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Abstract
We consider control questions for finite automata viewed as in-
put/output systems. In particular, we find estimations of the minimal
number of states of an automaton able to control a given automaton.
We show that on average, feedback control automata are not smaller
than open-loop automata.

1 Introduction

In control theory feedback is used to obtain a desired behavior from a
system.

A wide variety of arguments have been developed to explain why feed-
back is so useful. Most of them rely on the notions of uncertainty and lack
of information: the system we want to control is not perfectly known, or
the signals between the system and its environment suffer from noise, for
example. In this chapter, following Egerstedt and Brockett in [3], we study
the problem under another light: the complexity argument.

We assume that the system we wish to control is perfectly known and
we would like to steer it from a given state to another state in the simplest
possible way. Can availability of feedback lead to smaller, less complex con-
trolling devices, as we could expect? And how can we measure complexity?

To formalize these concepts we use automata, which, as finite objects,
are easy to understand. Here we consider automata not as devices con-
ceived to simply accept words, but rather as transducers transforming a



word to another word of same length. An input letter is read and an output
letter is produced at every step. An automaton is thus an input-output
discrete-time system with a finite state space and finite input and output
alphabets. In the context of this paper, the complexity of an automaton is
simply identified with its number of states. Automata may be viewed as an
approximations of continuous state space systems, where space, inputs and
outputs are quantized by finitely many values.

An automaton can be controlled by another automaton, either in open-
loop or in feedback. We find that feedback control automata can be much
less complex than open-loop control automata to steer an automaton in
particular cases, but not on average. More precisely, we prove the following
result. The average number of states needed to drive an n-state automaton
from one state to another is

e in the order of Inn for an open-loop control automaton;

e between the order of In'~¢n and the order of Inn for a feedback control
automaton, for any € > 0.

We see that while it is not proved that open-loop and feedback have the
same order of complexity, little room is left for a spectacular improvement.

In other words, measuring the output is of little use on a system with
a random structure. However it is easy to find examples with particular
structures on which feedback leads to controllers of very low complexity.
We suggest that it could also be the case for classes of automata, such as
quantized linear systems.

Our results are in contrast with those presented in [3], where it is also
asked whether feedback is less complex than open loop when controlling
automata. However, the results presented in [3] apply to a quite sophisti-
cated variant of automata called free-running feedback automata. Essen-
tially, these are automata that do not read an input letter at every time
step, and where an input letter contains a description of the feedback law
applied to the automaton. Thus the input alphabet may be quite large. The
complexity of control is the length of the input word realizing the objective,
multiplied by the logarithm of the input alphabet cardinality. Then for such
devices, with hypotheses on the structure of the automaton, a strategy based
on mix of open-loop and feedback is proved to be less complex than pure
open-loop.

This work is also in the spirit of [1], [2], [4] (among others) where systems
have a continuous state space, but discrete time, discrete inputs and discrete



outputs. Those articles study the amount of information needed to control
the system. We pursue similar goals with quite different methods.

Before we can control a system, we must sometimes identify it. In 1956,
Moore [5] proposed algorithms to identify a black-box automaton, on which
we can test inputs and observe the corresponding outputs. Then Trakht-
enbrot, Barzdin and Korshunov developed a probabilistic point of view and
showed that automata are much easier to identify on average than in the
worst case. They also designed efficient algorithms able to identify “most”
automata; see [6]. We stick to a similar framework, but explore one step
beyond: supposing that the automaton is correctly identified, how can we
control it in the least complex way?

The main theorem is formulated in Section 2, along with preliminary
definitions. It is proved in Sections 3, 4 and 5. Conclusions and ideas for
future work are presented in Section 6.

2 Formulation and results

In this section we give precise definitions of automaton, control, com-
plexity of control. Then we describe our main result.

Definition 1 An automaton is a sextuple (Q,q,X,Y,d,7), where
e () is a finite set, the elements of which are called the states;

e X is a finite set, called the input alphabet,

q € @ is the initial state;

Y is a finite set, called the output alphabet;

5 € QU*X is the transition function;

o v € Y@*X s the output function.

