Avoidance and intersection in the complex plane, a tool for simultaneous stabilization

V. Blondel, G. Campion and M. Gevers Department of Automatic Control - University of Louvain Place du Levant 3, B-1348 Louvain-La-Neuve, Belgium

Abstract

In this paper we study the following problem: "under what condition(s) is it possible to find a single controller which stabilizes k siso linear time invariant plants $p_i(s)$ (i=1,...,k)?". We show that the problem admits a solution if and only if an avoidance condition in the complex plane is satisfied and we use this last result to derive a sufficient condition for k plants to be simultaneously stabilizable.

1 Introduction

Simple questions can not always be simply answered. In this paper we give a very partial answer to a simple question in control theory which, for being open for ten years, does not seem to have a simple answer. The question is known under the name of simultaneous stabilization problem and is the following: "Under what condition(s) is it possible to find a single controller c(s) which stabilizes k siso linear time invariant systems $p_i(s)$ (i=1,...,k)?". This question has already been solved for one or two plants: when k=1, it is always possible to find a stabilizing controller, and when k=2 a tractable necessary and sufficient condition, known as the parity interlacing property, exists (see [4]). The problem becomes harder when $k \geq 3$ (in fact no satisfactory answer exists even when k=3) and most papers on the simultaneous stabilization problem deal either with necessary or with sufficient conditions ([1], [3], [7]).

In this paper we present the problem as an avoidance problem between complex valued functions. Roughly speaking, a set of k siso linear time invariant plants $\{p_1(s),...,p_k(s)\}$ will be shown to be simultaneously stabilizable iff there exists a $k+1^{th}$ plant $p_{k+1}(s)$ which avoids, in a sense that we will define, the plants $p_1(s),...,p_k(s)$ for all s in the extended closed right half plane. With this view of the problem we will prove a new sufficient condition under which k plants are simultaneously stabilizable.

2 Notations-Definitions

 $\mathbf{R}(s)$ is the set of real rational functions. \mathbf{C}_{∞} is the extended complex plane $\mathbf{C} \cup \{\infty\}$ adequately topologized. Ω is any subset of \mathbf{C}_{∞} . We shall suppose troughout this note that Ω is symmetric with respect to the real axis (if $s \in \Omega$ then $\overline{s} \in \Omega$), that it is closed, simply connected and that its complement in \mathbf{C}_{∞} contains at least one value of $\mathbf{R} \cup \{\infty\}$. Ω is to be thought of as the complement in \mathbf{C}_{∞} of a region of stability. Classical examples of regions Ω are the closed unit disc and the extended closed right half plane which correspond respectively to the complement in \mathbf{C}_{∞} of the discrete and continuous time stability regions. A real rational function $f(s) \in \mathbf{R}(s)$ is Ω -stable if it has no poles in Ω . $S(\Omega)$ is the set of all Ω -stable functions. A real rational function

 $f(s) \in \mathbf{R}(s)$ belongs to $M(\Omega)$ if it has no zeros in Ω . Finally, we define $U(\Omega) := M(\Omega) \cap S(\Omega)$.

3 Avoidance and intersection

Immediate checking shows that, whatever Ω , $S(\Omega)$ is a commutative ring. It is also known that under our hypothesis on Ω , the field of fractions of $S(\Omega)$ is $\mathbf{R}(s)$ (see for example [5], p.50). This means that if $p(s) \in \mathbf{R}(s)$ then there exist $n(s), d(s) \in S(\Omega)$ such that $p(s) = \frac{n(s)}{d(s)}$ where n(s) and d(s) have no common zeros in Ω . Such a fractional decomposition of p(s) is called an Ω -coprime decomposition. We may now define what we mean by the intersections of two functions $p_1(s), p_2(s) \in \mathbf{R}(s)$ in Ω .

Definition. Let $p_1(s), p_2(s) \in \mathbf{R}(s)$ and let $n_i(s), d_i(s) \in S(\Omega)$ be fractional Ω -coprime decompositions of $p_i(s)$ i=1,2. The intersections of $p_1(s)$ and $p_2(s)$ in Ω are the zeros of $n_1(s)d_2(s)-d_1(s)n_2(s) \in S(\Omega)$ in Ω . If $n_1(s)d_2(s)-d_1(s)n_2(s) \in U(\Omega)$ then $p_1(s)$ and $p_2(s)$ have no intersections in Ω and we say that they avoid each other in Ω .

