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Abstract

In this paper we study the following problem: ”under what con-
dition(s) is it possible to find a single controller which stabilizes
k siso linear time invariant plants p;(s) (i = 1,...,k) ?”. We show
that the problem admits a solution if and only if an avoidance con-
dition in the complex plane is satisfied and we use this last result
to derive a sufficient condition for k plants to be simultaneously
stabilizable.

1 Introduction

Simple questions can not always be simply answered. In this pa-
per we give a very partial answer to a simple question in control
theory which, for being open for ten years, does not seem to have
a simple answer. The question is known under the name of simul-
taneous stabilization problem and is the following: ”Under what
condition(s) is it possible to find a single controller ¢(s) which
stabilizes k siso linear time invariant systems pi(s) (¢ = 1,...,k)
7", This question has already been solved for one or two plants:
when k = 1, it is always possible to find a stabilizing controller,
and when k = 2 a tractable necessary and sufficient condition,
known as the parity interlacing property, exists (see [4]). The
problem becomes harder when & > 3 (in fact no satisfactory an-
swer exists even when k = 3) and most papers on the simultaneous
stabilization problem deal either with necessary or with sufficient
conditions ([1], 3], [7]).

In this paper we present the problem as an avoidance problem
between complex valued functions. Roughly speaking, a set of &
siso linear time invariant plants {pi(s),...,pe(s)} will be shown
to be simultaneously stabilizable iff there exists a k + 1% plant
Pr41(s) which avoids, in a sense that we will define, the plants
P1(8), - pi(s) for all s in the extended closed right half plane.
With this view of the problem we will prove a new sufficient con-
dition under which k plants are simultaneously stabilizable.

2 Notations-Definitions

R(s) is the set of real rational functions. Co is the extended
complex plane € U {00} adequately topologized. (2 is any subset
of C,. We shall suppose troughout this note that { is symmetric
with respect to the real axis (if s € Q then 3 € ), that it is
closed, simply connected and that its complement in C,, contains
at least one value of RU {co}. € is to be thought of as the
complement in C,, of a region of stability. Classical examples of
regions ( are the closed unit disc and the extended closed right
half plane which correspond respectively to the complement in
C., of the discrete and continuous time stability regions. A real
rational function f(s) € R(s) is Ql-stable if it has no poles in {.
5(2) is the set of all Q-stable functions. A real rational function
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f(s) € R(s) belongs to M () if it has no zeros in Q. Finally, we
define U(Q) := M(Q) N 5(Q).

3 Avoidance and intersection

Immediate checking shows that, whatever 2, S(Q?) is a commuta-
tive ring. It is also known that under our hypothesis on @, the
field of fractions of S(Q) is R(s) (see for example [5}, p.50). This
means that if p(s) € R(s) then there exist n(s),d(s) € S(€) such
that p(s) = :;f: where n(s) and d(s) have no common zeros in
. Such a fractional decomposition of p(s) is called an Q-coprime
decomposition. We may now define what we mean by the inter-
sections of two functions p;(s),pz(s) € R(s) in €.

Definition. Let py(s),p:(s) € R(s) and let ny(s),di(s) € S5(Q)
be fractional Q-coprime decompositions of p;i(s) ¢ = 1,2. The
intersections of py(s) and py(s) in Q are the zeros of ny(s)dz(s) —
di(s)na(s) € S(Q) in Q. If ny(s)da(s) — di(s)nz(s) € U(R) then
p1(s) and py(s) have no intersections in Q and we say that they
avoid each other in Q.

This definition may look somewhat mysterious. In fact it is very
natural and the procedure to compute the intersections between
plants is very simple. From our assumptions on £ it follows that
the module of a function in S(f2) has an upper bound on  and
that of a function in M(£2) has a lower bound on Q. This allows
us to prove the next lemma.

Lemma 1. Let pi(s) € S(Q) and pa(s) € M(R). Then there
exists a real L > 0 such that Ipy(s) avoids pi(s) in Q VI > L.