An automaton can be seen as an input-output dynamical system. Given
an input word zgxi...T,, the automaton starts from the initial state g,
moves to state ¢ = d(q,z9) and emits the output letter yo = ~(q, o).
Then it reads the input letter x1, moves to state ¢ = §(¢’,x1) and emits
y1 = 0(¢’,x1). Finally, the output word corresponding to xoxi ...z, is
Yoy1 - - - Yn (see Figure 1 for an example).

Wesset 6(q, zoz1 ... x)) = (5(5( .. 0(0(g, o), 1), - - - ),azk>, for any xox1 ... Tk
in X*. Recall that X* is the set of finite words on alphabet X.
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Figure 1: An example of automaton. The vertices are the states, and the
edges have labels of the form x/y, where z is an input symbol and y an out-
put symbol. The initial state is ¢o. Upon the input of the word 011010010,
the automaton is successively in the states qo, g2, 91, q1, 9o, 91, 90, G2, q1,
q1, qo and outputs the word 000111001.

If X has only one symbol then we say that the automaton is inputless,
because the input contains no information. The length of the sequence is
simply the time variable.

Suppose we have an automaton and we would like to drive it from one
state to another state, by feeding the automaton with an appropriate word.
This is what we call the reachability problem.

Definition 2 The reachability problem:

o Instance: An automaton A (called the system automaton) and a state
of A (the target state).

e Problem: Find a word (the control word) of X* that makes A pass
—at least once— through the target state.

The control word can be chosen to be the output of another automaton.
We compare two kinds of strategies in order to solve a reachability problem:
open-loop and feedback.

e The open-loop strategy: An inputless automaton O (the control au-
tomaton) is connected to the input of the target automaton, as indi-
cated on the top of Figure 2.



o The feedback strategy: An automaton F (the control automaton) is
connected in feedback (bottom of Figure 2). We can see it as a game
played between the control automaton and the system automaton; the
goal of the former is to force the latter to enter the target state. Let us
mention a detail: for the process to be completely specified, the first
output of F must be specified, too.

Thus an open-loop solution for an instance of the reachability problem
is an inputless automaton that makes the system automaton evolve and
reach the target state, when connected in open-loop as described above.
A feedback solution is composed of a control automaton and a symbol of
its output alphabet, that makes the system automaton reach the target
state when the control automaton is connected in feedback with the system
automaton and gives the specified symbol as first output.

Our goal is to find for both strategies an estimate of the number of
states of the control automaton needed to steer a given system automaton
A. We would like also to know whether open-loop control is more complex
than feedback control. In other words, we ask the following question: does
the possibility to make a measurement on the system lead to less complex
controllers?

Given a solvable instance of the reachability problem, we naturally define
the open-loop complexity of the instance as the number of states of the
smallest open-loop solution. The feedback complexity of the instance is the
number of states of the smallest feedback solution.

For the sake of simplicity, we will focus on automata with binary input
and binary output alphabets. However our results have immediate extension
to alphabets of arbitrary fixed cardinality.

The following example shows that feedback can be much less complex
than open-loop.

Example 1 We want to solve the reachability problem for the n-state au-
tomaton represented on Figure 8 and the target state g,—1. We assume that
the word xoxy . ..xn_o is not eventually periodic, except trivially. An input-
less automaton producing this word as output must therefore have at least
n — 1 states. And the complexity of the open-loop strateqy for this instance
isn—1.

But the particular form of the output function allows a one-state au-
tomaton put in feedback to solve the problem. Actually, even a zero-state
automaton suffices! It is emough to connect the output of the automaton
directly to the input.
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Figure 2: We want to drive A from ¢g to gf. Above: The open-loop strategy.
Note that no input has been drawn towards O, since only one input word is
possible, up to the length: it may be seen as the time variable. Below: The
feedback strategy. The control automaton F' is supposed “to play first”: the
first value of y € Y must be given.



Figure 3: An example of automaton for which the feedback strategy is much
less complex then open-loop. The initial state is qg, and we want to reach
state ¢,—1. The word zgx1xs...x,_o is not eventually periodic. In the
open-loop strategy, an ni-state control automaton is needed. In the feedback
strategy, a zero-state automaton is enough.