This definition may look somewhat mysterious. In fact it is very natural and the procedure to compute the intersections between plants is very simple. From our assumptions on Ω it follows that the module of a function in $S(\Omega)$ has an upper bound on Ω and that of a function in $M(\Omega)$ has a lower bound on Ω . This allows us to prove the next lemma.

Lemma 1. Let $p_1(s) \in S(\Omega)$ and $p_2(s) \in M(\Omega)$. Then there exists a real L > 0 such that $lp_2(s)$ avoids $p_1(s)$ in $\Omega \ \forall l > L$.

Proof. $p_1(s) \in S(\Omega)$ and $p_2(s) \in M(\Omega)$ and hence there exist trivial fractional Ω -coprime decompositions $p_1(s) = \frac{n_1(s)}{l}$ and $p_2(s) = \frac{1}{d_2(s)}$ where $n_1(s), d_2(s) \in S(\Omega)$. Define $L = \sup_{s \in \Omega} |n_1(s)d_2(s)| > 0$. L is finite because Ω is closed in the extended complex plane and $n_1(s)d_2(s)$ has no poles in Ω . It is clear that for every l > L, $n_1(s)d_2(s) - l$ is an element of $S(\Omega)$ which never takes the value zero when $s \in \Omega$. That is, $n_1(s)d_2(s) - l \in U(\Omega) \ \forall l > L$. In other words, $lp_2(s)$ avoids $p_1(s)$ in Ω for every l > L.

4 Simultaneous stabilization

In the usual sense a controller $c(s) \in \mathbf{R}(s)$ is said to be a stabilizing controller for a plant p(s) if $p(s)c(s)(1+p(s)c(s))^{-1}$ is proper and has no poles with positive real part. In other words c(s) stabilizes p(s) if $p(s)c(s)(1+p(s)c(s))^{-1} \in S(\mathbf{C}_{+\infty})$ where $\mathbf{C}_{+\infty}$ is the extended complex right half plane. It was shown in [5] that this is an ill-stated definition of stability and that it is necessary for practical purposes to ask for internal as well as external stability. A controller c(s) is an internal stabilizer of a plant p(s) if all the transfer functions $p(s)c(s)(1+p(s)c(s))^{-1}, c(s)(1+p(s)c(s))^{-1}$ and $p(s)(1+p(s)c(s))^{-1}$ are in $S(\mathbf{C}_{+\infty})$. Since we want to treat

stabilization problems in a general framework, encompassing continuous as well as discrete time stability, we will say that a controller $c(s) \in \mathbf{R}(s)$ internally Ω -stabilizes (or is an internal Ω -stabilizer of) $p(s) \in \mathbf{R}(s)$ if all the transfer functions $p(s)c(s)(1+p(s)c(s))^{-1}$, $c(s)(1+p(s)c(s))^{-1}$ and $p(s)(1+p(s)c(s))^{-1}$ are in $S(\Omega)$. This notion of internal Ω -stabilization is strongly connected to that of avoidance in Ω .

Lemma 2. Let $p(s), c(s) \in \mathbf{R}(s)$. Then the controller c(s) internally Ω -stabilizes p(s) if and only if $-c^{-1}(s)$ avoids p(s) in Ω .

Proof. Let $p(s) = \frac{n_p(s)}{d_p(s)}$ and $c(s) = \frac{n_c(s)}{d_c(s)}$ be Ω -coprime decompositions of p(s) and c(s). It is well known that c(s) internally Ω -stabilizes p(s) iff $n_p(s)n_c(s) + d_p(s)d_c(s) \in U(\Omega)$ (see [5]). This late condition is satisfied if and only if $-c(s)^{-1}$ avoids p(s) in Ω .

With this result we may reformulate the simultaneous stabilization problem under the form of an avoidance problem.

