 1), py(s) = (=s/3s + 1), ps(s) = —(s —
2/5s — 1) and p,(s) = (s> — 3s + 1/7s2 — s + 2). It is easy to
see that p,(s) does not intersect any of the p(s) in C,,
(i = 2,3,4) and hence, by our theorem, the systems py, p,, Ps,
and p, are simultaneously C, .-stabilizable.

We construct a stabilizing controller for these systems by
using the proof procedure of the theorem.

A coprime fractional decomposition of py(s) is given by p(s)
= (ny(s)/d{(s) = (1 /s + 1) /(s — 1/5 + 1)). A solution of the
Bezout equation

ny(s)x(s) + dy(s)y(s) =1

is given by x(s) = 2, y(s) = 1.
By the proof of the theorem, and for a small enough positive
€, we have that
1
ns) —ey(s) 541
di(s) + ex(s)  s—1 +
s+1

1-e(s+ 1)

- (s—1)+2e(s+ 1
2e

q(s) =

avoids p,;, p,, ps, and p, in C,.. We take e =0.01 and get
q(s) = (99 — 5/101s — 99). Finally, using our lemma we have
that

1 101s — 99

cls) q(s) s—99

is a simultaneous stabilizing controller for p,, p,, p3, and p,.
It is even possible to say more. p,(s) intersects p(s) (i =

2,3,4) at the unique point —1 € C and hence the systems p;,

Pa» D3, and p, are simultaneously {)-stabilizable for any region

Q that does not contain {—1}.
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The Pole Placement Map, its Properties, and
Relationships to System Invariants

John Leventides and Nicos Karcanias

Abstract—A number of new properties of the complex and real pole
placement map (PPM) are derived which relate to the dimension of their
images and relate them to known system invariants. It is shown that
those two dimensions are equal and that their computation is equivalent
to a rank determination of the corresponding differential. A new expres-
sion of the differential of the PPM, allows the derivation of relationships
between the Markov parameters and the Plucker matrix invariant of the

system. Finally, conditions for pole assignability are derived, based on-

the relationships between the rank of the Plucker matrix and the rank of
the differential of the PPM.

L. INTRODUCTION

The aim of this note is to establish a number of properties of
the pole placement map under complex and real output feed-
back and especially properties of the image of this map. One of
the important questions connected with the pole placement
problem under constant (or dynamic) output feedback, is the
derivation of a reasonable measure for the size of the set of
polynomials, which for a system (A4, B,C) of p-inputs, m-out-
puts, and n-states can be assigned. We choose as a measure of
the size of this set, the dimension of the image of the real or the
complex pole placement map (PPM). Although the structure of
the image of the complex PPM is different than that of the real
PPM (and in fact the complex case is nicer than the real), it is
shown that both dimensions of the real and complex PPM
(which are invariants of the system) are the same. The above
dimensions are also shown to be equal to the rank of the
differential of the corresponding PPM at a generic feedback K.
The rank of this differential at K = 0 was shown [8] to be equal
to the rank of Fj, = [col CB,col CAB, -, col CA"B), (the ‘col’
operation on a matrix implies the formation of a composite
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vector, obtained by superimposing the columns of the matrix) or
at an arbitrary K [6] to be equal to the rank of Fy =
[col CB, col CHB, -, col CH"B], where H = A + BKC. The lat-
ter expression is not very convenient for the calculation of the
rank at a generic K; instead, we propose an alternative expres-
sion of the form (DT ), P where T is a function of K only and
Py is the reduced Plucker matrix of the system § and which is a
complete invariant [4]. The relationship between the reduced
Plucker matrix and the Markov parameters is established; in
fact, it is shown that the Markov parameters may be computed
by selecting certain rows of the Plucker matrix. It is shown that
the rank of the Plucker matrix provides us with an upper bound
for both the dimensions of the image of the complex and real
PPM as well as an upper bound for the set {rank Fg). As a result
of the above properties, necessary tests for the pole assignability
of a system S(A, B, C) are derived.

II. STATEMENT OF THE PROBLEM

Let S(4, B,C) be the state space description of a linear
strictly proper system of p inputs, m outputs, and # states. Let
also G(s) = N(s)D(5)~" be a coprime matrix fraction descrip-
tion of the transfer function of the system. The pole placement
problem is to examine whether there is a solution to the equa-
tion

D(s)

det([I,K][N(s)

J) = det([1, KIM(s))

=s"+p,s"" 1+ 4p, (21

where M(s) is the column reduced and least degree composite
matrix for S, or equivalently, to the equation

det(Is —A4 —BKC) =s" +p,s" 1 + - +p, (22

with respect to K € R?*™ and for a given (p,,"*, p;) € R™. Of
particular interest is to examine the size of this set of n-tuples.
This is the same as in finding how large the image of the
function y is. The function, y, from R?™ to R”, maps every K
to (p,,*, py) under the relation (2.1) or the equivalent relation
(22) and is called the pole placement map (PPM) [2]. Its
extension ¥, from C?” to C”", is called the complex pole
placement map (CPPM). The image of CPPM can be examined
more easily than that of PPM since there is sufficient algebraic
geometry on the field of complex numbers.

Example 2.1: Consider the strictly proper system S whose
transfer function G(s) is expressed as a right coprime MFD as

-1 2 -1

wo=[ o Bl-6Eel

If we apply to G(s) constant output feedback
ki kg
K= [kn kzz]
then the closed-loop pole polynomial is given by
P(8) = 5% + k8% + kpps® — kyps + kypkyy — kipky

and so, the pole placelﬁent map defined previously is given by

[kll’klz’kZI! k22] - [k21!k22’ _klz’k22k11 - k12k21]' o

The size of this image is related to the rank of the differential
of the CPPM (or PPM). This differential is strongly related to
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