As announced in the introduction, the gap of complexity between open-
loop and feedback is quite small on average.

To make this statement precise, we must endow the set of n-state au-
tomata with a probability measure.

Let us compute the number of different n-state automata with input and
output alphabets of cardinalities x and y respectively. From every state x
edges must be drawn and for each of these there are n possible end states
and y possible outputs. This leads to (yn)*" possible graphs. For any of
them there is a choice of n possible initial states, and so there are finally
n(yn)™ different automata. For simplicity, we suppose that the set of states
is always {0,1,...,n — 1}.

Of course, many different automata are isomorphic, i.e., they are identi-
cal up to a permutation of the states. And even more automata define the
same input/output function on words.

However, sticking to the formalism of [6], we shall do averages on the
class of n(yn)*™ different automata. For that purpose we endow this set with
uniform probability measure. A random n-state instance of the reachability
problem is composed of a random n-state automaton and a random state
chosen uniformly among {0,1,...,n — 1}. From now we will also restrict
ourselves to the case x = y = 2, as already mentioned.



When we say that a statement is true for “almost all n-state automata”,
we mean that it is true for “a proportion of n-state automata that tends
towards 1 as n increases”.

We are now able to state our main theorem. A solvable n-state instance
of the reachability problem is made of an n-state system automaton and a
target state that is reachable from the initial state.

Theorem 1 Consider the uniform probability measure on n-state automata.
There are constants Cy, Co such that for any large enough n, the expected
number of states of the smallest open-loop control automaton that solves a
solvable n-state instance reachability problem is between C1Inn and Cylnn.
For every € > 0, there is a constant C. such that the expected number
of states of the smallest feedback control automaton that solves a solvable
n-state instance reachability problem is between C,In'"¢n and CsInn.

In other words, the expected complexity of open-loop is in ©(Inn), while
the expected complexity of feedback is in Q(In'~¢) (for all e > 0) and O(Inn).

Proof. Corollary 1 of Section 4 proves that the complexity for both
strategies is in O(Inn). Proposition 3 of Section 5 proves that the open-
loop complexity is in ©(Inn). Proposition 5 of Section 5 proves that the
complexity of feedback is in Q(In'~¢n). O

Sections 3, 4 and 5 are devoted to the proof of Theorem 1, and may be
skipped in a first reading.

3 Solvable instances of the reachability problem

It is clear that the expected complexity can be computed only over solv-
able instances. The following proposition essentially says that more than
one third of the instances of the reachability problem are solvable. Recall
that we consider only automata with binary input and output alphabets.

Proposition 1 For any a < % and any large enough n, a random instance
of the reachability problem is solvable with probability at least a. More pre-
cisely, for almost all n-state automata at least |an| states are reachable from
the initial state.

Proof. Let Q@ = {0, 1,...,n—1} the set of states of a random automaton.
A subset R C Q is invariant if, starting from a state of R, it is impossible
to leave R. In other words, no edge leaves R.



We are going to prove that in almost all n-state automata, there is no
invariant subset of states of size at most |an|, for 0 < a < 1/e. As the set
of states that are reachable from the initial state is an invariant set, this is
enough to prove the proposition.

The probability for any set R of size r to be invariant is (L)%, since 2r
edges start from R, and each of them arrive in R with probability r/n.

For any R C @, consider the random variable Iy that is equal to 1 if the
set R is invariant and 0 otherwise. The expectation of Iy is the probability of
the event Iz = 1, which is (7/n)?". The probability that there is a invariant
set of size at most an is equal to

P( Y, Ig>1),

RCQ
O<card(R)<an

where P denotes the probability of an event.

For any non-negative integer-valued random variable X, the well-known
Markov’s inequality

P(X >0) <EX

holds, where E is the expectation. Indeed, EX = } _ nP(X = n)
YonsoP(X =n) =P(X >0).

Here we take X = > <card(R)<an Ir. The probability that there is an
invariant set of size at most an is

P(X >0) < EX

= Y Elg

O<card(R)<an

- £()er

r=0

\Y

If we prove that this last quantity converges to 0 as n — oo, then we
conclude from Markov’s inequality that almost all automata of size n have
have no invariant set of states of size at most an. This argument is an
example of the so-called first moment method.