Corollary 1. Let $p_i(s) \in \mathbf{R}(s)$ (i = 1, ..., k). The plants $p_i(s)$ are simultaneously internally Ω -stabilizable if and only if there exists a $c(s) \in \mathbf{R}(s)$ such that $-c^{-1}(s)$ avoids $p_i(s)$ in Ω (i = 1, ..., k).

By using this last result and Lemma 1 it is straightforward to prove the next theorem.

Theorem 1. Let $p_i(s) \in M(\Omega)$ (i = 1,...,k) and consider any $c(s) \in M(\Omega)$. Then there exists $\lambda \in \mathbb{R}$ such that $\lambda c(s)$ internally Ω -stabilizes $p_i(s)$ (i = 1,...,k).

Proof. By using Lemma 1, for each $p_i(s)$ there exists $L_i > 0$ such that $-c^{-1}(s)$ avoids $lp_i(s)$ in Ω for every $l > L_i$. Define $L_{max} = max_{i=1,\dots,k}L_i$. Then clearly $-c^{-1}(s)$ avoids $lp_i(s)$ $\forall l > L_{max}$ ($i = 1,\dots,k$). Choose a $\lambda > L_{max}$ then $-c^{-1}(s)$ avoids $\lambda p_i(s)$ ($i = 1,\dots,k$) or, equivalently, $-(\lambda c(s))^{-1}$ avoids $p_i(s)$ ($i = 1,\dots,k$) and by Corollary 1 the theorem is proved.

This last theorem is in fact a well known result in simultaneous stabilization when Ω is the extended right half plane (see for example [7]). If k plants are minimum phase and proper but not strictly proper, then there exists a controller, with arbitrarily specified poles and arbitrarily specified stable zeros, that internally stabilizes $p_i(s)$ (i = 1, ..., k).

The condition of the theorem is a particular situation under which the simultaneous stabilization problem of k plants admits a solution. In the next theorem we prove a new result in the same vein; we give a sufficient condition under which k plants are simultaneously internally Ω -stabilizable. The underlying idea is the following: a finite set of plants is simultaneously stabilizable iff there exists an additional "plant" which avoids all of them (see Corollary 1). Suppose now that in a set of k plants $\{p_1, ..., p_k\}$ one of the plants $\{p_2, p_3, ..., p_k\}$ are simultaneously stabilized by $-p_1^{-1}$. In fact it is then possible to do more than that: it is then possible to find a stabilizing controller for the whole set $\{p_1, ..., p_k\}$. This is essentially what is contained in our next theorem which is the central result of this paper.

Theorem 2. Let $p_i(s) \in \mathbf{R}(s)$ (i=1,...,k) and suppose that there exist a j $(1 \le j \le k)$ such that $p_j(s)$ avoids $p_i(s)$ in Ω (i=1,...,k and $i \ne j)$. Then the plants $p_i(s)$ (i=1,...,k) are simultaneously internally Ω -stabilizable.

Proof. Suppose without loss of generality that j=1. Find an Ω -coprime fractional decomposition of $p_1(s)$, $p_1(s)=\frac{n_1(s)}{d_1(s)}$ with $n_1(s), d_1(s) \in S(\Omega)$. We know that under our assumptions on Ω