Proof. py(s) € S(2) and px(s) € M (1) and hence there exist triv-
ial fractional Q-coprime decompositions p;(s) = u‘lﬂ and po(s) =
d;(a) where n1(s),d3(s) € S(Q). Define L = sup,¢q | n1(s)da(s) |>
0. L is finite because § is closed in the extended complex plane
and ny(s)dz(s) has no poles in Q. It is clear that for every I > L,
na(s)da(s) — 1 is an element of S(f) which never takes the value
zero when s € §. That is, ny(s)dz(s) — | € U(Q) VI > L. In other

words, Ipy(s) avoids p;(s) in § for every I > L. B

4 Simultaneous stabilization

In the usual sense a controller c(s) € R(s) is said to be a stabiliz-
ing controller for a plant p(s) if p(s)e(s)(1 + p(s)c(s))™" is proper
and has no poles with positive real part. In other words c(s) sta-
bilizes p(s) if p(s)e(s)(1 +p(s)e(s)) ™" € S(Cyoo) Where i is the
extended complex right half plane. It was shown in [5] that this
is an ill-stated definition of stability and that it is necessary for
practical purposes to ask for internal as well as external stabil-
ity. A controller ¢(s) is an internal stabilizer of a plant p(s) if all
the transfer functions p(s)e(s)(1+p(s)e(s)) ™2, e(s)(1+p(s)e(s)) ™!
and p(s)(1 + p(s)c(s))™* are in S(C4o)- Since we want to treat



stabilization problems in a general framework, encompassing con-
tinuous as well as discrete time stability, we will say that a con-
troller c(s) € R(s) internally Q-stabilizes (or is an internal Q-
stabilizer of ) p(s) € R(s) if all the transfer functions p(s)c(s)(1 +
p(s)e(s),(s)(1 + pls)e(s))™ and p(s)(L + p(s)e(s))" are in
5(2). This notion of internal Q-stabilization is strongly connected
‘to that of avoidance in Q.

Lemma 2. Let p(s),c(s) € R(s). Then the controller c(s) inter-
nally Q-stabilizes p(s) if and only if —c™(s) avoids p(s) in Q.

Proof. Let p(s) = %:i(f} and ¢(s) = ::(:) be Q-coprime decom-
positions of p(s) and ¢(s). It is well known that c(s) internally
Q-stabilizes p(s) iff n,(s)n.(s) + dy(s)dc(s) € U(Q) (see [5]). This
last condition is satisfied if and only if —c(s)~? avoids p(s) in .
]

With this result we may reformulate the simultaneous stabiliza-
tion problem under the form of an avoidance problem.

Corollary 1. Let p;(s) €R(s) (¢ = 1,...,k). The plants p;(s) are
simultaneously internally Q-stabilizable if and only if there exists
a ¢(s) € R(s) such that —c™(s) avoids p;(s) in @ (i = 1,...,k). W

By using this last result and Lemma 1 it is straightforward to
prove the next theorem.

Theorem 1. Let pi(s) € M(Q) (i = 1,...,k) and consider any
¢(s) € M(Q). Then there exists A € R such that Ac(s) internally
Q-stabilizes pi(s) (i = 1,..., k).

Proof. By using Lemma 1, for each p;(s) there exists L; > 0
such that —c™!(s) avoids Ipi(s) in Q for every | > L;. De-
VI > Lpgz (1 = 1,,k) Choose a A > L,,, then —c71(s)
avoids Api(s) (i = 1,...,k) or, equivalentely, —(Ac(s))™! avoids
pi(8) (i = 1,...,k) and by Corollary 1 the theorem is proved. m

This last theorem is in fact a well known result in simulta-
neous stabilization when { is the extended right half plane (see
for example [7]). If k plants are minimum phase and proper but
not strictly proper, then there exists a controller, with arbitrarily
specified poles and arbitrarily specified stable zeros, that inter-
nally stabilizes pi(s) (i = 1,..., k).