It remains to prove that lim, .o ZLZ’{J (M (£)?" = 0. For every n and
for every term of the series, the following relations hold:

n (1)% - T2T
r/'n - rlnr
T T
< S < (eay
n



We used Stirling’s approximation r! > (r/e)", and the fact that r < an.
Hence

Lo n\,r 1
T \2r < r_ —1.
Z <T)(n) - Z(ea) 1 —ex
r=1
Moreover, for any fixed r, the sequence (ﬁ)(%)% < e;—’;r converges to 0

as n — oo. Thus we may apply Lebesgue’s dominated convergence theorem
to swap limit and summation as follows:

Lom] n\,r Lom] n\ r
s 2r : 2r
tm S () = 3 g (7)o =0

O

It is easy to improve the ratio 1/e to 1/2, using finer approximations of
binomial coefficients. But we don’t know how far this ratio can be improved.
It might be the case that all states are reachable for almost all automata.
As far as we know this is an open problem.

4 An upper bound on complexity

If a state of an n-state automaton is reachable from the initial state,
then it is so with an input word of length at most n, and so the complexity
of feedback and open loop are both bounded by n. On average much more
can be said.

Theorem 2 There is a constant C such that for almost all n-state au-
tomata, if a state is reachable from another state, then it is reachable with
an input word of length at most C'lnn.

We do not prove this result here; the interested reader is referred to [6].

Corollary 1 There is a constant C' such that for almost all n-state in-
stances of the reachability problem, feedback and open loop control are both
bounded by C'lnn. In particular, the expected complexity of a solvable in-
stance is in O(lnn) for both strategies.
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5 Lower bounds on complexity

Let us a take a random instance of the reachability problem of size n, i.e.,
a random n-state automaton (with binary input and output alphabets) with
a random target state. Take a random p-state inputless automaton (with
binary output alphabet). We will denote P?(n,p) the probability that the
p-state control automaton solves the n-state instance of the reachability
problem in open-loop.

Now take a random p-state automaton (with binary input and output
alphabets). We will denote P/ (n,p) the probability the the p-state control
automaton solves the n-state instance in feedback.

In this section, we compute estimates of these quantities that allows us
to give lower bounds on complexity.

First of all, a little technical lemmas:

Lemma 1 There is a constant ¢ > 0 such that for any p € N, any n > p?

and k = /2pnlnn we have

ek 1
(1 _ pﬁn)pn—k—kg Cn

Proof. Taking the logarithm:

e p Inn
ln(l—p%)p"_m% = _\/W—(pN—\/W+§)ln(l— 2p—n)

1 1
= —y/2pnlnn — (pn— \/Qpnlnn—kg)(— \ /2% _ ﬂ_,_

2Inn plnn  Inn
Inn
o 2n 2n

= —Ilnn-—

The second equality used the Taylor expansion In(1+z) = x — % + O(z3).
All terms of the last member except the first are bounded by a constant,
provided that n > p?. Thus

—k

—_

e

k —k+Z
(1= )it

A
7

for some ¢ > 0.0
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5.1 A lower bound for open-loop complexity

We may obtain the following bound on P%(n, p):

Proposition 2 For any large enough p and any n > p?, the probability
POLn,p) for a random inputless p-automaton to solve in open-loop a random
n-state instance of the reachability problem is bounded by

Pn,p) < 4/ P1nn.
n

Proof. We fix an arbitrary inputless control automaton of p states.

In a first step we give an upper bound on the probability for the path
described in the random target automaton to pass through at least k of the
n states.

In a second step we use Lemma 1 to compute a bound on P%(n, p).