(Ω is symmetric, simply connected and its complement contains at least one value in $\mathbf{R} \cup \{\infty\}$), $S(\Omega)$ is an Euclidean ring (see [5] for more details). Hence there exist $x(s),y(s)\in S(\Omega)$ such that $n_1(s)x(s) + d_1(s)y(s) = 1$. Since $p_1(s)$ avoids $p_i(s)$ in Ω (i = (2,...,k) we have that $n_i(s)d_1(s)-d_i(s)n_1(s)\in U(\Omega)$ (i=2,...,k)and we define $u_i(s) = n_i(s)d_1(s) - d_i(s)n_1(s) \in U(\Omega)$ (i = 2, ..., k). Finally we define $\delta = min_{i=2,\dots,k} \frac{inf_{i\in\Omega} |u_i(s)|}{\sup_{s\in\Omega} |x(s)n_i(s)+y(s)d_i(s)|} > 0$ and choose ϵ with $0 < \epsilon < \delta$. We claim that $q(s) := \frac{n_1(s) - \epsilon y(s)}{d_1(s) + \epsilon x(s)} \in \mathbf{R}(s)$ avoids $p_i(s)$ in Ω (i = 1, ..., k). Indeed, if i = 1 then $n_1(s)(d_1(s) +$ $\epsilon x(s)) - d_1(s)(n_1(s) - \epsilon y(s)) = \epsilon(n_1(s)x(s) + d_1(s)y(s)) = \epsilon \in$ $U(\Omega)$. Whereas for $i \geq 2$ we have $n_i(s)(d_1(s) + \epsilon x(s))$ – $d_i(s)(n_1(s) - \epsilon y(s)) = n_i(s)d_1(s) - d_i(s)n_1(s) + \epsilon(x(s)n_i(s) +$ $y(s)d_i(s) = u_i(s) + \epsilon(x(s)n_i(s) + y(s)d_i(s))$. By construction of ϵ it is clear that $u_i(s) + \epsilon(x(s)n_i(s) + y(s)d_i(s)) \neq 0$ for every $s \in \Omega$ (i=2,...k). This shows that $u_i(s) + \epsilon(x(s)n_i(s) + y(s)d_i(s)) \in$ $U(\Omega)$ (i=2,...,k) and thus $q(s)=\frac{n_1(s)-\epsilon y(s)}{d_1(s)+\epsilon x(s)}$ avoids $p_i(s)$ in Ω (i=2,...k). Finally, q(s) avoids $p_i(s)$ (i=1,...,k) and, by applying Corollary 1, $-q^{-1}(s)$ is a simultaneous stabilizer for all $p_i(s)$ (i = 1, ..., k).

5 Example

Let $p_1(s) = \frac{1}{s-1}$, $p_2(s) = \frac{-s}{3s+1}$, $p_3(s) = -\frac{s-2}{5s-1}$ and $p_4(s) = -\frac{s^2-3s+1}{2s^2-s+2}$. It is easy to see that $p_1(s)$ does not intersect any of the $p_i(s)$ in $C_{+\infty}$ (i=2,3,4) and hence, by Theorem 2, the plants p_1,p_2,p_3 and p_4 are simultaneously internally $C_{+\infty}$ -stabilizable. It is even possible to say more. $p_1(s)$ intersects $p_i(s)$ (i=2,3,4) at the unique point $-1 \in C$ and hence the plants p_1,p_2,p_3 and p_4 are simultaneously internally Ω -stabilizable for any region Ω that does not contains $\{-1\}$. For example $c(s) = \frac{3}{2}$ is a $C_{+\infty}$ -stabilizing controller for $p_i(s)$, (i=1,2,3,4).

References

- E. Emre, Simultaneous stabilization with fixed closed loop characteristic polynomial, *Trans. Automat. Contr.*, 28, pp. 103-104, 1983
- [2] J. Helton, Worst case analysis in the frequency domain, Trans. Automat. Contr., 30, pp. 1154-1170, 1985.
- [3] H. Kwakernaak, A condition for robust stabilizability, System Control Lett., Vol. 2, pp. 1005-1013, 1985.
- [4] R. Saeks and J. Murray, Fractional representation, algebraic geometry and the simultaneous stabilization problem, *IEEE Trans. Automat. Contr.*, Vol. 27, pp. 895-903, 1982.
- [5] M. Vidyasagar, System Control Synthesis: A factorization approach, MIT press, 1985.
- [6] M. Vidyasagar and N. Viswanadham, Algebraic design techniques for reliable stabilization, *IEEE Trans. Automat. Contr.*, Vol. 27, pp. 1085-1095, 1982.
- [7] K. Wei and B. Barmish, An iterative design procedure for simultaneous stabilization of MIMO systems, *Automatica*, Vol. 24, pp. 643-652, 1988.
- [8] D. Youla, J. Bongiorno and C. Lu, Single-loop feedback stabilization of linear multivariable plants, *Automatica*, Vol. 10, pp. 159-173, 1974.