The condition of the theorem is a particular situation under
which the simultaneous stabilization problem of k plants admits
a solution. In the next theorem we prove a new result in the
same vein; we give a sufficient condition under which £ plants are
simultaneously internally Q-stabilizable. The underlying idea is
the following: a finite set of plants is simultaneously stabilizable
iff there exists an additional "plant” which avoids all of them (see
Corollary 1). Suppose now that in a set of k plants {p,, ..., p} one
of the plants (say pi) avoids all the others. Then by Corollary 1
the plants p;, ps, ..., pi are simultaneously stabilized by —p;!. In
fact it is then possible to do more than that: it is then possible
to find a stabilizing controller for the whole set {p1,...,pr}. This
is essentially what is contained in our next theorem which is the
central result of this paper.

Theorem 2. Let p;(s) € R(s) (i = 1,...,k) and suppose that
there exist a j (1 < j < k) such that p;(s) avoids p;(s) in Q
(i =1,..,k and i # j). Then the plants p;(s) (i = 1,...,k) are
simultaneously internally -stabilizable.

Proof. Suppose without loss of generality that j = 1. Find an
Q-coprime fractional decomposition of py(s), pi(s) = %}-8- with
ny(s),d1(s) € S(N). We know that under our assumptions on {}

48

(Q is symmetric, simply connected and its complement contains
at least one value in R U {o0}), S() is an Euclidean ring (see
[5] for more details). Hence there exist z(s),y(s) € S() such
that ny(s)z(s) + di(s)y(s) = 1. Since pi(s) avoids p;(s) in Q (¢ =
2,...,k) we have that n;(s)d(s) — di(s)n,(s) e U(R) (: = 2,...,k)
and we define u;(s) = n;(s)di(s)— k)

di(s)ny(s) € U(Q) (i = 2,...,k).
Finally we define § = minics,. btttz > 0 and

choose € with 0 < € < §. We claim that ¢(s) := %&} € R(s)
avoids p;(s) in (i = 1,..., k). Indeed, if i = 1 then n,(s)(ds(s) +
e2(s)) — dy(s)(mi(s) — e9(s)) = e(m(s)2(s) + di(s)y(s)) = ¢ €
U(R}). Whereas for ¢ > 2 we have ni(s)(di(s) + ez(s)) —
di(s)m(s) — eu(s)) = nils)d(s) = di(s)mi(s) + ela(sImi(s) +
y(s)di(s)) = ui(s) + e(z(s)ni(s) + y(s)di(s)). By construction of €
it is clear that u;(s) + e(z(s)ni(s) + y(s)di(s)) # 0 for every s € R
(z = 2,...k). This shows that u;(s) + e(z(s)ni(s) + y(s)di(s)) €
U(Q) (i = 2,...,k) and thus ¢(s) = 5745 avoids pi(s) in Q
(¢ = 2,...k). Finally, ¢(s) avoids p;(s) (¢ = 1,...,k) and, by apply-
ing Corollary 1, —¢~!(s) is a simultaneous stabilizer for all p;(s)
(t=1,.,k).m

5 Example
Let ;(s) = 25,m(s) = 55.p3(s) = —£L and p(s) =

—%;:3;—1-;. It is easy to see that pi(s) does not intersect any of
the pi(s) in C4o (2 =2,3,4) and hence, by Theorem 2, the plants
P1,P2, P3 and p, are simultaneously internally € ,-stabilizable. It
is even possible to say more. p;(s) intersects p;(s) (i = 2,3,4) at
the unique point —1 € C and hence the plants py, p;,ps and pg
are simultaneously internally Q-stabilizable for any region  that
does not contains {—1}. For example c(s) = 2 is a C,-stabilizing

=2
controller for pi(s), (i = 1,2,3,4).
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