Step 1 To explore at least k different states, we must explore at least k
different edges. Each time a new edge is being explored, the end state of the
edge is randomly chosen among the n states. If this new edge occurs after
[ steps (i.e., when the path already drawn has length [), and if less than k
states are explored at that moment, then at most n—|l/p| are allowed for the
end state of the edge (in order not to loop before having seen k states). This
is because if the couple (state of the control automaton, state of the system automaton)
is the same at two steps, then the system enters a loop; thus |I/p] states are
“forbidden”. Moreover, the ith new edge is discovered after a length [ > 4.
Thus the probability to explore at least k edges is less than the following
product of k factors:

P p <p

. e e
nomnot nol o n kel n (k) W)
n n on n n n ’

where each factor —except maybe the last— is repeated p times. This is
smaller than:

n! p e~ Lk/p] P
((n — |k/p])inlk/p] ) = ((1 + O(l/n)> (1— %L%J)n—Lk/pH%)
e ¥
= o) (1— l%)m—k%%’

where ¥/ = k — p. Stirling’s formula has been used to derive the first in-
equality. The error factor is in O(1) thanks to the assumption n > p?.
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Step 2 Let k be equal to v/2pnInn + p. Then Lemma 1 ensures that

—k

e 1
< 1)—.
(1— Eypn—k'+5 = o )n
pn
Then the expected number of states visited by the control automaton in the

system automaton is at most
1 1
(1— O(l)g) (vV2pnlnn+p) + O(l)gn <2y/pnlnn

for p large enough. Thus, P°(n,p) < 2,/ % Inn for p large enough. O

In fact, the proof shows that the result holds not only for a random
control automaton but for any control automaton.

We now derive a lower bound on open-loop complexity.

Proposition 3 The expected complexity of the open-loop strategy for an n-
state solvable instance of the reachability problem is in O(Inn).

Proof. The behavior of an inputless automaton is completely charac-
terized by the infinite word it produces as output. This output word is
eventually periodic.

The number of inputless p-state automata generating different output
sequences is p2P. Indeed, p is the sum of lengths of the non-periodic part
and the period, and there are p possibilities for the length of the period.

So, using Proposition 2, the probability that an n-state instance of the
reachability problem is solved by at least one p-state open-loop automaton
is (provided that n > p? and p is large enough) bounded above by

4p2P Pian.
V n

Assume this quantity is lower than 1/6:

1
4p2p1/£1nn§—,
n 6

1 n
Aplror < = | —.
P —6VInn

p < cplnn,

which may be written

This is satisfied if
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for some co > 0.

Thanks to Proposition 1, we know that for n large enough, at least one
third of the n-state instances of the reachability problem are solvable. If
p < ¢plnn, it means that at least half of the n-state solvable instances are
not solved by any open-loop control automaton of at most p states. Hence
the average complexity of an n-state solvable instance is at least 5 Inn. So
the result follows with ¢ = ¢p/2. O

5.2 A lower bound for feedback complexity

We now adapt the arguments of the preceding subsection to the case of
feedback.

Proposition 4 For any large enough p and for any n > 4p?, the probability
Pl (n,p) for a random p-state automaton to solve in feedback a random n-
state instance of the reachability problem is bounded by

Pl (n,p) < 2¢/2pnlnn.

Proof. First we fix an arbitrary feedback control automaton.

The main idea of the proof is the same as in proof of Proposition 2.
There we used the fact that if the system automaton is twice in the same
state while the open-loop control automaton is also in the same state, then
the whole system falls into a loop and will not discover new states. The
case of the feedback strategy is slightly more complicated. Indeed, knowing
the states of the control and system automata is not sufficient to determine
the evolution of the system. Suppose that the system automaton A “has
just played” (remember the game-theoretic terminology): it went from ¢ to
¢ according to the transition d4(q,z) = ¢’. Let y = va(q,z) the output
produced during this transition. During this time the control automaton
F is in state, say, s. But now F must play! It is going to enter the state
dr(s,y). So to compute the next states, s, ¢’ and y are needed. Since y can
take two values, A (having played) and F' (going to play) can only be twice
in state ¢’ and s respectively.

Heuristically, we thus expect the same result as in Proposition 2, except
that that p becomes 2p. The rest of the proof rigorously establishes this
fact.

Let the states of F' be denoted by s, ..., sp.

We want to estimate the probability that at least k states of the system
automaton are visited when F' is connected in feedback to it. To explore at
least k different states of the system automaton, we must explore at least

14



k different edges. Every time a new edge is being explored, the end state
of the edge is chosen randomly among the n states. Suppose that after [
steps (i.e., when the path already drawn has length [), less than k states
have been reached, the system automaton is in state g;,, the output of F' is
ZTm, and the edge starting from g;, labelled by z,,, has never been used: we
must choose an end state for this new edge.

Suppose in addition that the current state of F' is s;,. The end state of
the new edge (i.e., d4(gi,, Tm,) ) is chosen among three kinds of states:

e Those that have been reached once while F' was in state s;,. Let a;,
be the number of such states. If one of these states is chosen, then the
probability for the trajectory to fall into a loop is at least 1/2, because
one of the two possible values for v4(g;,, Tm,) is “forbidden”.

e Those that have been reached (exactly) twice while F' was in state s;,.
Let bj, the number of such states. They may not be chosen as end
state of the edge, since the whole system would loop (remember we do
not want to loop before having explored k states).

e Those that have not been explored yet when F' was in state s;, (they
might have been explored when F' was in another state, of course).

Their number is rj, = n — a;, — bj,. They may be chosen without
restriction.
In the first case, aj, is decreased by one (“aj, := aj, —1”) and bj, is

increased by one. In the third case, r;, is decreased by one and a;, is increased
by one.

So the probability to choose a “good” end state for a new edge (i.e., not
to fall into a loop) is less than %% + %l, and the quantity %ajl +rj, decreases
by 1/2, in every case (starting from n, for [ = 0).

So the probability of discovering at least k edges is bounded by a weighted
average of terms of the form

Lag | 1y
H 2n+n’

[>0| new edge drawn at step [ and < k states reached

taken over all the paths visiting k states. For each of these terms, we denote
t; the number of occurrences of state s; in the corresponding path. Then
the term may be expressed (by a permutation of factors) :

12 ot
nh—anh=35 "73

A n n n n
1<i<p

15



Moreover, > ;<,ti > k. So it is routine to see that each term is bounded
by
k|1l
(ﬁ"—%n—%.."‘ Lm)l’
n o n n n ’

itself bounded by

(nnn—ln—l ”—L%Jn_LgﬁpJ)p
nn n n n n ’

where each factor is repeated twice.

Comparing with Equation 1, we see that nothing has changed, except
that p has become 2p. So the end of the proof remains unchanged in its
principle: the conclusion is that the probability that Pf(n,p) is less than
2\/%”lnn. O

Again, the proof holds not only for a random feedback control automaton

but for any feedback control automaton.
Thus:

Proposition 5 For every e > 0, the expected number of states of the small-
est feedback control automaton that solves an n-state solvable instance of the
reachability problem is, for some constant C¢ and all large enough n, greater

than C.In'"¢n.
Proof. The number of different p-state automata is p(2p)?P. So, using

the preceding proposition, the probability that a random n-state instance of
the reachability problem is solved by at least one p-state feedback automaton

is bounded above by:
2p(2p)2p\ / /4 Inn.
n

We want this quantity to be lower than 1/6:

2p(2p) %

After some manipulations it becomes

1 n
9 2p+3 < Z,.
(2p)™72 < 6V Inn’

1
(2p+3/2)In(2p) < §(lnn —Inlnn) —In6.

Inn <

S|
| =

or
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This is satisfied if
1—e¢

p < co(lnn)
for some ¢y > 0, any € > 0 and n large enough.

Thanks to Proposition 1, we know that for n large enough, at least one
third of the n-state instances of the reachability problem are solvable. If
p < ¢oIn' "¢ n, it means that at least half of the solvable n-state instances are
not solved by any p-state open-loop control automaton. Hence the expected
complexity of an n-state instance is at least % Inn. So the result follows
with ¢ = ¢p/2. O

6 Conclusions

We studied finite automata as input/output systems, and the complexity
needed to control them. It happens from our results that making measure-
ments on the output of a system is not very useful for automata with a
completely random structure.

Of course, feedback cannot be more complex than open-loop, and we
gave an example where it is actually much less complex.

We are lead to the conclusion that feedback is useful to gain complexity
only in connection with a particular structure of the automaton.

Future work could be devoted to finding classes of particular systems for
which feedback is particularly interesting. For instance, it would be natural
to see what happens if the automaton results from the quantization of a
continuous linear system.
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